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Abstract:In this paper,we study a partially linear varying-coefficient errors-in-variables
(EV) model under additional restricted condition.Both of the parametric and nonparamet-
ric components are measured with additive errors. The restricted estimators of paramet-
ric and nonparametric components are established based on modified profile least-squares
method and local correction method,and their asymptotic properties are also studied un-
der some regularity conditions.Some simulation studies are conducted to illustrate our
approaches.
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1 Introduction

The varying-coefficient partially linear model takes the following form:

Y=X"0+7"a(T) +¢, (1)
where a(-) = (o (-), -+, aq(+))7 is a g-dimensional vector of unknown coeflicient function-
s, 8= (f1,---,0p) is a p-dimensional vector of unknown regression coefficients and ¢ is

an independent random error with E(e) = 0, Var(g) = 0% almost certain. Model(1.1) has
been studied in a great deal of literature. Examples can be found in the studies of Zhang
et al.[9], Zhou and You[10],Xia and Zhang[11],Fan and Huang[12], among others. Howev-

er,the covariates X ,Z are often measured with errors in many practical applications.Some



authors consider the case where the covariate X is measured with additive errors,and Z
and T are errors free. For example, You and Chen[l] have proposed a modified profile
least squares approach to estimate the parametric component. Hu et al.[2]and Wang et
al. [3] have obtained confidence region of the parametric component by the empirical
likelihood method. Some authors such as Feng[4] consider the case where the covariate Z
is measured with additive errors,and X and T are errors free.

In this paper, we discuss the following model in which both of the parametric and

nonparametric components are measured with additive errors.

Y=X"08+7"a(T) +¢,

V=X+n, (@)
W =7+ u,
ApB = b,

where 7,u are the measurement errors,n is independent of (X7, Z7, T €, u),u is independent
of (X7,27,T,e,n). We also assume that Cov(n) = X,,Cov(u) = X,, where ¥,,%, is
known.If 3, %, is unknown,we also can estimate them by repeatedly measuring V,W. A
is a k£ x p matrix of known constants and b is a k-vector of known constants. We shall

also assume that rank(A) = k.

2 Estimation

Suppose that {V;, W;,T;,Y;),i = 1,--- ,n} is an independent identically distribut-
ed(iid) random sample which comes from model (1.2).That is,they satisfy

Yi=X"8+Z"a(T;) + ¢,

Vi=Xi+m, (3)
where the explanatory variable X; is measured with additive errors, V; = (Vj1,---, Vi)™

is the surrogate variable of X, the explanatory variable Z; is also measured with additive
errors, W; = (Wi, - -+, Wi,)7 is the surrogate variable of Z;, o(T;) = (a1 T(;), - -+, aq(T3))7,
and {g;}, are independent and identically distributed(iid) random errors with E(g;) =
0,Var(g;) = 0% < .
We first assume that 3 is known,then the first equation of model (2.1) can be rewritten
as

Y- Xi"=2Z"a(T;)+e;, i=1--,n (4)

Clearly, model (2.2) can be treated as a varying coefficient model. Then, we apply a local

linear regression technique to estimate the varying coefficient functions «(7’). For T; in a
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small neighborhood of 7', one can approximate «;(7;) locally by a linear function

This leads to the following weighted local least-squares problem: find {(a;,b;),7 =1,--- , ¢}
to minimize

Z{ — X78) = la; + (T — T)| Z; Y Ki(T; — T), (6)

i=1
where K is a kernel function, h is a bandwidth and K(-) = K(-/h)/h.
The solution to problem (2.4) is given by

(a1, g, - hbi, - hby) = {(DE) wrDZ} 1 (DE) wr(Y — XP), (7)
where
zi BRI Z7o(Th)
DTZ“ - y M = ) Z = (Z17227 aZn)Ta
zy Ltzy Zro(T,)

Y = (Vi Yoo V) TiX = (X0, Xa,oo o, X)) o = diag(K(Ti — T, -+, Ky(T, — T)).
If one ignores the measurement error and replaces Z; by W; in (2.5), one can show that
the resulting estimator is inconsistent.To eliminate the estimation error caused by the
measurement error,Using the method in literature[5], we modify (2.5) by local correction

as follow:
(G, -+« yag, -+, hby, - hbg) = {(DY ) wr Dy — QDY Vwr(Y — XB),  (8)
then we obtain the following corrected local linear estimator for {a(-),7 =1, -+ ,q} as

&(T) = (6a(T), -+, 6g(T))" = (I 0,){(DF ) wrDy — Q1 (DF ) wr(Y = XB),  (9)

T,-T)/h ((T;=T)/h)*
For the sake of descriptive convenience,we denote R; = {(D} ) wr, D} —Q} 1 (D} ) wr,,
Si = (W7 05)Ri, Qi = (I 0) R, S = (ST, ,S7)™,Y; = Y; = 5;Y,V; = V; = V"S7, then,

minimize

where, () = Xn:Eu ® < ( ! (T; = T)/h ) Ky(T;,-T).

Z{Y VB — Wa(Ti)} Z (Ti)_iBTan7 (10)

we obtain the modified profile least squares estimator of

B={Y (V7 = V'QL.QV -5} { Y (Wi -VQit.QY)}y, (1)
i=1 i=1



Moreover, the estimator of «(+) is obtained as
AT) = (@ (T), - ,3(T))" = (I, 0){(DF ) wr Dy — QDY )wr(Y —VE). (12)

As for the estimator 3 is consistent and asymptotically normal. However, restriction
conditions AfS = b were not satisfied. In order to solve this problem, we will construct a
restricted estimator, which is not only consistent but also satisfies the linear restrictions.
To apply the Lagrange multiplier technique, we define the following Lagrange function

corresponding to the restrictions AS = b as

F(B,0) =Y {Vi=V/B=W]a(Ti)}* =) a"(T,)Sutl(T;) =Y BT, 542\ (AB—b), (13)
i=1 i=1 i=1
where A is a k x 1 vector that contains the Lagrange multipliers. By differentiating F'(5, A)
with respect to § and A\, we obtain the following equations:

n n

OF (B, \)

ST e [;(‘Zﬁ—VTQ[ZUQiY)—AT)\} —;(%W—VTC)ZEUQN—%)B =0, (14)
OF (8, )) _ _
s =248 -b) =0, (15)

Solving the Eq. (2.12) with respect to 3 , we get
A - T TNT =1 47
f=p— {Z(V%Vz —VTQIX.Q:V — En)} ATA.
i=1
We substitute 5 into the Eq. (2.13) and we have

b=AR— ALY (ViV7 = VTQIB.QiV — 5,)} AT

=1

As the inverse matrix of A{ Z(VZVZT —VTQIE,.Q;V — Zn)}_lAT exists, then we can write
i=1
the estimator of A as

n

A= {AY VT - VTRISQV — %)) AT} (AR —b). (16)

i=1
Then, the restricted estimator of 3 is obtained as

n

By = {3 (VT -VTQIR.QV -5} TAT{A[ D (VW -VTQIS.QiV-5,)] AT} (AB-b),
=1

i=1
(17)

Moreover, the restricted estimator of «(+) is obtained as
6 (T) = (I, 0){(DY ) wr DY — Q1 (DY ) wr(Y = V). (18)



3 Asymptotic normality

The following assumption will be used.
A1l. The random variable T" has a bounded support . Its density function f(-) is Lipschitz
continuous and f(-) > 0.
A2. There is an s > 2, such that F||;||* < oo, E||u1]|** < oo, E||m||** < oo, B|| X1]|** <
o0, E||Z1]]** < oo, and for some § < 2 — 571, there is n?~'h — oo as n — oo.
A3. {a;(-),j =1,--- , ¢} have continuous second derivatives in T" € 3.
A4. The function K(-) is a symmetric density function with compact support. and the
bandwidth h satisfies nh?/(logn)? — co,nh® — oo as n — co.
A5. The matrix I'(T') = E(Z,Z]|T) is nonsingular, E(X, X7 |T") and ®(T) = E(Z, X]|T)
are all Lipschitz continuous.

The following notations will be used.
Let ¢, = {(nh)"'logn}*/? X; = X; — X7ST, i = mi —0'ST,& = & — ™S, e =
[T K ()t vy = [T K2 (t)dt, k= 0,1,2,3.
Theorem 1. Assume that the conditions A1-A5 hold, Then the estimator 3, of B is

asymptotically normal,namely,

~

V(B = B) =1 N(0,%),

where — denotes the convergence in distribution, and

Y= AST - SIS AT — STAS TSR 4 ST ST A SR

S1 = B(X:X]) — E(@7(T)I'H(T1)2(Th)),

Yo = AT(AS[TAT) A,

A= E(er —uia(Th) —niB)*E1 + E(er — 0] B)2E{Q7(T)T' (1)1~ H(T)2(Th) }
+E{O7(T)T (T (wyu] — X0)a(Th)}*? + E(er — ula(Th))?%,
+E{(mn] — X,)B867(mn] — Xy)},

A®% means AA".

Theorem 2. Assume that the conditions A1-A5 hold, Then
1 2 _
Vah(@(T) — a(T) — 5#%&”@)) 1 N(0,A),
H2 — My
where A = “3”072“1“2”1;“%”2f(T)_lﬁ*; Y =T"YT)|E(e, —niB)*[(T) + E(e1 — 1] 8)*2,

(n2—p3)

+ B{Ga(T)a(T)EHTHT); & = S = ] — Zyu.

4 Simulation

We illustrate the proposed method through a simulated example. The data are gener-



ated from the following model
Y = 5m(32t)X1 + 221 + 322 + ¢, ‘/1 = X1 + m, W1 = Zl + uq, W2 = ZQ + Ua, (19)

where Xy ~ N(5,1),Z; ~ N(1,1),Zy ~ N(1,1), ny ~ N(0,0.16),u; ~ N(0,0.25),us ~
N(0,0.25).To gain an idea of the effect of the distribution of the error on our results, we
take the following two different types of the error distribution,(1)e ~ N(0,0.16),(2)e ~
U(—1,1).The kernel function K(z) = 3(1 — 2%)Ij;j<; and bandwidth h = J5 are used in
our simulation studies,respectively.

For model (4.1) with restriction condition 8; 4+ 2 = 5, We compare the performance
of the unrestricted estimator with that of the restricted estimator in terms of sample
mean (Mean), sample standard deviation (SD) and sample mean squared error (MSE).
Simulations with sample size n = 100,200. The simulation results are presented in Ta-
ble 1.We can find that all the estimators of parameters are close to the true value. As
the sample size increases, the biases, standard deviation and sample mean squared er-
ror of all the estimators decrease. It is noted that in all the scenarios we studied, the
restricted corrected profile least-squares estimator of the parametric component outper-
forms the corresponding unrestricted estimator. The results are robust to the choice of
error distributions.

In addition, when the sample size is 200, we plot the estimated curve of the non-
parametric component in Figure 1,2. * indicate estimated value ,and use solid-line curve

indicate actual value.then ,we found estimated results is fine.

Table 1: Finite sample performance of the restricted and unrestricted estimators

6] Error n Unrestricted Restricted
Mean SD MSE Mean SD MSE
B =2 N(0,0.4%) 100 2.0441 0.0805 0.9984 2.0284 0.0547 0.0725
200 1.9666 0.0637 0.0307 2.0095 0.0376 0.0246
U(-1,1) 100 2.0514 0.0742 0.0528 2.0468 0.0541 0.0237
200 1.9876 0.0652 0.0161 2.0109 0.0388 0.0129
By =3 N(0,0.4%) 100 2.9262 0.0793 0.0865 2.9716 0.0547 0.0725
200 2.9459 0.0669 0.0377 2.9905 0.0376 0.0246
U(-1,1) 100 2.9497 0.0824 0.0318 2.9532 0.0541 0.0237
200 2.9626 0.0679 0.0211 2.9891 0.0388 0.0129
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5 Proof

Lemma 1. Suppose that the conditions (A1)-(A5) hold, as n — oo, then

l <~ T,—T T,—T
es [k Z K( ) ) Ziji Zijy — F(T)0j,5 (T = O(h* + ¢,) a.s.
i=1

TeS h h

1 — T.—T. T, —T

— Y K(= : FZiieil = O(cp) a.s.
sw | ;:1 ( - )( h )" Zize (cn) a.s.,

1 — T.—T T, —T

—EKZ - FZiui| = O(cpn) as. |
g}elg nh p ( h )( h ) ]u] (C)CLS

where j, 71,52 =1,--+ ,q;k = 0,1,2,3. The proof of Lemma 1 can be found in Xia|6].

Lemma 2. Suppose that the conditions (A1)-(A5) hold, then

(Dr ) wrDy —Q=nf(T)I(T)® ( bom ) {1+ Op(cn)},
M1 p2

(D )wrV = nf(T)®(T) @ (1, 1) {1 + Op(ca)},
(D )wrW = nf(T)I(T) @ (1, 1) {1 + Op(cn) }-

The proof of Lemma 2 is similar to that of Lemma A.2 in Wang[3]. We here omit the
detail.

Lemma 3. Let Gy,---,G, be independent and identically distributed random vari-
ables.If E|G;|* is bounded for s > 1,then max 1Gy|* = o(n*/*) a.s. .
The proof of Lemma 3 can be found in_S}_li[13].We here omit the detail.



Lemma 4. Suppose that the conditions (A1)-(A5) hold, then
1~
=Y VT = VIQIZQV = B, = BQGXT) — B(@7(1)DH(T)@(T)) a.s
i=1

The proof of Lemma 4 is similar to that of Lemma 7.2 in Fan[12]. We here omit the
detail.

Lemma 5. Assume that the conditions A1-A5 hold, Then the estimator B of B is asymp-

totically normal,namely,

V(B = B) =1 N(0,S7ADY).

where >; and A are defined in Theorem 1.

Proof. By (2.9),we have

Vi(B—8) = v {Z ViV -VTQIS,QV-5,)) {Z Vi(Vi—V7B)—V™QIS,Qi(Y —VB)+5, 8]},

By Lemma 1 , Lemma 2 and Lemma 3 we have
1 - (Y 7T TNT
NG SOViYi = V7 8) = VIQIS,Qu(Y — VB) + 5,8])
i=1

- | Zi[xi (TN T) 2 — (T — 6] — 87 (T)T (T(er — i B)
O TN (] — S)a(T) + (e — wa(T) — (ol — BB+ o)
= % zj; Jin + 0p(1)
then -

Cov(Jin) = E{[e; — u]a(T;) — 0] B][X; — @T(T)T~(13) Z:]}*? + E{®™(T))T N (T;)u;
(ei =0 B)}** + E{®™ ()T (T (usu] — Xu)a(T3)}** + E{ni(e; — u (T5)) }*
+E{(nin] — ¥,)5}%

: 1 . T T T T —
Jim — > Cov(Jin) = E(er — uja(Th) —ni 8)°S1 + E(er — nj ) E{®7(T))I' " (T1)
=1

ST S(Th)} + E{RT(T)D (T (wu] — Su)a(Th)}*?
+ E(er — ufa(Th))*Sy + E{(mn] — X4)B67 (mn] — )}

8



Therefore, by Lemma 4,and central limit theorem, Slutsky theorem, we have

V(B = B) =1 N, Z7TAS).

Proof of Theorem 1. We first denote that

n

Jo=T = { D (VGV7 =V7QIn,QiV = £,)} TA{A[Y (Vi) =V QIZ.QiV —%,)] AT} A

i=1 =

= T T - VIR - 5,)) AT (A
=1

—_

S|

STV - VTQIS.QV - %,)] AT A,
=1

By Lemma 4, we obtain
Jo D I — STTATIAS AT A =

By (2.16) ,we have

n

b= B={1— {07 —VQIn.QiV - 5} AT A S (i
=1

i=1
VIR 5] ATy A (B - )
=J(B=B)+ (=B =5,
Note that Jo — J = 0,(1) and § — 3 = O(n~'/2).It is easy to check that
(Jo = J)(B = B) = op(n~"/?).

Invoking the Slutsky theorem and Lemma 5,we obtain the desired result.

Proof of Theorem 2. For 7; in a small neighborhood of T,and let |T; — T| < h,

we can approximate «(7;) by the following Taylor expansion
1
o(Ti) = oAT) + o/ (T)T; = T) + 50" (T = T)* + 0, (1),

Then, we have

T
ho!/ (T

. )

ZTa(Ty) %Z{o//(Tl)(Tl — T)2
( ) ) ’

S 27" (T )(T, — T)?

By the expression of M it is easy to see that

(DY) wrM = (D} ) wr D7 ( hz(,(Tj)ﬂ) ) + %(DJW)TWT‘PTZ@"(T) + 0p(h?),

9



where Ur = diag{((Ty —T)/h)?, -, (T, — T)/h)?}.

W Z o(T) _ W W o(T) — (DY o DY o(T)
(Dy ) wr D7 < ) ={(Dr )wrDy —Q} ( ) +{—(D7 )"wrDr + Q} < he!(T) ) .

ho!(T) ha!/(T)
Wy w —1/WT " _ 1 (H% — papz)a”(T)
((DFywr DY = Q)7 (DF e Za'(T) = - ( i ) {1+0()} as.

Recall the definition of &,(T") in (2.16), we have

As mentioned above

L= o)+ %h?%a”m + (I 0){(DF " wr DY — Q) {~ (D} wr Df + Q) ( hc;(,(TT)) )
+o0,(h?),
By Lemma 1 and Lemma 2, we can obtain
(Iy 0){(DF ) wrDy’ = Q} (DY ) wr(Dy ) wrV =T HT)(T){1 + Oylca)},
Invoking Theorem 1, we yield that

Vnhly = VahD ™ (T)®(T){1 + O,(c,) }O(n~/?) = 0,(1),

Similar to that of A4 ~ A6 in [5], we have

a(T _
VAR((DY i DY — @ { (D sr(c = ) + {~(D P uor D} + ) ( o ) b N(O,Z)
where, ¥* is defined in Theorem 2,and
= f(T)_lZ]*@( f . 2#31/0 — 21t + M%V2 (M% + M2)V1 — MU1p2Vo — H1lV2 .
e (17 + p2)v1 — papiovo — p1s vy — p1(2v1 + pain)
As mentioned above

/ ~ 1 2:“% — M3y,
27 M

10
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