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Abstract

In this study, we introduce a non-linear estimating approach for risk factor loading. This new estimate is based on
mixed vine copula with the aim of separating upside and downside risk exposure. We provide empirical evidence
of Chinese stocks that copula-based method fits better than OLS for single-factor model, then we present that
adjusted estimate adapted for time-serial weights performs better when fitting factor loadings. For multi-factor
model, copula-based method is also superior in explaining the changes of asset return and interpreting the
influence of extreme changes from risk factors. By exploring the usage of copulas in factor model regression, we
enhance the accuracy for predicting asset returns as well as extending the application of factor model during
extreme events.
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1. Introduction

Explaining cross-sectional differences of asset loading towards different risk factors is one of most
basic topics in finance world. Capital asset pricing model proposed by Sharpe[7] and intertemporal
pricing model proposed by Merton[4] both imply linear relationship between asset return and economic
risk factors, as well as the most-widely used Fama-French model[5]. Risk factor loading is the indicator
for influence direction and influence scale.

Linear regression is one of most commonly-applicable methods in financial analysis. The accuracy of
this statistical method is dependent on the correct depiction of relationship between response variable
and explanatory variables. The key concept behind traditional multivariate factor model is identifying
the dependence between a set of risk factors, which is usually non-linear for actuarial financial data. As a
result, the risk factor loading derived from linear regression scope is not able to describe real risk impact
on asset. The basic least square method is based on normal distribution assumption. Generalized linear
model releases distribution assumption to exponential family including binomial, Poisson, gamma and
etc(Joe(2010)[18]). However, financial data is usually skewed and fat-tailed, copula functions provide
feasible methods to remove the restrictions of exponential distribution and describing the dependence
structure in more flexible way(Killiches(2017) [17]).

Non-linear dependence modelling has become more and more popular within the last decades and
copulas is one of most widely applied as they allow various marginal distribution assumptions and depen-
dence structure according to Sklar(1959)[3]. Vine copula is designed to model serial dependence (Bedford
and Cooke(2002)[2]) and Smith(2015)[1] studied how vine copulas model the dependence structure of
more than one time-series. In this paper, we explore a new estimation method of risk factor loading
based on mixed vine copula function.Patton [12] modelled asymmetric correlation between stock returns
by copulas. According to the researches by Velu[15] and Czado [16],the impact of risk factor is not
asymmetry either and it is of importance to differentiate the upside impact and downside impact. Mixed
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copula can separate the comparable sensitivities to risks of upside tail, downside tail and middle part
by including Gumbel copula, Frank copula and Clayton copula in the mixed model in this paper. As
vine copula can effectively solve the dimension explosion problem, it is specifically useful for multi-factor
estimation without requirement of any assumed distribution.

One approach to testing the specification of copula-based methodology is comparing degree of fitting
respectively. The main novelty of the estimation approach presented in this paper is the mixed vine copula
based estimates for factor loadings with the aim of thoroughly describing the asymmetric relationship
between risk factor and asset return and it is further extended to model multi risk factors. This estimation
approach is superior to linear method as it models a wider class of correlation with risk factors.

The paper is organized as follows. Section 2 briefly introduces the format of mixed vine copula,
and then we construct the estimates of unitary risk factor loadings based on mixed copula in Section 3.
Section 4 contains empirical evidence of new estimation approach and compare it with linear regression
from the perspective of value at risk and R square. After that, we develop a modified approach to
estimate factor loading with self-adjusted time effect in Section 5 and demonstrate and discuss how
mixed vine copula is used to explain factor model with multiple risks. Conclusions and implications are
offered in Section 6.

2. Mixed vine copula and risk factor loading

2.1. Mixed vine copula

Since in this paper we use mixed vine copula to model the relationship between asset and risk factor,
we first give a brief introduction to construction of this type copula. Vine copula is defined as a flexible
and applicable method to construct high-dimensional copulas by approximating pair-wise copula with
connected vines. Kjersti and Claudia(2009)[? ] used pair-copula decomposition to exhibit complex
pattern of dependence in the tails, which is named Canonical Vine Copula. In this paper, we use c-vine
copula to model the dependence for n assets as follows:
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Equation 1 is the c-vine copula function and its likelihood function is Equation 2
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function of x;. Normal distribution is biased when sample data is skewed. In this article, we use
Generalized Pareto distribution(GPD) to estimate marginal distribution. R = (R, Ry, ..., R,) is the set of
asset returns and G% is the marginal distribution. In spite of location 0, scale o > 0 and shape k € R of
GPD, dependence function D(uy, uy, ..., u,) is also needed to approximate multi-variant joint distribution
of tails.

According to the maximum likelihood method to estimate the joint tail distribution by Ledford(1997)[?
], we firstly hypothesize that time-series data of asset returns R; and R, are time-independent. The de-
pendence function Dz of asset return R beyond threshold 0 represents the asymmetry of upside correlation
and downside correlation, where comprising Gumbel Copula Frank Copula and Clayton Copula. Gum-
bel Copula is sensitive to positive co-movements and Clayton Copula is better explaining the downside
correlation. Correlation derived from Frank Copula is symmetrical and we include Frank Copula in
mixed-copula aiming at calibrating the relative upside-sensitive weight and downside-sensitive weight.

Suppose bivariate asymmetric dependence relationship between asset return as:
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The likelihood function of asset return series R; and R, within time window T is:

T
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2.2. Factor model

Given the important role of risk factor model in explaining asset return, correlation analysis is critical
as it measures the covariance risk among investment portfolio. The multivariate correlation is getting
more complicated as the increasing of involved assets. Factor model offers a way to reduce dimensions
by focusing on sensitivities to common factors.

For stock i, R; refers to its return in time r and F; represents risk factor j. If market contains N
stocks which is subject to M common risk factors, factor model is:

Ri=a;+ B F1+B 2+ -+ B yFu+e i=12,.,N (5)

where «; is excess return that cannot be explained by M risk factors and ¢ is residuals which is
irrelevant to risk factors. Sensitivities to risk factor changes B; ;s risk factor loading. Linear risk factor
loading estimation is based on the following conditions: 1E(F;) =0, j = 1,2,..M; 2E(F;,F)) =
0, i,j=12,.,Mi#j;, 3E()=0, i=12,.,N; 4E(&,¢)=0, i,j=12,..,N,i#].

Theoretically, if multi-factor model can accurately reflect impact from common factors to asset return,
it can describe and predict asset return. For realistic financial data like joint distribution between asset
return and risk factor, they usually do not follow elliptical distribution, as a result, the linear scope
is biased as it does not allow other complicated dependence relationship. Furthermore, outliers have
impact on linear factor loading estimation and copulas are suitable for data fitting with extreme values.
Consequently, copulas are used for modelling risk factor loadings in following section.

3. New estimation approach

Risk factor loading (B8)abstracts two aspects of information about relationship between asset return
and risk factor: change direction and sensitivity. In order to be consistent with these two aspects, we
decompose factor loadings into two parts. The first part is aimed to measure the possible upside co-
varying probability d,, and downside probability dgey.; the second part is upside and downside sensitivity
of asset to risk factor represented by e,, and ejow,. Hence Risk factor loading to factor j is shaped as
equation 6.

ﬂj = dupeup + ddownedowm .] = 1’ 2’ ey M (6)

where the sign of |d| < 1 refers to the change direction. When d,, is positive(negative), asset up-tail
return changes in the same direction of risk factor, similarly when d,, is positive, asset downside-tail
return changes in the same direction of risk factor. When the sign of d is negative, asset return and risk
factor return change in opposite direction. The absolute value of d,, and dy,, reflects changing scale.
We include Gumbel Copula, Clayton Copula and Frank Copula in the mixed copula function as equation
7.

3 3
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Parameters a;,i = 1,2,3 in equation 7 are estimated using expectation maximization algorithm(EM).
Correlation coefficient T derived from mixed vine copula is to describe the direction of co-varying of asset
and risk factor. Although the new estimation approach does not include correlation in the middle part,
Frank Copula is still important for distinguishing the relevant scale of upside correlation and downside
correlation thorough weight allocation. The weight w,, = w; and parameter @; of Gumbel is estimated



according to equation 7, which are used to compute upside Kendall correlation coefficient 7,,, and weight
and parameters from Clayton (wWgow, = wa and a;) are used to compute downside Kendall correlation
coefficient 74oy,. Then we obtain the expression of d,;, and dg,w, in the following equation.

dup = WupTup

(®)

ddown = WdownTdown

Indicators d,, and dgw, depict direction and probability of co-varying between asset return and
risk factor while e,p(esonn) is defined as delta up(down) of asset return faced with risk factor increas-
ing(decreasing) per unit. We firstly define counts of same-direction moves ¢ as:

T
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When 7 = 1,, and T = 7404, the sensitivities to risk factor jis e,, and egowm respectively, which are
expressed as follows:
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The sample window is T and ¢, ; only reveals parameters when asset moves in the same direction of
risk factor. To sum up, the final factor loading estimation is presented in equation 12.
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Equation 12 is constructed on mixed copula including upside-sensitive copula and downside-sensitive
copula. By doing so, the new estimate does not only involve relationship between asset return and risk
factor, it also takes extreme effect and asymmetry of asset-risk correlation into consideration.

4. Empirical result of single risk factor loading estimation

We present the performance comparison between linear estimation and mixed vine copula-based
estimation approach proposed in the above section. In order to testify its validity in different market
condition. We select ten stocks listed on Chinese stock market topped in valid data. Firstly, we examine
one-factor model for Fama-French three factors market, S MB and HML, momentum factor Mom, reversal
factor Rev and volatility factor Vol. The sample window is from January 1995 to June 2018. The return
data in this study all refers to log return.

Table 1 reports the R-square and factor loading by linear OLS estimation and mixed vine copula-
based estimation in full sample window. Panel A represents empirical result of daily return sample while
panel B reports the empirical result of monthly return sample. Column (1) lists sample stock code and
column(2) to column(7) indicate R-square of each risk factor. From the result, we can conclude that
R-square computed by mixed copula estimation is higher than that computed by linear regression for all
risk factor. The increase of R-square for market S MB and HML is the largest with 12.65% 24.14% and



22.49%. Volatility factor Vol model has least R-square improvement of 0.14%. Monthly return sample
data leads to similar result: R-square in market-factor model has experienced maximum enhancement of
9.33%. It is because mixed copula reflects asymmetric influence of risk factor to asset return.

In order to testify the robustness of mixed copula estimation approach for risk factor loading, we
further demonstrate R-square for rolling window. The rolling window for daily data is 1 month and for
monthly data is 12 months and empirical result is reported in table2. The usage of mixed vine copula
leads to better fitting for smb with 16.76% increase in R-square for daily return, 42.18% increase for
monthly return. As for volatility factor vol, there is 16.76% enhancement in R-square for daily return,
and only 1.02% increase for monthly return. R-square for market factor market increases 13.6% for daily
return and 7.47% for monthly return.

5. Improved estimation with serial adjustment

During the period of high volatility, the volatile risk factor has more intense influence on asset return.
Factor loading computation is corresponding to sample window selection. Taking 36-month window for
example, when extreme event happens in the last month(at time #), copula-based estimate is exposed to
average changing condition of 36-months and pays little attention to unexpected change in the last month.
Aiming at addressing this problem, we improve the estimates by adding serial adjustment. The first step
is to divide the rolling window into N sub-window, the weight for sub-window n is W, = n/(nx (n+1)/2).
Latest sub-window is allocated with larger weight and distant sub-window is allocated with smaller
weight, allowing reflection of impact from nearer extreme event. The improved factor loading estimation
ﬂ; is expressed in equationl3.

N
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Table 3 provides average R-square of listed stocks for different risk factors by adjusted mixed copula
based estimates. Row (1) to row (4) reports respective R-square for 3 sub-window, 5 sub-window, 8
sub-window and 10 sub-window. The comparison result shows that when dividing sample periods into
5 sub-windows, the fitting effect is best. This is because too few sub-windows with smaller sample data
per window is difficult to describe real dependence structure while too many sub-window is exposed to
data noise. In the following examination, we all divide the rolling window into 5 groups.

Adjusted estimation method has a better explanatory effect to risk factor loadings because when risk
factor undergoes extreme changes, the adjusted method is more sensitive to latest abnormal changes and
mirrors it in factor loading. In order words, adjusted approach better explains the risk condition. It is
of significance as abnormal changes in risk factor is usually companied with abnormal changes in asset
price. With the purpose of testifying the fitting effect for extreme events, we compute VaR and CVaR
with 0.95 confidence level and compare it with historical VaR and CVaR. Given historical return R; for
stock i, its distribution function is Fg. Assume the fitted asset return is R; with distribution F - The
measurement of VaR and CVaR at confidence level a € (0, 1) is as follows:

VaR,(R) = max(R; : Fr(r) < @)

(14)
CVaR,(R) = E[rlr < VaR,(R)]

The empirical result is represented in table 4. Both VaR and CVaR computed from fitted return
by copula method and adjusted copula method are closer to historical value than linear regression.
Furthermore, copula estimates after serial adjustment has a better fitting effect for risk value since it
captures latest extreme risk event by over-weighting.



6. Multiple risk factor estimation

Assuming R is the stock return as dependent variable, risk factors Fy, F», ..., F,; as independent vari-
ables, then multi-factor regression model have m + 1 variables. The variable set is {R, Fy, F2, ..., Fy}.
According to the definition of conditional copula, the conditional density function on the condition
(F1,F2, ... Fp) = (f1, f2soos fi) I8

m

h(rlfi, f2, o fnl@) = g(R; ap) X 1_[ crrmr(Gyix;(rlf7), Gar, (fil £ ) (15)
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where @ is unknown parameter vector and Gyx; are conditional distribution function on the condition
Fj = fj; crryr, is the conditional mixed copula density function and ¢ is the parameters to be estimated.
The mixed copula based multi-factor regression model for R is H(fi, f>, ..., fml@) that is integral of r
with conditional density function A(r|fi, f2, ..., ful@). The expression of mixed copula based multi-factor
regression model H(fi, f>, ..., ful@) is equation 16.

H(f1, foy oy frnl@) = frh(rlxl,xg, ey Xy @)dr (16)

Parameter estimation in equation 16 includes parameters related to dependence structure and related
to distribution. We use maximum likelihood approach for parameter estimation, the likelihood function
is:

L(a) = h(rtlfl,t’fZ,t’--~vfm,t;a') (17)
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The estimated mixed copula parameters between asset return and each risk factor are reported in
table 5. Dependence function among risk factors is also required for multi-factor regression. Table 6
summarizes the parameter estimates between market risk factor and other risk factor. To obtain the
final factor loading of multi-factor copula regression, we evaluate dependence structure of every pair-wise
risk factor and asset return.

One important indicator measuring regression effect is the distribution of error term. If majority of
asset return as dependent variable is interpreted by multiple risk factors, error term of the multi-factor
regression is assumed to be normal distributed, otherwise the included risk factors in regression cannot
explain asset return effectively. So we analyse MSE under different quantiles as a measure of fitting
effect, which is reported in Table 7.

Panel A in table7 reports MSE of ten sample stocks for linear regression and Panel B reports MSE
for multi-factor mixed copula regression. For almost all sample stocks, copula regression better explain
asset returns than linear regression because mixed vine copula allows simulating correlated relationship
by different dependence forms and distribution assumptions. The asymmetric influence of risk factors
to asset return and intersect influence between risk factors are depicted by copulas.

7. Conclusion

Factor model is an useful and commonly-applicable method for analysing influence of various risk
factors to asset return, which can be calibrated by adding relevant risk factors. The most widely
estimation approach is linear regression so the factor loading(regression scope) reflects linear relationship
between asset return changes and risk factors changes. Nevertheless, asset return data and other financial
data used for risk factor computation is usually not normal distributed so the dependence structure can
be in other forms and rather complicated.

Regarding of the problem of asymmetry, we construct a new factor loading estimate using mixed vine
copula by separating the upside and downside co-varying direction and sensitivities. Empirical evidence
is presented by ten Chinese stocks with longest valid return data. We first testify and compute factor
loadings estimates using copula-based method and linear regression, by comparing the R? we find out



the copula-based method offers a better fitted value for all sample in both constant full sample window
and rolling sample window. By examined daily returns and monthly returns, we obtain similar result:
risk factor loading is more accurately estimated by copula-based method.

During period of high volatility, the volatile risk factor has more intense influence on asset return.
Factor loading computation is corresponding to sample window selection and our constructed estimates
only measure averaged effect. With the aim of addressing this problem, we improve the estimates by
adding serial adjustment. The improved factor loading estimate better interprets extreme changes of
factors so it more accurately depicts assets value condition, supported by comparison result of simulated
value of VaR and CVaR by different estimates. Finally, we extend single factor model to multi-factor
model by evaluating the pair-wise dependence structure and distribution of factors and between factors
and asset return.

Our result have implications for risk factor analysis theoretically and empirically. Factor model is
useful for understanding the formation of asset return and the main contribution of this paper is better
explaining the asymmetric influence of different risk factors on asset return and further better predict
future asset return.
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Table 1: Full sample-window R%(%) Comparison for OLS and Copula Estimates

Sample Stock Estimation Method market SMB HML Rev  Mom Vol
Panel A. Estimation on daily return sample

OLS 1.91 0.13 0.14 0.93 093 0.30
SHANXI FEN WINE Copula 2.80 30.77 0.61 1.28 1.21  0.44
OLS 4.53 0.58 0.12 0.18 0.18 0.19
CSD WATER SERVICE Copula 10.89 32.68 91.22 0.25 0.26 0.20
OLS 6.47 589 1.80 0.54 0.54 0.23
NHPRECL Copula 8.44 19.13 14.01 0.69 0.79 0.28
JL.C OLS 9.74 3.22 1.53 0.12 0.12 0.23
o Copula 74.32  72.09 41.07 058 0.17 0.47
SCAC OLS 11.90 566 250 0.13 0.13 0.17
Copula 17.00 10.61 16.85 25.01 0.60 0.34
OLS 12.66 13.24 883 0.25 0.25 0.26
FUDAN FORWARD Copula 39.88 19.22 16.76 037 0.37 0.32
SXBN OLS 1.12 1.66 0.90 0.47 047 0.17
Copula 494 13.00 7.46 097 055 0.25
BEZ OLS 2.21 0.75 0.13 025 025 0.45
Copula 456  14.82 1.75 036 032 0.87
OLS 8.01 203 097 043 043 048
LANSHENG Copula 22.19  42.77 098 0.71 0.84 0.66
OLS 1.05 0.20 056 094 094 0.41
HUAJIN Copula 1.11 19.65 2.74 112 1.27 0.49

Panel B. Estimation on monthly return sample
OLS 8.23 082 0.75 0.75 0.75 043
SHANXI FEN WINE Copula 3214 097 321 083 21.07 0.57
OLS 1023 059 0.87 0.87 0.87 0.56
CSD WATER SERVICE Copula 11.01  0.72 2,68 1.03 459 0.67
OLS 9.33 0.4 0.19 0.19 0.19 0.13
NHPRECL Copula 1336 058 492 0.39 38.22 0.36
JL.C OLS 4.18 1.08 033 033 033 0.28
o Copula 6.24 1.25 2.08 042 24.67 0.36
SCAC OLS 6.31 1.48 0.1 0.1 0.1 0.27
Copula 35.21 1.55 443 043 3772 0.97
OLS 7.54 1.21 0.2 0.2 0.2 0.3
FUDAN FORWARD Copula 20.87 133 449 022 3067 0.4
SXBN OLS 5.29 0.21 0.16 0.16 0.16 0.13
Copula 6.36 0.79 212 0.29 14.78 0.78
BEZ OLS 10.17  0.16 0.16 0.16 0.16 0.78
Copula 23.97  0.75 537 049 494 1.15
OLS 7.74 0.26 0.62 0.62 062 0.11
LANSHENG Copula 8.42 0.77  2.45 0.7 84.15 0.76
HUAJIN OLS 10.16 1.26 0.78 0.78 0.78 0.9

Copula 14.92 1.74 1.62 1.13  25.03 0.95




Table 2: Rolling sample-window R?(%) Comparison for OLS and Copula Estimates

Sample Stock Estimation Method market SMB HML Rev  Mom Vol
Panel A. Estimation on daily return sample with 1 month rolling window
OLS 38.17 11.60 15.51 548 548  3.83
SHANXI FEN WINE Copula 51.71 31.78 2142 8.69 899 6.56
OLS 39.67 11.59 10.02 4.68 4.68 4.02
CSD WATER SERVICE Copula 53.12 30.16 17.17 861 781 6.11
OLS 4288 1354 987 514 514 434
NHPRECL Copula 56.57 37.06 19.19 8.89 857 6.98
ILC OLS 37.88 19.04 11.67 4.57 457 4.05
o Copula 50.95 44.54 19.44 8.52 9.1 6.83
SCAC OLS 39.27 18.28 12.62 4.69 4.69 3.38
Copula 52.41 37.60 19.07 7.72 7.83 6.46
OLS 4476  23.34 1541 578 5.78  4.66
FUDAN FORWARD Copula 59.78  43.52 24.01 9.26 9.08 7.53
SXBN OLS 34.45 21.68 15.56 6.44 6.44 3.9
Copula 46.22  37.57 22.14 10.06 9.91  6.03
BEZ OLS 36.66 15.23 11.56 546 546  3.91
Copula 49.86 21.62 20.86 9.05 855 67.35
OLS 42.63 16.90 13.18 4.83 4.83 4.04
LANSHENG Copula 57.69 24.46 20.04 9.04 858 6.63
OLS 44.65 14.14 11.82 6.68 6.68 4.09
HUAJIN Copula 58.73 24.62 19.07 10.78 10.29 6.34
Panel B. Estimation on monthly return sample with 12 month rolling window
OLS 2.13 1.79 142 1.7 161 4.3
SHANXI FEN WINE Copula 1431 496 494 988 1094 5.82
OLS 2.15 331 200 178 2.06 185
CSD WATER SERVICE Copula 13.04 3.82 2.7 12.82 10.8 2.29
OLS 2.1 393 1.7 165 1.81 3.56
NHPRECL Copula 7.7 6.07 5.8 1054 7.8 4.83
JL.C OLS 2.22 236 109 100 1.02 193
o Copula 9.05 3.69 247 857 789 281
SCAC OLS 1.92 7.36 1.31 1.11 1.23 2.4
Copula 8.49 8.24 2.8 11.96 7.11 3.03
OLS 1.26 207 119 115 1.29 245
FUDAN FORWARD Copula 5.01 26.3 2.5 7.5 2755 3.27
SXBN OLS 3.29 1.7 223 192 233 2.6
Copula 9.06 3.65 4.08 12.67 6.75 4.72
BEZ OLS 2.17 1.83 1.24 1.54 1.59 3.12
Copula 1096 245 574 586 851  4.07
OLS 3.35 434 298 224 255 255
LANSHENG Copula 8.63 10.0 526 14.09 7.22 341
OLS 1.9 258 1.06 065 088 2.85
HUAJIN Copula 1082 788 3.76 724 1.05 3.59




Table 3: Averaged R? for different sub-windows and risk factor

Sub-window market SMB HML  Rev Mom Vol MC MCS

3 0.244 0.009 0.030 0.010 0.206 0.009 0.009 0.009
5 0.272 0.045 0.054 0.045 0.212 0.044 0.032 0.042
8 0.252  0.008 0.037 0.007 0.233 0.008 0.004 0.007
10 0.221  0.079 0.093 0.073 0.182 0.079 0.064 0.077

Table 4: Comparion of VaR and CVaR by Different Estimates

VaR Comparison with 0.95 Confidence Level

Sample Stock Code Historical VaR Linear VaR Copula VaR Adjusted Copula VaR

SHANXI FEN WINE 0.0455 0.0378 0.0448 0.0524
CSD WATER SERVICE 0.0456 0.0405 0.0434 0.0485
NHPRECL 0.0487 0.0355 0.0437 0.0569

J.L.C 0.0553 0.0364 0.0468 0.0657

SCAC 0.0547 0.0357 0.0529 0.0719

FUDAN FORWARD 0.0531 0.0371 0.0482 0.0642
SXBN 0.0533 0.0452 0.0501 0.0582

BEZ 0.0568 0.0481 0.0538 0.0624
LANSHENG 0.0503 0.0385 0.0456 0.0574
HUAJIN 0.0524 0.0522 0.0523 0.0525

CVaR Comparison with 0.95 Confidence Level

Sample Stock Code Historical CVaR  Linear CVaR  Copula CVaR  Adjusted Copula CVaR

SHANXI FEN WINE 0.1821 0.0895 0.0979 0.1905
CSD WATER SERVICE 0.1542 0.0650 0.1461 0.2352
NHPRECL 0.1368 0.0616 0.0675 0.1427

J.L.C 0.1290 0.0637 0.0947 0.1599

SCAC 0.1175 0.0591 0.0722 0.1306

FUDAN FORWARD 0.1148 0.0582 0.0623 0.1190
SXBN 0.2539 0.0977 0.1109 0.2672

BEZ 0.2091 0.0925 0.1187 0.2354
LANSHENG 0.1385 0.0670 0.0819 0.1534
HUAJIN 0.2708 0.1189 0.1302 0.2821

Table 5: Mixed Copula Parameter Estimates between Asset Return and Risk Factor

Copula market SMB HML Rev Mom Vol MC MCS

Kendall 7

clayton 0.390 0.153 0.366 1.72E-07 0.383 7.25E-07 7.25E-07 2.66E-07
frank 0.405 0.073 0.414 1.26E-07 0.386 0.093 1.36E-06 7.63E-12

gumbel  0.603 -0.199 0.416 -0.535 0.532 0.029 -0.106 -0.090
a

clayton 1.277  0.362 1.154 3.44E-07 1.241 1.45E-06 1.45E-06 5.31E-07
frank 1.680  1.079 1.706 1.000 1.628 1.103 1.000 1.000

gumbel 8.009 -1.851 4.386  -6.418 6.350 0.265 -0.959 -0.819




Table 6: Mixed Copula Parameter Estimates between Market Risk and Other Risk Factor

Copula SMB HML Rev Mom Vol MC MCS
Kendall T
clayton 0.268 0.409 1.65E-07 0.620 7.25E-07 7.25E-07 7.25E-07
frank  0.174 0.577 1.40E--07 0.601 1.36E-06 1.36E-06 1.36E-06
gumbel -0.473 0.663 -0.708 0.744 -0.255 -0.119 -0.131
a
0.732 1.383 3.31E-07 3.261 1.45E-06 1.45E-06 1.45E-06
1.211  2.364 1.000 2.506 1.000 1.000 1.000
-5.259 9910  -11.787  13.733  -2.427 -1.083 -1.200

Table 7: MSE of Regression Error Term by Different Quantile

Panel A.Multi-factor Linear Regression

Sample Stock Code 0.5 0.1 0.05 0.01
SHANXI FEN WINE 7.850 5.459 5.372 5.146
CSD WATER SERVICE 3.896 2.719 2.672 2.550
NHPRECL 3.920 2.728 2.682 2.550
J.L.C 7.984 5710 5.642 5.393
SCAC 7.984 5710 5.642 5.393
FUDAN FORWARD 7.564 5.329 5.266 5.105
SXBN 7.552 5308 5.249 5.095
BEZ 7.782 5499 5434 5.229
LANSHENG 6.251 5.661 5.648 4.763
HUAJIN 4.317 4.193 3.266 3.784

Panel B.Multi-factor Copula Regression
SHANXI FEN WINE 11.329 6.344 6.278 5.738
CSD WATER SERVICE  4.728 5.591 5.527 4.868
NHPRECL 3.323 0.860 0.832 0.534
J.L.C 3.232  1.141 1.087 0.830
SCAC 3.616 1.232 1.178 1.020
FUDAN FORWARD 4.846 2448 2.404 2.254
SXBN 4.434 3.949 3.908 3.718
BEZ 3.536  1.300 1.246 1.096
LANSHENG 3.574 1.566 3.745 2.751
HUAJIN 2.514 2.590 1.225 1.351




