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ABSTRACT

Two estimators of the distribution of the error term are proposed based on non-
parametric regression residuals; considering a heteroscadastic location-scale model
where the mean and variance functions are smooth, and the error term is indepen-
dent of the independent variable. The asymptotic properties of the two estimators:
the unconditional cumulative distribution estimator and the conditional cumulative
distribution estimator were examined. Simulation study was conducted, the mean
square error of the unconditional cumulative distribution estimator was found to be
smaller in comparison to its conditional cumulative distribution estimator counter-
part. Hence, we recommend the use of the former.
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1. Introduction

In statistics, the insight to the innovation distribution is crucial, particularly, in VaR.
In finance VaR is a single number measuring the risk of a financial position over a
specific period.

The problem of estimating the error variance in homoscedastic nonparametric re-
gression models has studied in the literature, see among others for example [2],[10]

[1] studied the nonparametric estimation of the residual distribution, they consid-
ered the heteroscedastic regression model (1). Weak convergence of their proposed
residual based estimator was examined, extending the classical work of [3] and [8]
Applications to prediction interval and goodness-of-fit were also discussed.

In their paper, [7] examined the problem of fitting a known distribution to the error
distribution in a class of stationary and ergodic time series models. Where particularly,
the authors considered the GARCH and ARMA-GARCH models.

Non-parametric estimation of the distribution function of the error term is the focus
of this paper. In order to achieve this, firstly, we obtain non-parametric estimators (9)
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and (15) of the conditional location and scale functionals and hence, the standardized
non-parametric residuals (SNR) (16).

Based on the SNR (16) the proposed estimator of the distribution function of the
error term is the empirical distribution function.

2. Method and Estimation

Let {Y;} denote a stochastic process representing the returns on a given stock, portfolio
or market index, where i € Z indexes a discrete measure of time, and F(y|z) denote
the conditional distribution of Y; given X; = . The vector X; € R? normally includes
lag returns {Y;}, 1 <[ < p, for some p € N, as well as other relevant conditioning
variables that reflect economic or market conditions.

Here, we assume that processes Y; admits a location-scale representation given as

where m(.) is the unknown nonparametric regression curve and h(.) > 0 is a condi-
tional scale function representing heteroscedasticity, defined on the range of X , ¢; is
independent of X;, and ¢; is an independent and identically distributed (iid) innovation
process with E(e;) = 0, Var(e;) = 1 and distribution function F¢ is unknown.

From (1);

Qy|x (]z) = )+ Vh(Xi)q(r (2)

where Qy|x(7|r) is the conditional 7—quantile associated with F'(y|z) and ¢(7) =
F7Y(7) is the 7—quantile associated with unknown F.,.
It follows from (2) that our estimator given by

Qy x(r]z) = )+ \/ (3)

Next, we discussed the estimation of m(X;), h(X;) and ¢(7).

2.1. Local Linear Estimation (Regression)

In [4], the problem of estimating m(X) in (2) is the same as LLR, estimating the
intercept a. Suppose that the second derivative of m(X) exist in a small neighborhood
of x, then

m(X) ~m(z) +m'(z)(X —2) =a+ B(X —2) (4)

Now, let us consider a sample {X;,Y;}?" ; and LLR: find o and § to minimize

SV — = A — )P (- ) (5)

i=1



Let & and 3 be the solution to the Weighted Least Square (WLS) problem in (5).
Then

~ anl WzY;
o =5 6
Zz‘:l Wi ( )
where
X;
W(CE, bl) =K (-T by >[Sn2 (517 - Xz)Sn 1] (7)
and
i z— X; S
Sug =3 K ()@ - X, =12 (®)

i=1

Thus, the LLR estimator for m(X) is defined as

. S WY
i=1""?

Which is the first step in our estimation procedure. The second step follows, for the
estimation of A(X) in (2), the procedure proposed by [5] is used, and is outlined below:
the estimator of h(z) is

(9)

h(z):=T (10)

where

A A . Xl — T
(I, T'1) = argmin ;(n —T-TI'(X; — 1)K, <T> (11)

Now, with the estimator in (9), we have the sequence of squared residuals {r; =
{Y; — m(z)}2}7 . Therefore,

I‘ — 74; 12
Zz’:l Wi 1)
where
xr — Xz
W(l’; b2) = KQ( b2 )[Sn’g — (."L‘ — Xi)Sn’l] (13)



and

Sy =ZIK2(:C ;ZXi)(a:—Xi)j, j=1,2 (14)

Hence, the smooth estimator for h(X) is;

- > iy Wi
=1 1

The estimators in (9) and (15) are then used to get a sequence of Standardized
Nonparametric Residuals (SNR) {€&;}" ;, where;

(15)

a=q Vix) (16)

In the third step, we use these SNR to obtain the conditional cumulative density
estimator of F, and then set;

A~

F,.(x) =

)

1(z; < x), putting z; =¢§ (17)

n

S

=1

Which is the unconditional cumulative distribution estimator for F;, ,(x), the UCDF
of the error innovation.

2.2. Assumptions
A: Bandwidth

(1) b— 0,as n — ©
(2) nb — o0, as n — 00

B: Kernel

(1) K has compact support

(2) K is symmetric

(3) K is Lipschitz continuous

(4) Kis [ K(u)du=1and [* uK(u)du=0 with pp(K) = [ u?K(u)du and
R(K) = [%_K(u)?du being the second moment (Variance) and Roughness of
the kernel function respectively.

(5) K is bounded and there is K € R, with K(u) < K < oo and K (u) > 0,Yu € R

C:
(1+b0°C) '~ (1 -0*C), as b—0

Definition: ( o — mixing or Strong mixing) Let ]-',i be the o —algebra of events



generated by {Y;,k < i < [} for I > k. The o — mixing coefficient introduced by
Rosenblatt (1956) is defined as

alk) = sup  |P(AB) —P(A)P(B)|.
AEF| BEFe,

The series is said to be a — mixing if

lim a(k) =0.

k—o0

The dependence described by the @ — mixzing is the weakest as it is implied by other
types of mixing.

3. Asymptotic Properties of the Estimator

3.1. Asymptotic Properties of the Unconditional Cumulative Distribution
Estimator

Given the observations {X;, Y;}" ;, we compute the mean and variance of (17) to show
the Asymptotic Properties;
Mean:

n

%E 1(z < x)]

i=1

1 [ Yi—m(X)
— I| ———<=
”; ( Vh(X) )]

E[E, .(z)] = E

)

=K

=
>

Remark: F), ,(z) is an unbiased estimator of F(z).



Variance:

Var|F, .(z)] = Var

n h(X)

1 Y; —m(X) Y; —m(X)
= {E|1? —|E|1

"{ ( Vix) ) ( ( Vi(X)
:1{E ]1<YZ m(X) x) —(Fz(x))Q}

n h(X

= le(aﬁ) [1— F.(z)]

n

2

:UZ

Hence, by central limit theorem;

Mean Square Error:

MSE[E, .(z)] = E[E, . (z) — F.(2)]?
= Var(Fp.(2)) + [Bias(Fp, . (2))]

2

(21)



We weighted (17) to have;

. Y K (Yt 1z < 2)
B Sy (o=

ZleX x)

putting Z; = 1(z; < x)

Y K(F5) - (22)
_ Y E(% m)Z
fx)
A
- B

where f(x) is the estimator of the kernel function. Hence, (22) is the Conditional
Cumulative Distribution Estimator (CCDE)

3.2. Asymptotic Properties of Conditional Cumulative Distribution
Estimator

We obtained the asymptotic properties of (22). to do so, we assume that the variance
of the ratio of the two random variables (A and B) exist. Let Assumption A to C
hold, then the mean and variance of our estimator are;

Consider the denominator (B),

Mean:
E[B] := E[f ()]

Tl /X;—

=5, 25K (5 ﬂ
Y (23)

1 1 —

T Bt ( )]

=[x (5w
using change of variable u = t_Tx

= /OO K(u) f(z + bu)du

We approximate the integral by using second order Taylor’s expansion of f(x+ bu),
for small b.

P+ bu) = f(@)+ 7O @) + 3O @) (u)? + o8?)

0 2
[ K(u)fa+ buydu = () + - FO ()a(K) + oft?)



2
E[f(@)] = 1(@) + 2 1O @)ua(K) + o) (24)

Hence,

(25)
f@)() 2(K) + o(b")

Remark:

For second order kernels (v = 2), the bias is increasing in the square of the band-
width [6].

Variance:

The kernel estimator is a linear estimator and K (X"b_ m) is iid,

Var[B] := Var[f(z)]

|

S
S—

N
H'M:
= -~

N I

2

- ey - e ]

= f(x) + o(1), which is O(n~1). Consider the

first term, do change of variable and a first order Taylor’s expansion;

(57 =3 [ x (57 e

= /OO K(u)?f(x + bu)du

But the second term; ¢

(27)
_ / K (u?[f(x) + O(b))du
~ [(x)R(K) +O()
Therefore,
var(f() = T | o) (28)
Remark:



The remainder O(n ™) is of smaller order than the O(-) leading term, since b~ —
0.
Now, the numerator (A):

Mean:
1 n
=E|; ZK( )
/OO /OO f(u, v)dudv (29)
:/oo /00 vK(t)f(x — bt,v)dtdv
but
_ f(ﬂj‘ — btv U)
f(olz —bt) = @b
hence
Flw = bt,0) = f(vlz — b) £z — bE)
Therefore,

/ / (v|lz — bt) f(z — bt)dtdv

:/ oK (8)f(x — bt) / F(ol — br)do }dt (30)

—00

_ /_OO oK (1) f(z — bt)Fy(x — bt)dt

By second order Taylor’s expansion of f(x — bt) and F,(z — bt), we have

Fla—b) = F(a) + FO @bt + 7D @)1 + oft?)

Fu(z — bt) = Fu(x) + FO ()bt + %FZ@) (@)(b8)2 + o(b?)

Therefore,

1 < z — X,
E bZ;K< b

= F(@)Fo(a) 4 () [ 1O ) ED @)+ O () FO ()4 ) FO) () bo(t?)]




2
= Faa) + 2 oK) [FO (@) + 27 (@) /O @) FO (@) F()]

(31)
by Assumption C, for the term in the denominator.
Hence,
_ 2
Bias|Fy+(@)] = & pa(K)[FO(@) + 2/ @) [ @ FO @R @] (32

If the first derivative of the probability distribution function of  is zero (f(!)(x) = 0)
as often assumed by some authors, this bias yield that of a fixed design [11];

2
Bias[F, .(z)] =~ %MQ(K)FZ(Q) (x) (33)

The variance of our estimator (22) is obtained using the following approximation
[11, 12],

[E(A)? [ Var(A)  2Cou(A, B) Var(B)} (34)

A
Var(5) = [E(B)P{ EW)]  E@IE®B) ' E®)

10



(5]

i o OOU2 2 ole — . U_Onil
nb/_oo/_oo K=(t) f(v|z — bt) f(z — bt)dtdv — o(n"")

Q

—00

= % /_Z K*(t) f(x — bt) [/m V2 f(v|z — bt)dv] dt —o(n™)
= LR(K)f(@)[o? + FO ()

The Covariance:

The above results are based on first order Taylor’s expansion.
Substitution into (34) yields,

R(K)o?
nbf(z)

Var (ﬁ’mz(az)) =

Hence, by central limit theorem:;

b)) (o 22

The Asymptotic Mean Square Error (AMSE)
A very good way of checking the performance of F), .(z) is by its AMSE;

11

(35)



AMSE(Fy..(2)) = E|{Fo2(2) - F(2)}’]

= E[{Fy-(2) = Bl (@)]}*] + {ElFz(2)] - Fo(2)}
_Var( .z ( )+{Bzas nz(x)]}2

R(K)o? b (2) ()2
s+ L) (PO )

2

(39)

Optimal Bandwidth Selection
The smoothing parameter (bandwidth) that minimizes (39) is optimal for estimating
(22), hence;

bopt = argminAMSE(E, .(x)), b>0 (40)
Therefore,
4 AmsE =0
7 (Fz(2)) =
this yields;

RE(@ - F@) "

bopt = *n 5 (41)

{ (K f (@) (F2 () }

4. Simulation Study

To examine the performance of our estimators, we conducted a simulation study con-
sidering the following data generating location-scale model

Y;f = m(Yt—l) + h(t)l/Qeta l= 1a 2a sy (42)

where

m(Y}/,l) = SZ'TL(O.5Y;5,1), € ~ t(V = 3)

h(t) = hi(Yi—1) + 0h(t — 1), i=1,2

and

h1(Yi—1) = 14+ 0.01Y2 | + 0.5sin(Y;_1)

hi(Yie1) =1 —0.9exp( — 2Y2,)

Y; and h(t) are set to zero (0) initially, then Y; is generated recursively from (42)
above. To reduce the effect of the choice of our initial values on the samples, the first
1000 observations are discarded, the above data generating process was also considered
by [9].

In this section, using the mean square error (MSE) we compared the two estimators
of the innovation; the unconditional cumulative distribution (UCD) estimator (17)
and the conditional cumulative distribution (CCD) estimator (22). We found that the

12



MSE of UCDE was 0.0 and that of CCDE was 0.07853961. The mean and variance
of the error term was also verified to be approximately 0 and 1, confirming the as-
sumption made. A sample of 10000 observations was considered in this study, with 20
replications.

Data plot

20

10

Data
-10

I [ [ [ [ I
0 2000 4000 6000 8000 10000

Time

Figure 1: Plot of the simulated data showing its evolution.
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Figure 2: The unconditional cumulative distribution function.
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Figure 3: The conditional cumulative distribution function.

5. Conclusion

Assuming the distribution function of the innovation is unknown in a location-scale
model, we proposed two estimators.The first one was unconditional and the second
was conditioned. We compared the two estimators using their MSEs, the unconditional
one performed better.

15



Acknowledgement(s)

The first author wishes to thank African Union and Pan African University, Instutute
for Basic Sciences Technology and Innovation, Kenya for their supporting this research.

Disclosure statement

The authors declare that there is no conflict of interest regarding the publication of
this paper.

References

[1] Akritas, M. G. and Van Keilegom, I. (2001). Non-parametric estimation of the residual
distribution. Scandinavian Journal of Statistics, 28(3):549-567.

[2] Buckley, M., Eagleson, G., and Silverman, B. (1988). The estimation of residual variance
in nonparametric regression. Biometrika, 75(2):189-199.

[3] Durbin, J. (1973). Weak convergence of the sample distribution function when parameters
are estimated. The Annals of Statistics, pages 279-290.

[4] Fan, J. (1992). Design-adaptive nonparametric regression. Journal of the American sta-
tistical Association, 87(420):998-1004.

[5] Fan, J.and Yao, Q. (1998). Efficient estimation of conditional variance functions in stochas-
tic regression. Biometrika, 85(3):645-660.

[6] Hansen, B. E. (2009). Lecture notes on nonparametrics. Lecture notes.

[7] Koul, H. L. and Ling, S. (2006). Fitting an error distribution in some heteroscedastic time
series models. The Annals of Statistics, pages 994-1012.

[8] Loynes, R. (1980). The empirical distribution function of residuals from generalised re-
gression. The Annals of Statistics, pages 285-298.

[9] Martins-Filho, C., Yao, F., and Torero, M. (2016). Nonparametric estimation of conditional
value-at-risk and expected shortfall based on extreme value theory. Econometric Theory,
pages 1-45.

[10] Seifert, B. and Gasser, T. (1993). Nonparametric estimation of residual variance revisited.
Biometrika, 80(2):373-383.

[11] Seknewna, L. L., Mwita, P. N.; and Muema, B. K. (2018). Smoothed conditional scale
function estimation in ar (1)-arch (1) processes. Journal of Probability and Statistics, 2018.

[12] Seltman, H. (2012). Approximations for mean and variance of a ratio. unpublished note.

16



