ENDOMORPHISM RINGS OF MODULES

HAMZA HAKMI

Abstract

Let M be a module over a ring R and E_{M} the endomorphism ring of M. The concern is study some fundamental properties of E_{M} when E_{M} is regular or semipotent. New results obtained include necessary and sufficient conditions for E_{M} to be regular or semipotent. New substructures of E_{M} are studied and its relationship with the Tot of E_{M}.

1. Introduction.

In this paper rings R, are associative with identity unless otherwise indicated. All modules over a ring R are unitary right modules. We write $J(R)$ and $U(R)$ for the Jacobson radical and the group of units of a ring R. A submodule N of a module M is said to be small in M, if $N+K \neq M$ for any proper submodule K of M [1]. Also, a submodule Q of a module M is said to be large (essential) in M if $Q \cap K \neq 0$ for every nonzero submodule K of M [1]. For a submodule N of a module M, we use $N \subseteq{ }^{\oplus} M$ to mean that N is a direct summand of M, and write $N \leq_{e} M$ and $N \ll M$ to indicate that N is an large, respectively small, submodule of M. We use the notation: $E_{M}=\operatorname{End}_{R}(M), \nabla\left(E_{M}\right)=\left\{\alpha: \alpha \in E_{M} ; \operatorname{Im}(\alpha) \ll M\right\}$ and $\triangle\left(E_{M}\right)=\left\{\alpha: \alpha \in E_{M} ; \operatorname{Ker}(\alpha) \leq_{e} M\right\}$. It is known that $\nabla\left(E_{M}\right)$ and $\triangle\left(E_{M}\right)$ are ideals in E_{M} [1].

2. Regular Endomorphism Rings.

We start with the following fundamental lemma which gives information about relationship between any two elements of E_{M}.

Lemma 2.1. Let M_{R} be a module and $\alpha, \beta \in E_{M}$. The following hold:
(1) $\operatorname{Im}(\alpha)+\operatorname{Im}(1-\alpha \beta)=M$.
(2) $\operatorname{Im}(\alpha-\alpha \beta \alpha)=\operatorname{Im}(\alpha) \cap \operatorname{Im}(1-\alpha \beta)$.
(3) $\operatorname{Im}(\beta)+\operatorname{Im}(1-\beta \alpha)=M$.
(4) $\operatorname{Im}(\beta-\beta \alpha \beta)=\operatorname{Im}(\beta) \cap \operatorname{Im}(1-\beta \alpha)$.
(5) $\operatorname{Ker}(\alpha) \cap \operatorname{Ker}(1-\beta \alpha)=0$.
(6) $\operatorname{Ker}(\alpha-\alpha \beta \alpha)=\operatorname{Ker}(\alpha)+\operatorname{Ker}(1-\beta \alpha)$.
(7) $\operatorname{Ker}(\beta) \cap \operatorname{Ker}(1-\alpha \beta)=0$.
(8) $\operatorname{Ker}(\beta-\beta \alpha \beta)=\operatorname{Ker}(\beta)+\operatorname{Ker}(1-\alpha \beta)$.

Proof. (1) It is clear, hence $M=\operatorname{Im}(\alpha \beta)+\operatorname{Im}(1-\alpha \beta) \subseteq \operatorname{Im}(\alpha)+\operatorname{Im}(1-\alpha \beta) \subseteq M$. Similarly, (3) holds.

[^0](2) It is clear that $\operatorname{Im}(\alpha-\alpha \beta \alpha) \subseteq \operatorname{Im}(\alpha) \cap \operatorname{Im}(1-\alpha \beta)$, hence $\operatorname{Im}(\alpha-\alpha \beta \alpha)=$ $\alpha(\operatorname{Im}(1-\beta \alpha)) \subseteq \operatorname{Im}(\alpha)$ and $\operatorname{Im}(\alpha-\alpha \beta \alpha)=(1-\alpha \beta)(\operatorname{Im}(\alpha)) \subseteq \operatorname{Im}(1-\alpha \beta)$.
Let $x \in \operatorname{Im}(\alpha) \cap \operatorname{Im}(1-\alpha \beta)$. Then $x=\alpha(y)=(1-\alpha \beta)(z)$ where $y, z \in M$ and $z=x+\alpha \beta(z)=\alpha(y+\beta(z)) \in \operatorname{Im}(\alpha)$. For $y_{0}=y+\beta(z) ; z=\alpha\left(y_{0}\right)$. Thus, $x=(1-\alpha \beta)(z)=(1-\alpha \beta) \alpha\left(y_{0}\right)=(\alpha-\alpha \beta \alpha)\left(y_{0}\right) \in \operatorname{Im}(\alpha-\alpha \beta \alpha)$. Similarly, (4) holds. (5) and (7) are clear.
(6) It is clear that $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\alpha-\alpha \beta \alpha)$ and $\operatorname{Ker}(1-\beta \alpha) \subseteq \operatorname{Ker}(\alpha-\alpha \beta \alpha)$, so $\operatorname{Ker}(\alpha)+\operatorname{Ker}(1-\beta \alpha) \subseteq \operatorname{Ker}(\alpha-\alpha \beta \alpha)$. Let $y \in \operatorname{Ker}(\alpha-\alpha \beta \alpha)$. Then $\alpha(y)=\alpha \beta \alpha(y)$. Since $y=\beta \alpha(y)+(1-\beta \alpha)(y) ; \beta \alpha(y) \in \operatorname{Ker}(1-\beta \alpha)$ and $(1-\beta \alpha)(y) \in \operatorname{Ker}(\beta \alpha)$ which implies $y \in \operatorname{Ker}(\alpha)+\operatorname{Ker}(1-\beta \alpha)$. Similarly, (8) holds.

From Lemma 2.1 we derive the following
Corollary 2.2. Let M_{R} be a module and $\alpha \in E_{M}, n \in \mathbb{N}^{\star}$. The following hold:
(1) $M=\operatorname{Im}(\alpha)+\operatorname{Im}\left(1-\alpha^{n}\right)$.
(2) $\operatorname{Im}\left(\alpha-\alpha^{n+1}\right)=\operatorname{Im}(\alpha) \cap \operatorname{Im}\left(1-\alpha^{n}\right)$.
(3) $\operatorname{Ker}(\alpha) \cap \operatorname{Ker}\left(1-\alpha^{n}\right)=0$.
(4) $\operatorname{Ker}\left(\alpha-\alpha^{n+1}\right)=\operatorname{Ker}(\alpha)+\operatorname{Ker}\left(1-\alpha^{n}\right)$.

The following Lemma is continuation of Lemma 2.1 [2].
Lemma 2.3. Let M_{R} be a module and $\alpha, \beta \in E_{M}$. The following hold:
(1) $1-\alpha \beta$ is onto if and only if $1-\beta \alpha$ is onto.
(2) $1-\alpha \beta$ is one-to-one if and only if $1-\beta \alpha$ is one-to-one.
(3) $1-\alpha \beta \in U\left(E_{M}\right)$ if and only if $1-\beta \alpha \in U\left(E_{M}\right)$.

Proof. $(1)(\Rightarrow)$. Suppose that $\operatorname{Im}(1-\alpha \beta)=M$. Then $\operatorname{Im}(\beta-\beta \alpha \beta)=\operatorname{Im}(\beta) \cap$ $\operatorname{Im}(1-\beta \alpha)=\operatorname{Im}(\beta(1-\alpha \beta))=\beta(\operatorname{Im}(1-\alpha \beta))=\operatorname{Im}(\beta)$ by Lemma 2.1(4). So $\operatorname{Im}(\beta) \subseteq \operatorname{Im}(1-\beta \alpha)$. Thus $M=\operatorname{Im}(\beta)+\operatorname{Im}(1-\beta \alpha)=\operatorname{Im}(1-\beta \alpha)$. Similarly, (\Leftarrow) holds.
$(2)(\Rightarrow)$. Suppose that $\operatorname{Ker}(1-\alpha \beta)=0$. Let $x \in \operatorname{Ker}(1-\beta \alpha)$. Then $(1-\beta \alpha)(x)=0$ and that $(\alpha-\alpha \beta \alpha)(x)=(1-\alpha \beta)(\alpha(x))=0$, so $\alpha(x) \in \operatorname{Ker}(1-\alpha \beta)=0$ and $x \in \operatorname{Ker}(\alpha)$. Thus $\operatorname{Ker}(1-\beta \alpha) \subseteq \operatorname{Ker}(\alpha)$. By Lemma $2.1(5)$, $\operatorname{Ker}(1-\beta \alpha)=$ $\operatorname{Ker}(\alpha) \cap \operatorname{Ker}(1-\beta \alpha)=0$. Similarly, (\Leftarrow) holds.
(3) By (1) and (2).

An element a of a ring R is called regular if $a=a b a$ for some $b \in R$. A ring R is called regular ring if each $a \in R$ is regular. The next Proposition gives information about $\alpha \in E_{M}$, when α is a regular element.

Proposition 2.4. Let M_{R} be a module and $\alpha \in E_{M}$. The following are equivalent:
(1) There exists $\beta \in E_{M}$ such that $\alpha=\alpha \beta \alpha$.
(2) $\operatorname{Im}(\alpha)$ and $\operatorname{Ker}(\alpha)$ are direct summands of M.
(3) There exists $\beta \in E_{M}$ such that $\operatorname{Im}(\alpha) \cap \operatorname{Im}(1-\alpha \beta)=0$.
(4) There exists $\beta \in E_{M}$ such that $\operatorname{Ker}(\alpha)+\operatorname{Ker}(1-\beta \alpha)=M$.

Proof. (1) $\Leftrightarrow(2)$. By [5, Lemma 3.1].
$(1) \Rightarrow(3)$. Suppose that $\alpha=\alpha \beta \alpha$ for some $\beta \in E_{M}$. Then $\alpha-\alpha \beta \alpha=0$, by Lemma 2.1, $0=\operatorname{Im}(\alpha-\alpha \beta \alpha)=\operatorname{Im}(\alpha) \cap \operatorname{Im}(1-\alpha \beta)$.
$(3) \Rightarrow(1)$. Since $\operatorname{Im}(\alpha-\alpha \beta \alpha)=\operatorname{Im}(\alpha) \cap \operatorname{Im}(1-\alpha \beta)=0$ by Lemma 2.1 and our hypothesis, implies that $\alpha-\alpha \beta \alpha=0$.
(1) \Rightarrow (4). Suppose that $\alpha=\alpha \beta \alpha$ for some $\beta \in E_{M}$. Then $\alpha-\alpha \beta \alpha=0$ and $\operatorname{Ker}(\alpha-\alpha \beta \alpha)=M=\operatorname{Ker}(\alpha)+\operatorname{Ker}(1-\beta \alpha)$ by Lemma 2.1.
(4) \Rightarrow (1). If $M=\operatorname{Ker}(\alpha)+\operatorname{Ker}(1-\beta \alpha)$; by Lemma $2.1 \operatorname{Ker}(\alpha-\alpha \beta \alpha)=M$, so $\alpha-\alpha \beta \alpha=0$.

The following Theorem describe the principal left and right ideals of E_{M} when E_{M} is regular.

Theorem 2.5. Let M be a module with E_{M} is a regular ring and $\alpha, \beta \in E_{M}$. The following hold:
(1) $\operatorname{Im}(\alpha) \subseteq \operatorname{Im}(\beta)$ if and only if $\alpha E_{M} \subseteq \beta E_{M}$.
(2) $\operatorname{Im}(\alpha)=\operatorname{Im}(\beta)$ if and only if $\alpha E_{M}=\beta E_{M}$.
(3) $\alpha E_{M}=\left\{\beta: \beta \in E_{M} ; \operatorname{Im}(\beta) \subseteq \operatorname{Im}(\alpha)\right\}$.
(4) $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta)$ if and only if $\left(E_{M}\right) \beta \subseteq\left(E_{M}\right) \alpha$.
(5) $\operatorname{Ker}(\alpha)=\operatorname{Ker}(\beta)$ if and only if $\left(E_{M}\right) \alpha=\left(E_{M}\right) \beta$.
(6) $\left(E_{M}\right) \alpha=\left\{\beta: \beta \in E_{M} ; \operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta)\right\}$.

Proof. $(1)(\Rightarrow)$. Suppose that $\operatorname{Im}(\alpha) \subseteq \operatorname{Im}(\beta)$. Since E_{M} is regular, there exists $\mu \in E_{M}$ such that $\beta=\beta \mu \beta$. For $e=\beta \mu ; e^{2}=e \in E_{M}$ and $\operatorname{Im}(e)=\operatorname{Im}(\beta)$, so $\operatorname{Im}(\alpha) \subseteq \operatorname{Im}(e)$. Since $e=I_{\operatorname{Im}(e)} ; e \alpha(x)=\alpha(x)$ for all $x \in M$. Thus, $\alpha=e \alpha=\beta \mu \alpha \in \beta E_{M}$. (\Leftarrow) It is clear. (2) and (3) by (1).
$(4)(\Rightarrow)$. Suppose that $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta)$. Since E_{M} is regular, there exists $\mu \in E_{M}$ such that $\alpha=\alpha \mu \alpha$. For $e=\mu \alpha ; e^{2}=e \in E_{M}$. It is clear that $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(e)$. Let $y \in \operatorname{Ker}(e)$. Then $\alpha(y)=\alpha \mu \alpha(y)=\alpha e(y)=0$, so $y \in \operatorname{Ker}(\alpha)$. Thus, $\operatorname{Ker}(e) \subseteq \operatorname{Ker}(\alpha)$ and that $\beta(\operatorname{Ker}(e))=\beta(\operatorname{Im}(1-e))=\operatorname{Im}(\beta(1-e))=0$, so $\beta(1-e)=0$. Since $1=e+(1-e) ; \beta=\beta e=(\beta \mu) \alpha \in\left(E_{M}\right) \alpha$. Thus, $\left(E_{M}\right) \beta \subseteq\left(E_{M}\right) \alpha$. (\Leftarrow) It is clear. (5) and (6) by (4).

3. Semipotent Endomorphism Rings.

An element a of a ring R is called partially invertible or $p i$ for short, if a is a divisor of an idempotent [2]. The next Proposition gives information about $\alpha \in E_{M}$, when α is a divisor of an idempotent.

Proposition 3.1. Let M_{R} be a module and $\alpha \in E_{M}$. The following are equivalent:
(1) There exists $\beta \in E_{M}$ such that $\beta=\beta \alpha \beta$.
(2) There exists $\beta \in E_{M}$ such that $\operatorname{Im}(\alpha \beta), \operatorname{Ker}(\alpha \beta)$ are direct summands of M.
(3) There exists $\beta \in E_{M}$ such that $\operatorname{Im}(\beta \alpha), \operatorname{Ker}(\beta \alpha)$ are direct summands of M.
(4) There exists $\beta \in E_{M}$ such that $\operatorname{Im}(\beta) \cap \operatorname{Im}(1-\beta \alpha)=0$.
(5) There exists $\beta \in E_{M}$ such that $\operatorname{Ker}(\beta)+\operatorname{Ker}(1-\alpha \beta)=M$.

Proof. (1) $\Rightarrow(2)$. Suppose that $\beta=\beta \alpha \beta$ for some $\beta \in E_{M}$. Then $(\alpha \beta)^{2}=\alpha \beta$ and so $\operatorname{Im}(\alpha \beta), \operatorname{Ker}(\alpha \beta)=\operatorname{Im}(1-\alpha \beta)$ are direct summands of M.
$(2) \Rightarrow(1)$. Suppose that (2) holds. By Lemma 2.1, there exists $g \in E_{M}$ such that
$(\alpha \beta) g(\alpha \beta)=\alpha \beta$. For $\mu=\beta g \alpha \beta g ; \mu \alpha \mu=\mu$, gives (1).
Similarly, the equivalence (1) $\Leftrightarrow(3)$ holds.
$(1) \Rightarrow(4)$. Suppose (1) holds. Then $\beta-\beta \alpha \beta=0$, by Lemma 2.1; $0=\operatorname{Im}(\beta-\beta \alpha \beta)=$ $\operatorname{Im}(\beta) \cap \operatorname{Im}(1-\beta \alpha)$, gives (4).
$(4) \Rightarrow(1)$. Since $\operatorname{Im}(\beta-\beta \alpha \beta)=\operatorname{Im}(\beta) \cap \operatorname{Im}(1-\beta \alpha)=0$; by Lemma 2.1 and our hypothesis, implies that $\beta-\beta \alpha \beta=0$.
$(1) \Rightarrow(5)$. If $\beta=\beta \alpha \beta$ for some $\beta \in E_{M} ; \beta-\beta \alpha \beta=0$, so $\operatorname{Ker}(\beta-\beta \alpha \beta)=M=$ $\operatorname{Ker}(\beta)+\operatorname{Ker}(1-\alpha \beta)$ by Lemma 2.1.
$(5) \Rightarrow(1)$. By Lemma 2.1, $\operatorname{Ker}(\beta-\beta \alpha \beta)=\operatorname{Ker}(\beta)+\operatorname{Ker}(1-\alpha \beta)=M$, so $\beta-\beta \alpha \beta=0$.

Recall that a ring R is a semipotent ring by Zhou [6], also called an I_{0}-ring by Nicholson [4], if every principal left (resp. right) ideal not contained in $J(R)$ contains a nonzero idempotent.

Corollary 3.2. Let M_{R} be a module. The following are equivalent:
(1) E_{M} is a semipotent ring.
(2) For every $\alpha \in E_{M} \backslash J\left(E_{M}\right)$ there exists $\beta \in E_{M}$ such that $\beta=\beta \alpha \beta$.
(3) For every $\alpha \in E_{M} \backslash J\left(E_{M}\right)$ there exists $\beta \in E_{M}$ such that $\operatorname{Im}(\alpha \beta), \operatorname{Ker}(\alpha \beta)$ are direct summands of M.
(4) For every $\alpha \in E_{M} \backslash J\left(E_{M}\right)$ there exists $\beta \in E_{M}$ such that $\operatorname{Im}(\beta \alpha), \operatorname{Ker}(\beta \alpha)$ are direct summands of M.
(5) For every $\alpha \in E_{M} \backslash J\left(E_{M}\right)$ there exists $\beta \in E_{M}$ such that $\operatorname{Im}(\beta) \cap \operatorname{Im}(1-\beta \alpha)=0$.
(6) For every $\alpha \in E_{M} \backslash J\left(E_{M}\right)$ there exists $\beta \in E_{M}$ such that $\operatorname{Ker}(\beta)+\operatorname{Ker}(1-\alpha \beta)=$ M.

Proof. By Proposition 3.1.
Let M be a module. Write:

$$
\begin{aligned}
& \nabla_{1}\left(E_{M}\right)=\left\{\alpha: \alpha \in E_{M}, \quad \operatorname{Im}(1-\alpha \beta)=M \text { for all } \beta \in E_{M}\right\} . \\
& \nabla_{2}\left(E_{M}\right)=\left\{\alpha: \alpha \in E_{M}, \quad \operatorname{Im}(1-\beta \alpha)=M \text { for all } \beta \in E_{M}\right\} .
\end{aligned}
$$

It is clear that $\nabla_{1}\left(E_{M}\right)$ and $\nabla_{2}\left(E_{M}\right)$ are non-empty subsets in $E_{M},(0 \in$ $\left.\nabla_{1}\left(E_{M}\right), 0 \in \nabla_{2}\left(E_{M}\right)\right)$. In using Lemma 2.3(1), it is easy to see that $\nabla_{1}\left(E_{M}\right)=$ $\nabla_{2}\left(E_{M}\right)$. Therefore, we use the notation:

$$
\begin{aligned}
\hat{\nabla}\left(E_{M}\right) & =\left\{\alpha: \alpha \in E_{M}, \quad \operatorname{Im}(1-\alpha \beta)=M \text { for all } \beta \in E_{M}\right\} . \\
& =\left\{\alpha: \alpha \in E_{M}, \quad \operatorname{Im}(1-\beta \alpha)=M \text { for all } \beta \in E_{M}\right\} .
\end{aligned}
$$

$\widehat{\nabla}\left(E_{M}\right)$ is a semi-ideal in E_{M}, which means that it is closed under arbitrary multiplication from either side, hence if $\alpha \in \widehat{\nabla}\left(E_{M}\right)$ and $\lambda \in E_{M} ; \operatorname{Im}(1-(\alpha \lambda) \beta)=$ $\operatorname{Im}(1-\alpha(\lambda \beta))=M$ for all $\beta \in E_{M}$ and $\operatorname{Im}(1-\beta(\lambda \alpha))=\operatorname{Im}(1-(\beta \lambda) \alpha)=M$ for all $\beta \in E_{M}$. Thus, $\alpha \lambda, \lambda \alpha \in \widehat{\nabla} E_{M}$.

It is clear that $\nabla\left(E_{M}\right) \subseteq \widehat{\nabla}\left(E_{M}\right)$.
Also, let M be a module. Write:

$$
\begin{aligned}
& \triangle_{1}\left(E_{M}\right)=\left\{\alpha: \alpha \in E_{M}, \quad \operatorname{Ker}(1-\alpha \beta)=0 \text { for all } \beta \in E_{M}\right\} \\
& \triangle_{2}\left(E_{M}\right)=\left\{\alpha: \alpha \in E_{M}, \quad \operatorname{Ker}(1-\beta \alpha)=0 \text { for all } \beta \in E_{M}\right\}
\end{aligned}
$$

It is clear that $\triangle_{1}\left(E_{M}\right)$ and $\triangle_{2}\left(E_{M}\right)$ are non-empty subsets in $E_{M},(0 \in$ $\left.\triangle_{1}\left(E_{M}\right), 0 \in \triangle_{2}\left(E_{M}\right)\right)$. In using Lemma 2.3(2), it is easy to see that $\triangle_{1}\left(E_{M}\right)=$ $\triangle_{2}\left(E_{M}\right)$. Therefore, we use the notation:

$$
\begin{aligned}
\widehat{\triangle}\left(E_{M}\right) & =\left\{\alpha: \alpha \in E_{M}, \quad \operatorname{Ker}(1-\alpha \beta)=0 \text { for all } \beta \in E_{M}\right\} . \\
& =\left\{\alpha: \alpha \in E_{M}, \quad \operatorname{Ker}(1-\beta \alpha)=0 \text { for all } \beta \in E_{M}\right\} .
\end{aligned}
$$

$\widehat{\triangle}\left(E_{M}\right)$ is a semi-ideal in E_{M}, which means that it is closed under arbitrary multiplication from either side, hence if $\alpha \in \widehat{\triangle}\left(E_{M}\right)$ and $\lambda \in E_{M} ; \operatorname{Ker}(1-(\alpha \lambda) \beta)=$ $\operatorname{Ker}(1-\alpha(\lambda \beta))=0$ for all $\beta \in E_{M}$ and $\operatorname{Ker}(1-\beta(\lambda \alpha))=\operatorname{Ker}(1-(\beta \lambda) \alpha)=0$ for all $\beta \in E_{M}$. Thus, $\alpha \lambda, \lambda \alpha \in \widehat{\triangle} E_{M}$.

It is clear that $\triangle\left(E_{M}\right) \subseteq \widehat{\triangle}\left(E_{M}\right)$.
It is known that if $\alpha^{2}=\alpha \in E_{M} ; M=\operatorname{Im}(\alpha) \oplus \operatorname{Im}(1-\alpha)$ and $\operatorname{Im}(\alpha)=\operatorname{Ker}(1-\alpha)$, $\operatorname{Ker}(\alpha)=\operatorname{Im}(1-\alpha)$.

Following [2], $\operatorname{Tot}(R)=\{a: a \in R ; a$ is not pi $\}$.
Lemma 3.3. For any module M the following hold:
(1) $J\left(E_{M}\right) \subseteq \widehat{\nabla}\left(E_{M}\right) \cap \widehat{\triangle}\left(E_{M}\right)$.
(2) $\widehat{\nabla}\left(E_{M}\right) \cup \widehat{\triangle}\left(E_{M}\right) \subseteq \operatorname{Tot}\left(E_{M}\right)$.
(3) $J\left(E_{M}\right) \subseteq \operatorname{Tot}\left(E_{M}\right)$.

Proof. (1). Let $\alpha \in J\left(E_{M}\right)$. Then $\alpha \beta, \beta \alpha \in J\left(E_{M}\right)$ for every $\beta \in E_{M}$, so $g(1-\beta \alpha)=1,(1-\alpha \beta) g_{0}=1$ for some $g, g_{0} \in E_{M}$. Thus, $\operatorname{Im}(1-\alpha \beta)=M$ and $\operatorname{Ker}(1-\beta \alpha)=0$. Therefore, $J\left(E_{M}\right) \subseteq \widehat{\nabla}\left(E_{M}\right) \cap \widehat{\triangle}\left(E_{M}\right)$.
(2). Let $\alpha \in \widehat{\nabla}\left(E_{M}\right)$. Then $\operatorname{Im}(1-\alpha \lambda)=M$ for all $\lambda \in E_{M}$. Suppose that $\alpha \notin \operatorname{Tot}\left(E_{M}\right)$, there exists $\beta \in E_{M}$ such that $0 \neq(\alpha \beta)^{2}=\alpha \beta \in E_{M}$, so $\operatorname{Ker}(\alpha \beta)=\operatorname{Im}(1-\alpha \beta)=M$ and that $\alpha \beta=0$ a contradiction. Thus $\alpha \in \operatorname{Tot}\left(E_{M}\right)$. Let $\alpha \in \widehat{\triangle}\left(E_{M}\right)$. Then $\operatorname{Ker}(1-\lambda \alpha)=0$ for all $\lambda \in E_{M}$. If $\alpha \notin \operatorname{Tot}\left(E_{M}\right)$, there exists $\beta \in E_{M}$ such that $0 \neq(\beta \alpha)^{2}=\beta \alpha \in E_{M}$, so $\operatorname{Im}(\beta \alpha)=\operatorname{Ker}(1-\beta \alpha)=0$ and that $\beta \alpha=0$ a contradiction. Thus $\alpha \in \operatorname{Tot}\left(E_{M}\right)$.
(3). By (1) and (2).

The following Proposition describe the Jacobson radical of E_{M} when E_{M} is a semipotent ring.

Proposition 3.4. Let M_{R} be a module with E_{M} is a semipotent ring. The following hold:
(1) $J\left(E_{M}\right)=\widehat{\nabla}\left(E_{M}\right)$.
(2) $J\left(E_{M}\right)=\widehat{\triangle}\left(E_{M}\right)$.
(3) $\widehat{\nabla}\left(E_{M}\right)=\widehat{\triangle}\left(E_{M}\right)$.

Proof. (1). By Lemma 3.3 we have $J\left(E_{M}\right) \subseteq \widehat{\nabla}\left(E_{M}\right)$. Let $\alpha \in \widehat{\nabla}\left(E_{M}\right)$. Then $\operatorname{Im}(1-\alpha \lambda)=M$ for all $\lambda \in E_{M}$. If $\alpha \notin J\left(E_{M}\right)$ there exists $\beta \in E_{M}$ such that $0 \neq$ $\beta=\beta \alpha \beta \in E_{M}$, therefore $0 \neq(\alpha \beta)^{2}=\alpha \beta \in E_{M}$ and $\operatorname{Ker}(\alpha \beta)=\operatorname{Im}(1-\alpha \beta)=M$. So $\alpha \beta=0$ a contradiction. Thus, $\alpha \in J\left(E_{M}\right)$.
(2). By Lemma 3.3 we have $J\left(E_{M}\right) \subseteq \widehat{\triangle}\left(E_{M}\right)$. Let $\alpha \in \widehat{\triangle}\left(E_{M}\right)$. Then $\operatorname{Ker}(1-$ $\lambda \alpha)=0$ for all $\lambda \in E_{M}$. If $\alpha \notin J\left(E_{M}\right)$ there exists $\beta \in E_{M}$ such that $0 \neq \beta=$
$\beta \alpha \beta \in E_{M}$, therefore $0 \neq(\beta \alpha)^{2}=\beta \alpha \in E_{M}$ and $\operatorname{Im}(\beta \alpha)=\operatorname{Ker}(1-\beta \alpha)=0$. So $\beta \alpha=0$ a contradiction. Thus, $\alpha \in J\left(E_{M}\right)$.
(3). By (1) and (2).

Corollary 3.5. Let M_{R} be a module with E_{M} is a semipotent ring and $\alpha \in E_{M}$. The following hold:
(1) $\alpha \in J\left(E_{M}\right)$ if and only if $\operatorname{Im}(1-\alpha \beta)=M$ for all $\beta \in E_{M}$, if and only if $\operatorname{Ker}(1-\beta \alpha)=0$ for all $\beta \in E_{M}$.
(2) $\alpha \in J\left(E_{M}\right)$ if and only if $\operatorname{Im}(1-\beta \alpha)=M$ for all $\beta \in E_{M}$, if and only if $\operatorname{Ker}(1-\alpha \beta)=0$ for all $\beta \in E_{M}$.

Proof. By Proposition 3.4.
Theorem 3.6. (1). For every module M the following are equivalent:
(i) $\widehat{\nabla}\left(E_{M}\right) \subseteq J\left(E_{M}\right)$.
(ii) For every $\alpha \in E_{M}$ with $1-\alpha \in \widehat{\nabla}\left(E_{M}\right)$ is one-to-one.
(2). For every module M the following are equivalent:
(i) $\widehat{\triangle}\left(E_{M}\right) \subseteq J\left(E_{M}\right)$.
(ii) For every $\alpha \in E_{M}$ with $1-\alpha \in \widehat{\triangle}\left(E_{M}\right)$ is onto.

Proof. (1) $(i) \Rightarrow(i i)$. Let $\alpha \in E_{M}$ with $1-\alpha \in \widehat{\nabla}\left(E_{M}\right)$, by assumption $1-\alpha \in$ $J\left(E_{M}\right)$, so $\alpha=1-(1-\alpha) \in U\left(E_{M}\right)$. Thus, α is one-to-one.
(ii) $\Rightarrow(i)$. Let $\alpha \in \widehat{\nabla}\left(E_{M}\right)$, then $\operatorname{Im}(1-\alpha \beta)=M$ for all $\beta \in E_{M}$. Also, for all $\lambda \in E_{M} ; \operatorname{Im}(1-(\alpha \beta) \lambda)=\operatorname{Im}(1-\alpha(\beta \lambda))=M$, hence $\alpha \in \widehat{\nabla}\left(E_{M}\right)$. So $\alpha \beta=(1-(1-\alpha \beta)) \in \widehat{\nabla}\left(E_{M}\right)$, by assumption $1-\alpha \beta$ is one-to-one. Thus, $1-\alpha \beta \in U\left(E_{M}\right)$ and that $\alpha \in J\left(E_{M}\right)$.
$(2)(i) \Rightarrow(i i)$. Let $\alpha \in E_{M}$ with $1-\alpha \in \widehat{\triangle}\left(E_{M}\right)$, by assumption $1-\alpha \in J\left(E_{M}\right)$, so $\alpha=1-(1-\alpha) \in U\left(E_{M}\right)$. Thus, α is onto.
(ii) $\Rightarrow(i)$. Let $\alpha \in \widehat{\triangle}\left(E_{M}\right)$, then $\operatorname{Ker}(1-\beta \alpha)=0$ for all $\beta \in E_{M}$. Also, for all $\lambda \in E_{M} ; \operatorname{Ker}(1-\lambda(\beta \alpha))=\operatorname{Ker}(1-(\lambda \beta) \alpha)=0$, hence $\alpha \in \widehat{\triangle}\left(E_{M}\right)$. So $\beta \alpha=(1-(1-\beta \alpha)) \in \widehat{\triangle}\left(E_{M}\right)$, is onto by assumption. Thus, $1-\beta \alpha \in U\left(E_{M}\right)$ and that $\alpha \in J\left(E_{M}\right)$.

Theorem 3.7. (1). For every module M the following are equivalent:
(i) $\operatorname{Tot}\left(E_{M}\right)=\nabla\left(E_{M}\right)$.
(ii) For every $\alpha \in E_{M}$ with $\operatorname{Im}(\alpha)$ is not small in M there exists $\beta \in E_{M}$ such that $\operatorname{Im}(\beta) \cap \operatorname{Im}(1-\beta \alpha)=0$.
(iii) For every $\alpha \in E_{M}$ with $\operatorname{Im}(\alpha)$ is not small in M there exists $\beta \in E_{M}$ such that $\operatorname{Ker}(\beta)+\operatorname{Ker}(1-\alpha \beta)=M$.
(2). For every module M the following are equivalent:
(i) $\operatorname{Tot}\left(E_{M}\right)=\triangle\left(E_{M}\right)$.
(ii) For every $\alpha \in E_{M}$ with $\operatorname{Ker}(\alpha)$ is not large in M there exists $\beta \in E_{M}$ such that $\operatorname{Im}(\beta) \cap \operatorname{Im}(1-\beta \alpha)=0$.
(iii) For every $\alpha \in E_{M}$ with $\operatorname{Ker}(\alpha)$ is not large in M there exists $\beta \in E_{M}$ such that $\operatorname{Ker}(\beta)+\operatorname{Ker}(1-\alpha \beta)=M$.

Proof. $(1)(i) \Rightarrow(i i)$. Let $\alpha \in E_{M}$ with $\operatorname{Im}(\alpha)$ is not small in M. Then $\alpha \notin \nabla\left(E_{M}\right)$,
by assumption there exists $\lambda \in E_{M}$ such that $0 \neq(\lambda \alpha)^{2}=\lambda \alpha \in E_{M}$. For $\beta=\lambda \alpha \lambda$; $\beta \alpha \beta=\beta$. By Lemma $2.1,0=\operatorname{Im}(\beta-\beta \alpha \beta)=\operatorname{Im}(\beta) \cap \operatorname{Im}(1-\beta \alpha)$.
$(i i) \Rightarrow(i i i)$. Suppose (2) holds. Let $\alpha \in E_{M}$ with $\operatorname{Im}(\alpha)$ is not small in M. By assumption there exists $\beta \in E_{M}$ such that $\operatorname{Im}(\beta) \cap \operatorname{Im}(1-\beta \alpha)=0$, by Lemma 2.1; $\beta-\beta \alpha \beta=0$ and $M=\operatorname{Ker}(\beta-\beta \alpha \beta)=\operatorname{Ker}(\beta)+\operatorname{Ker}(1-\alpha \beta)$.
$(i i i) \Rightarrow(i)$. It is clear that $\nabla\left(E_{M}\right) \subseteq \operatorname{Tot}\left(E_{M}\right)$. Let $\alpha \in \operatorname{Tot}\left(E_{M}\right)$. Suppose that $\alpha \notin \nabla\left(E_{M}\right)$, then $\operatorname{Im}(\alpha)$ is not small in M, by assumption there exists $\beta \in E_{M}$ such that $M=\operatorname{Ker}(\beta)+\operatorname{Ker}(1-\alpha \beta)$. By Proposition 3.1; $\beta=\beta \alpha \beta$, so $0 \neq(\beta \alpha)^{2}=\beta \alpha \in E_{M}$ a contradiction, hence $\alpha \in \operatorname{Tot}\left(E_{M}\right)$. Thus $\alpha \in \nabla\left(E_{M}\right)$. $(2)(i) \Rightarrow(i i)$. Let $\alpha \in E_{M}$ with $\operatorname{Ker}(\alpha)$ is not large in M. Then $\alpha \notin \triangle\left(E_{M}\right)$, by assumption there exists $\lambda \in E_{M}$ such that $0 \neq(\alpha \lambda)^{2}=\alpha \lambda \in E_{M}$. For $\beta=\lambda \alpha \lambda$; $\beta \alpha \beta=\beta$. By Lemma $2.5, \operatorname{Im}(\beta) \cap \operatorname{Im}(1-\beta \alpha)=0$.
$(i i) \Rightarrow(i i i)$. Suppose (2) holds. Let $\alpha \in E_{M}$ with $\operatorname{Ker}(\alpha)$ is not large in M. By assumption there exists $\beta \in E_{M}$ such that $\operatorname{Im}(\beta) \cap \operatorname{Im}(1-\beta \alpha)=0$, by Lemma 2.1; $\operatorname{Im}(\beta-\beta \alpha \beta)=0$, so $\beta-\beta \alpha \beta=0$ and $M=\operatorname{Ker}(\beta-\beta \alpha \beta)=\operatorname{Ker}(\beta)+\operatorname{Ker}(1-\alpha \beta)$. $($ iii $) \Rightarrow(i)$. It is clear that $\triangle\left(E_{M}\right) \subseteq \operatorname{Tot}\left(E_{M}\right)$. Let $\alpha \in \operatorname{Tot}\left(E_{M}\right)$. Suppose that $\alpha \notin \triangle\left(E_{M}\right)$, then $\operatorname{Ker}(\alpha)$ is not large in M, by assumption there exists $\beta \in E_{M}$ such that $\operatorname{Ker}(\beta)+\operatorname{Ker}(1-\alpha \beta)=M$. By Proposition 3.1; $\beta=\beta \alpha \beta$, so $0 \neq(\alpha \beta)^{2}=\alpha \beta \in E_{M}$ a contradiction, hence $\alpha \in \operatorname{Tot}\left(E_{M}\right)$. Thus $\alpha \in \triangle\left(E_{M}\right)$.

A module Q is called locally injective [3] if, for every submodule $A \subseteq Q$, which is not large in Q, there exists an injective submodule $0 \neq B \subseteq Q$, with $A \cap B=0$.

A module P is called locally projective [3] if, for every submodule $B \subseteq P$, which is not small in P, there exists a projective direct summand $0 \neq A \subseteq{ }^{\oplus} P$, with $A \subseteq B$.
F. Kasch in [3] studied conditions on modules Q and P, which imply that $\operatorname{Tot}\left(E_{Q}\right)=\triangle\left(E_{Q}\right)=J\left(E_{Q}\right)$ and $\operatorname{Tot}\left(E_{P}\right)=\nabla\left(E_{P}\right)=J\left(E_{P}\right)$. He showed that these equalities hold if Q is injective, respectively P is semiperfect and projective. Also, it was proved in [3], that $\operatorname{Tot}\left(E_{Q}\right)=\triangle\left(E_{Q}\right)$ if Q is a locally injective module and $\operatorname{Tot}\left(E_{P}\right)=\nabla\left(E_{P}\right)$ if P is a locally projective module.

The following questions were raised by Kasch in [3].
(1) If Q is locally injective, then it is true that $\operatorname{Tot}\left(E_{Q}\right)=\triangle\left(E_{Q}\right)=J\left(E_{Q}\right)$?.
(2) If P is locally projective, then it is true that $\operatorname{Tot}\left(E_{P}\right)=\nabla\left(E_{P}\right)=J\left(E_{P}\right)$?.

Zhou in [6], proved that the answer to question (1) is "Yes" if a ring R is left Noetherian. But in general, the answer to the question is "No" by [6, Example 4.2]. During our study of answer to questions it is obtained the following results:

Corollary 3.8. (1). If Q is a locally injective module, then $\operatorname{Tot}\left(E_{Q}\right)=\triangle\left(E_{Q}\right)=$ $\widehat{\triangle}\left(E_{Q}\right)$.
(2). If P is a locally projective module, then $\operatorname{Tot}\left(E_{P}\right)=\nabla\left(E_{P}\right)=\widehat{\nabla}\left(E_{P}\right)$.

Proof. (1). Since Q is locally injective, then $\operatorname{Tot}\left(E_{Q}\right)=\triangle\left(E_{Q}\right) \subseteq \widehat{\triangle}\left(E_{Q}\right) \subseteq$ $\operatorname{Tot}\left(E_{Q}\right)$ by definition and Lemma 3.2, so $\operatorname{Tot}\left(E_{Q}\right)=\triangle\left(E_{Q}\right)=\widehat{\triangle}\left(E_{Q}\right)$.
(2). Since P is locally projective, then $\operatorname{Tot}\left(E_{P}\right)=\nabla\left(E_{P}\right) \subseteq \widehat{\nabla}\left(E_{P}\right) \subseteq \operatorname{Tot}\left(E_{P}\right)$ by
definition and Lemma 3.2, so $\operatorname{Tot}\left(E_{P}\right)=\nabla\left(E_{P}\right)=\widehat{\nabla}\left(E_{P}\right)$.
Corollary 3.9. (1). If Q is a locally injective module and $\alpha \in E_{Q}$, then $\operatorname{Ker}(\alpha) \leq_{e}$ Q if and only if $\operatorname{Ker}(1-\alpha \beta)=0$ for all $\beta \in E_{Q}$ if and only if $\operatorname{Ker}(1-\beta \alpha)=0$ for all $\beta \in E_{Q}$.
(2). If P is a locally projective module and $\alpha \in E_{P}$, then $\operatorname{Im}(\alpha) \ll P$ if and only if $\operatorname{Im}(1-\alpha \beta)=P$ for all $\beta \in E_{P}$ if and only if $\operatorname{Im}(1-\beta \alpha)=P$ for all $\beta \in E_{P}$.

Proof by Corollary 3.8.

REFERENCES

[1] F. Kasch: Modules and Rings. Academic Press, 1982.
[2] F. Kasch, A. Mader: Rings, Modules, and the Total. Front. Math., Birkhauser Verlag, Basel, 2004.
[3] F. Kasch: Locally injective and locally projective modules. Rocky Mountain J. Math. 32 (4) (2002) 1493-1504.
[4] W. K. Nicholson: I-Rings. Trans. Amer. Math. Soc. 207, (1975), p. 361-373.
[5] R. Ware: Endomorphism Rings of Projective Modules. Trans. Amer. Math. Soc. 155, (1971), p. 233-256.
[6] Y. Zhou: On (Semi)regularity and the total of rings and modules. Journal of Algebra, 322, (2009), p.562-578.

Department of Mathematics Faculty Of Science Damascus University
E-mail address: hhakmi-64@hotmail.com

[^0]: Key words and phrases. Regular ring, semipotent ring, Radical Jacobson, The Total, (Co)Singular ideal.
 2010 Mathematics Subject Classification. Primary: 16E50,16E70. Secondary: 16D40, 16D50.

