ENDOMORPHISM RINGS OF MODULES

HAMZA HAKMI

ABSTRACT. Let M be a module over a ring R and E_M the endomorphism ring of M. The concern is study some fundamental properties of E_M when E_M is regular or semipotent. New results obtained include necessary and sufficient conditions for E_M to be regular or semipotent. New substructures of E_M are studied and its relationship with the Tot of E_M .

1. Introduction.

In this paper rings R, are associative with identity unless otherwise indicated. All modules over a ring R are unitary right modules. We write J(R) and U(R) for the Jacobson radical and the group of units of a ring R. A submodule N of a module M is said to be *small* in M, if $N + K \neq M$ for any proper submodule K of M [1]. Also, a submodule Q of a module M is said to be *large* (*essential*) in M if $Q \cap K \neq 0$ for every nonzero submodule K of M [1]. For a submodule N of a module M, we use $N \subseteq^{\oplus} M$ to mean that N is a direct summand of M, and write $N \leq_e M$ and $N \ll M$ to indicate that N is an large, respectively small, submodule of M. We use the notation: $E_M = \operatorname{End}_R(M), \nabla(E_M) = \{\alpha : \alpha \in E_M; \operatorname{Im}(\alpha) \ll M\}$ and $\Delta(E_M) = \{\alpha : \alpha \in E_M; \operatorname{Ker}(\alpha) \leq_e M\}$. It is known that $\nabla(E_M)$ and $\Delta(E_M)$ are ideals in E_M [1].

2. Regular Endomorphism Rings.

We start with the following fundamental lemma which gives information about relationship between any two elements of E_M .

Lemma 2.1. Let M_R be a module and $\alpha, \beta \in E_M$. The following hold: (1) $\operatorname{Im}(\alpha) + \operatorname{Im}(1 - \alpha\beta) = M$.

- (2) $\operatorname{Im}(\alpha \alpha\beta\alpha) = \operatorname{Im}(\alpha) \cap \operatorname{Im}(1 \alpha\beta).$ (3) $\operatorname{Im}(\beta) + \operatorname{Im}(1 - \beta\alpha) = M.$
- (3) $III(\beta) + III(1 \beta \alpha) = M$.
- (4) $\operatorname{Im}(\beta \beta \alpha \beta) = \operatorname{Im}(\beta) \cap \operatorname{Im}(1 \beta \alpha).$
- (5) $\operatorname{Ker}(\alpha) \cap \operatorname{Ker}(1 \beta \alpha) = 0.$
- (6) $\operatorname{Ker}(\alpha \alpha\beta\alpha) = \operatorname{Ker}(\alpha) + \operatorname{Ker}(1 \beta\alpha).$
- (7) $\operatorname{Ker}(\beta) \cap \operatorname{Ker}(1 \alpha\beta) = 0.$
- (8) $\operatorname{Ker}(\beta \beta \alpha \beta) = \operatorname{Ker}(\beta) + \operatorname{Ker}(1 \alpha \beta).$

Proof. (1) It is clear, hence $M = \text{Im}(\alpha\beta) + \text{Im}(1 - \alpha\beta) \subseteq \text{Im}(\alpha) + \text{Im}(1 - \alpha\beta) \subseteq M$. Similarly, (3) holds.

Key words and phrases. Regular ring, semipotent ring, Radical Jacobson, The Total, (Co)Singular ideal.

²⁰¹⁰ Mathematics Subject Classification. Primary: 16E50,16E70. Secondary: 16D40, 16D50.

(2) It is clear that $\operatorname{Im}(\alpha - \alpha\beta\alpha) \subseteq \operatorname{Im}(\alpha) \cap \operatorname{Im}(1 - \alpha\beta)$, hence $\operatorname{Im}(\alpha - \alpha\beta\alpha) = \alpha(\operatorname{Im}(1 - \beta\alpha)) \subseteq \operatorname{Im}(\alpha)$ and $\operatorname{Im}(\alpha - \alpha\beta\alpha) = (1 - \alpha\beta)(\operatorname{Im}(\alpha)) \subseteq \operatorname{Im}(1 - \alpha\beta)$. Let $x \in \operatorname{Im}(\alpha) \cap \operatorname{Im}(1 - \alpha\beta)$. Then $x = \alpha(y) = (1 - \alpha\beta)(z)$ where $y, z \in M$ and $z = x + \alpha\beta(z) = \alpha(y + \beta(z)) \in \operatorname{Im}(\alpha)$. For $y_0 = y + \beta(z)$; $z = \alpha(y_0)$. Thus, $x = (1 - \alpha\beta)(z) = (1 - \alpha\beta)\alpha(y_0) = (\alpha - \alpha\beta\alpha)(y_0) \in \operatorname{Im}(\alpha - \alpha\beta\alpha)$. Similarly, (4) holds. (5) and (7) are clear. (6) It is clear that $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\alpha - \alpha\beta\alpha)$ and $\operatorname{Ker}(1 - \beta\alpha) \subseteq \operatorname{Ker}(\alpha - \alpha\beta\alpha)$, so $\operatorname{Ker}(\alpha) + \operatorname{Ker}(1 - \beta\alpha) \subseteq \operatorname{Ker}(\alpha - \alpha\beta\alpha)$. Let $y \in \operatorname{Ker}(\alpha - \alpha\beta\alpha)$. Then $\alpha(y) = \alpha\beta\alpha(y)$. Since $y = \beta\alpha(y) + (1 - \beta\alpha)(y)$; $\beta\alpha(y) \in \operatorname{Ker}(1 - \beta\alpha)$ and $(1 - \beta\alpha)(y) \in \operatorname{Ker}(\beta\alpha)$ which implies $y \in \operatorname{Ker}(\alpha) + \operatorname{Ker}(1 - \beta\alpha)$. Similarly, (8) holds. \Box

From Lemma 2.1 we derive the following

Corollary 2.2. Let M_R be a module and $\alpha \in E_M$, $n \in \mathbb{N}^*$. The following hold:

(1) $M = \operatorname{Im}(\alpha) + \operatorname{Im}(1 - \alpha^n).$ (2) $\operatorname{Im}(\alpha - \alpha^{n+1}) = \operatorname{Im}(\alpha) \cap \operatorname{Im}(1 - \alpha^n).$ (3) $\operatorname{Ker}(\alpha) \cap \operatorname{Ker}(1 - \alpha^n) = 0.$ (4) $\operatorname{Ker}(\alpha - \alpha^{n+1}) = \operatorname{Ker}(\alpha) + \operatorname{Ker}(1 - \alpha^n).$

The following Lemma is continuation of Lemma 2.1 [2].

Lemma 2.3. Let M_R be a module and $\alpha, \beta \in E_M$. The following hold: (1) $1 - \alpha\beta$ is onto if and only if $1 - \beta\alpha$ is onto. (2) $1 - \alpha\beta$ is one-to-one if and only if $1 - \beta\alpha$ is one-to-one. (3) $1 - \alpha\beta \in U(E_M)$ if and only if $1 - \beta\alpha \in U(E_M)$.

Proof. (1)(\Rightarrow). Suppose that $\operatorname{Im}(1 - \alpha\beta) = M$. Then $\operatorname{Im}(\beta - \beta\alpha\beta) = \operatorname{Im}(\beta) \cap$ $\operatorname{Im}(1 - \beta\alpha) = \operatorname{Im}(\beta(1 - \alpha\beta)) = \beta(\operatorname{Im}(1 - \alpha\beta)) = \operatorname{Im}(\beta)$ by Lemma 2.1(4). So $\operatorname{Im}(\beta) \subseteq \operatorname{Im}(1 - \beta\alpha)$. Thus $M = \operatorname{Im}(\beta) + \operatorname{Im}(1 - \beta\alpha) = \operatorname{Im}(1 - \beta\alpha)$. Similarly, (\Leftarrow) holds.

(2)(\Rightarrow). Suppose that Ker $(1 - \alpha\beta) = 0$. Let $x \in \text{Ker}(1 - \beta\alpha)$. Then $(1 - \beta\alpha)(x) = 0$ and that $(\alpha - \alpha\beta\alpha)(x) = (1 - \alpha\beta)(\alpha(x)) = 0$, so $\alpha(x) \in \text{Ker}(1 - \alpha\beta) = 0$ and $x \in \text{Ker}(\alpha)$. Thus Ker $(1 - \beta\alpha) \subseteq \text{Ker}(\alpha)$. By Lemma 2.1(5), Ker $(1 - \beta\alpha) = \text{Ker}(\alpha) \cap \text{Ker}(1 - \beta\alpha) = 0$. Similarly, (\Leftarrow) holds. (3) By (1) and (2). \Box

An element a of a ring R is called *regular* if a = aba for some $b \in R$. A ring R is called *regular ring* if each $a \in R$ is regular. The next Proposition gives information about $\alpha \in E_M$, when α is a regular element.

Proposition 2.4. Let M_R be a module and $\alpha \in E_M$. The following are equivalent: (1) There exists $\beta \in E_M$ such that $\alpha = \alpha \beta \alpha$.

(2) $\operatorname{Im}(\alpha)$ and $\operatorname{Ker}(\alpha)$ are direct summands of M.

(3) There exists $\beta \in E_M$ such that $\operatorname{Im}(\alpha) \cap \operatorname{Im}(1 - \alpha\beta) = 0$.

(4) There exists $\beta \in E_M$ such that $\operatorname{Ker}(\alpha) + \operatorname{Ker}(1 - \beta \alpha) = M$.

Proof. (1) \Leftrightarrow (2). By [5, Lemma 3.1].

(1) \Rightarrow (3). Suppose that $\alpha = \alpha\beta\alpha$ for some $\beta \in E_M$. Then $\alpha - \alpha\beta\alpha = 0$, by Lemma 2.1, $0 = \operatorname{Im}(\alpha - \alpha\beta\alpha) = \operatorname{Im}(\alpha) \cap \operatorname{Im}(1 - \alpha\beta)$. (3) \Rightarrow (1). Since $\operatorname{Im}(\alpha - \alpha\beta\alpha) = \operatorname{Im}(\alpha) \cap \operatorname{Im}(1 - \alpha\beta) = 0$ by Lemma 2.1 and our hypothesis, implies that $\alpha - \alpha\beta\alpha = 0$. (1) \Rightarrow (4). Suppose that $\alpha = \alpha\beta\alpha$ for some $\beta \in E_M$. Then $\alpha - \alpha\beta\alpha = 0$ and $\operatorname{Ker}(\alpha - \alpha\beta\alpha) = M = \operatorname{Ker}(\alpha) + \operatorname{Ker}(1 - \beta\alpha)$ by Lemma 2.1. (4) \Rightarrow (1). If $M = \operatorname{Ker}(\alpha) + \operatorname{Ker}(1 - \beta\alpha)$; by Lemma 2.1 $\operatorname{Ker}(\alpha - \alpha\beta\alpha) = M$, so

 $\alpha - \alpha \beta \alpha = 0.$

The following Theorem describe the principal left and right ideals of E_M when E_M is regular.

Theorem 2.5. Let M be a module with E_M is a regular ring and $\alpha, \beta \in E_M$. The following hold:

(1) $\operatorname{Im}(\alpha) \subseteq \operatorname{Im}(\beta)$ if and only if $\alpha E_M \subseteq \beta E_M$. (2) $\operatorname{Im}(\alpha) = \operatorname{Im}(\beta)$ if and only if $\alpha E_M = \beta E_M$. (3) $\alpha E_M = \{\beta : \beta \in E_M; \operatorname{Im}(\beta) \subseteq \operatorname{Im}(\alpha)\}.$ (4) $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta)$ if and only if $(E_M)\beta \subseteq (E_M)\alpha.$ (5) $\operatorname{Ker}(\alpha) = \operatorname{Ker}(\beta)$ if and only if $(E_M)\alpha = (E_M)\beta.$ (6) $(E_M)\alpha = \{\beta : \beta \in E_M; \operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta)\}.$

Proof. (1)(\Rightarrow). Suppose that Im(α) \subseteq Im(β). Since E_M is regular, there exists $\mu \in E_M$ such that $\beta = \beta \mu \beta$. For $e = \beta \mu$; $e^2 = e \in E_M$ and Im(e) = Im(β), so Im(α) \subseteq Im(e). Since $e = I_{\text{Im}(e)}$; $e\alpha(x) = \alpha(x)$ for all $x \in M$. Thus, $\alpha = e\alpha = \beta \mu \alpha \in \beta E_M$. (\Leftarrow) It is clear. (2) and (3) by (1).

(4)(\Rightarrow). Suppose that Ker(α) \subseteq Ker(β). Since E_M is regular, there exists $\mu \in E_M$ such that $\alpha = \alpha \mu \alpha$. For $e = \mu \alpha$; $e^2 = e \in E_M$. It is clear that Ker(α) \subseteq Ker(e). Let $y \in$ Ker(e). Then $\alpha(y) = \alpha \mu \alpha(y) = \alpha e(y) = 0$, so $y \in$ Ker(α). Thus, Ker(e) \subseteq Ker(α) and that β (Ker(e)) $= \beta$ (Im(1 - e)) = Im($\beta(1 - e)$) = 0, so $\beta(1 - e) = 0$. Since 1 = e + (1 - e); $\beta = \beta e = (\beta \mu) \alpha \in (E_M) \alpha$. Thus, (E_M) $\beta \subseteq (E_M) \alpha$. (\Leftarrow) It is clear. (5) and (6) by (4). \Box

3. Semipotent Endomorphism Rings.

An element a of a ring R is called *partially invertible* or pi for short, if a is a divisor of an idempotent [2]. The next Proposition gives information about $\alpha \in E_M$, when α is a divisor of an idempotent.

Proposition 3.1. Let M_R be a module and $\alpha \in E_M$. The following are equivalent: (1) There exists $\beta \in E_M$ such that $\beta = \beta \alpha \beta$.

(2) There exists $\beta \in E_M$ such that $\operatorname{Im}(\alpha\beta)$, $\operatorname{Ker}(\alpha\beta)$ are direct summands of M.

(3) There exists $\beta \in E_M$ such that $\operatorname{Im}(\beta \alpha)$, $\operatorname{Ker}(\beta \alpha)$ are direct summands of M.

(4) There exists $\beta \in E_M$ such that $\operatorname{Im}(\beta) \cap \operatorname{Im}(1 - \beta \alpha) = 0$.

(5) There exists $\beta \in E_M$ such that $\operatorname{Ker}(\beta) + \operatorname{Ker}(1 - \alpha\beta) = M$.

Proof. (1) \Rightarrow (2). Suppose that $\beta = \beta \alpha \beta$ for some $\beta \in E_M$. Then $(\alpha \beta)^2 = \alpha \beta$ and so Im $(\alpha \beta)$, Ker $(\alpha \beta) =$ Im $(1 - \alpha \beta)$ are direct summands of M.

 $(2) \Rightarrow (1)$. Suppose that (2) holds. By Lemma 2.1, there exists $g \in E_M$ such that

 $\begin{array}{l} (\alpha\beta)g(\alpha\beta) = \alpha\beta. \text{ For } \mu = \beta g\alpha\beta g; \ \mu\alpha\mu = \mu, \text{ gives (1).} \\ \text{Similarly, the equivalence (1) } \Leftrightarrow (3) \text{ holds.} \\ (1) \Rightarrow (4). \text{ Suppose (1) holds. Then } \beta - \beta\alpha\beta = 0, \text{ by Lemma 2.1; } 0 = \text{Im}(\beta - \beta\alpha\beta) = \text{Im}(\beta) \cap \text{Im}(1 - \beta\alpha), \text{ gives (4).} \\ (4) \Rightarrow (1). \text{ Since Im}(\beta - \beta\alpha\beta) = \text{Im}(\beta) \cap \text{Im}(1 - \beta\alpha) = 0; \text{ by Lemma 2.1 and our hypothesis, implies that } \beta - \beta\alpha\beta = 0. \\ (1) \Rightarrow (5). \text{ If } \beta = \beta\alpha\beta \text{ for some } \beta \in E_M; \ \beta - \beta\alpha\beta = 0, \text{ so } \text{Ker}(\beta - \beta\alpha\beta) = M = \text{Ker}(\beta) + \text{Ker}(1 - \alpha\beta) \text{ by Lemma 2.1.} \\ (5) \Rightarrow (1). \text{ By Lemma 2.1, } \text{Ker}(\beta - \beta\alpha\beta) = \text{Ker}(\beta) + \text{Ker}(1 - \alpha\beta) = M, \text{ so } \beta - \beta\alpha\beta = 0. \end{array}$

Recall that a ring R is a *semipotent* ring by Zhou [6], also called an I_0-ring by Nicholson [4], if every principal left (resp. right) ideal not contained in J(R) contains a nonzero idempotent.

Corollary 3.2. Let M_R be a module. The following are equivalent:

(1) E_M is a semipotent ring.

4

(2) For every $\alpha \in E_M \setminus J(E_M)$ there exists $\beta \in E_M$ such that $\beta = \beta \alpha \beta$.

(3) For every $\alpha \in E_M \setminus J(E_M)$ there exists $\beta \in E_M$ such that $\operatorname{Im}(\alpha\beta)$, $\operatorname{Ker}(\alpha\beta)$ are direct summands of M.

(4) For every $\alpha \in E_M \setminus J(E_M)$ there exists $\beta \in E_M$ such that $\operatorname{Im}(\beta \alpha)$, $\operatorname{Ker}(\beta \alpha)$ are direct summands of M.

(5) For every $\alpha \in E_M \setminus J(E_M)$ there exists $\beta \in E_M$ such that $\operatorname{Im}(\beta) \cap \operatorname{Im}(1-\beta\alpha) = 0$. (6) For every $\alpha \in E_M \setminus J(E_M)$ there exists $\beta \in E_M$ such that $\operatorname{Ker}(\beta) + \operatorname{Ker}(1-\alpha\beta) = M$.

Proof. By Proposition 3.1. \Box

Let M be a module. Write:

$$\nabla_1(E_M) = \{ \alpha : \alpha \in E_M, \ \operatorname{Im}(1 - \alpha\beta) = M \text{ for all } \beta \in E_M \}.$$

 $\nabla_2(E_M) = \{ \alpha : \alpha \in E_M, \ \operatorname{Im}(1 - \beta \alpha) = M \text{ for all } \beta \in E_M \}.$

It is clear that $\nabla_1(E_M)$ and $\nabla_2(E_M)$ are non-empty subsets in E_M , $(0 \in \nabla_1(E_M), 0 \in \nabla_2(E_M))$. In using Lemma 2.3(1), it is easy to see that $\nabla_1(E_M) = \nabla_2(E_M)$. Therefore, we use the notation:

$$\widehat{\nabla}(E_M) = \{ \alpha : \alpha \in E_M, \quad \operatorname{Im}(1 - \alpha\beta) = M \text{ for all } \beta \in E_M \}.$$
$$= \{ \alpha : \alpha \in E_M, \quad \operatorname{Im}(1 - \beta\alpha) = M \text{ for all } \beta \in E_M \}.$$

 $\widehat{\nabla}(E_M)$ is a semi-ideal in E_M , which means that it is closed under arbitrary multiplication from either side, hence if $\alpha \in \widehat{\nabla}(E_M)$ and $\lambda \in E_M$; $\operatorname{Im}(1 - (\alpha\lambda)\beta) = \operatorname{Im}(1 - \alpha(\lambda\beta)) = M$ for all $\beta \in E_M$ and $\operatorname{Im}(1 - \beta(\lambda\alpha)) = \operatorname{Im}(1 - (\beta\lambda)\alpha) = M$ for all $\beta \in E_M$. Thus, $\alpha\lambda, \lambda\alpha \in \widehat{\nabla}E_M$.

It is clear that $\nabla(E_M) \subseteq \widehat{\nabla}(E_M)$.

Also, let M be a module. Write:

$$\Delta_1(E_M) = \{ \alpha : \alpha \in E_M, \quad \text{Ker}(1 - \alpha\beta) = 0 \text{ for all } \beta \in E_M \}.$$

$$\Delta_2(E_M) = \{ \alpha : \alpha \in E_M, \quad \text{Ker}(1 - \beta\alpha) = 0 \text{ for all } \beta \in E_M \}.$$

It is clear that $\triangle_1(E_M)$ and $\triangle_2(E_M)$ are non-empty subsets in E_M , $(0 \in \triangle_1(E_M), 0 \in \triangle_2(E_M))$. In using Lemma 2.3(2), it is easy to see that $\triangle_1(E_M) = \triangle_2(E_M)$. Therefore, we use the notation:

$$\widehat{\triangle}(E_M) = \{ \alpha : \alpha \in E_M, \quad \text{Ker}(1 - \alpha\beta) = 0 \text{ for all } \beta \in E_M \}.$$
$$= \{ \alpha : \alpha \in E_M, \quad \text{Ker}(1 - \beta\alpha) = 0 \text{ for all } \beta \in E_M \}.$$

 $\widehat{\bigtriangleup}(E_M)$ is a semi-ideal in E_M , which means that it is closed under arbitrary multiplication from either side, hence if $\alpha \in \widehat{\bigtriangleup}(E_M)$ and $\lambda \in E_M$; $\operatorname{Ker}(1-(\alpha\lambda)\beta) = \operatorname{Ker}(1-\alpha(\lambda\beta)) = 0$ for all $\beta \in E_M$ and $\operatorname{Ker}(1-\beta(\lambda\alpha)) = \operatorname{Ker}(1-(\beta\lambda)\alpha) = 0$ for all $\beta \in E_M$. Thus, $\alpha\lambda, \lambda\alpha \in \widehat{\bigtriangleup}E_M$.

It is clear that $\triangle(E_M) \subseteq \triangle(E_M)$.

It is known that if $\alpha^2 = \alpha \in E_M$; $M = \operatorname{Im}(\alpha) \oplus \operatorname{Im}(1-\alpha)$ and $\operatorname{Im}(\alpha) = \operatorname{Ker}(1-\alpha)$, $\operatorname{Ker}(\alpha) = \operatorname{Im}(1-\alpha)$.

Following [2], $Tot(R) = \{a : a \in R; a \text{ is not pi }\}.$

Lemma 3.3. For any module *M* the following hold:

(1) $J(E_M) \subseteq \widehat{\nabla}(E_M) \cap \widehat{\triangle}(E_M).$ (2) $\widehat{\nabla}(E_M) \cup \widehat{\triangle}(E_M) \subseteq \operatorname{Tot}(E_M).$ (3) $J(E_M) \subseteq \operatorname{Tot}(E_M).$

Proof. (1). Let $\alpha \in J(E_M)$. Then $\alpha\beta$, $\beta\alpha \in J(E_M)$ for every $\beta \in E_M$, so $g(1-\beta\alpha)=1$, $(1-\alpha\beta)g_0=1$ for some $g,g_0\in E_M$. Thus, $\operatorname{Im}(1-\alpha\beta)=M$ and $\operatorname{Ker}(1-\beta\alpha)=0$. Therefore, $J(E_M)\subseteq \widehat{\nabla}(E_M)\cap \widehat{\triangle}(E_M)$.

(2). Let $\alpha \in \widehat{\nabla}(E_M)$. Then $\operatorname{Im}(1 - \alpha\lambda) = M$ for all $\lambda \in E_M$. Suppose that $\alpha \notin \operatorname{Tot}(E_M)$, there exists $\beta \in E_M$ such that $0 \neq (\alpha\beta)^2 = \alpha\beta \in E_M$, so $\operatorname{Ker}(\alpha\beta) = \operatorname{Im}(1 - \alpha\beta) = M$ and that $\alpha\beta = 0$ a contradiction. Thus $\alpha \in \operatorname{Tot}(E_M)$. Let $\alpha \in \widehat{\Delta}(E_M)$. Then $\operatorname{Ker}(1 - \lambda\alpha) = 0$ for all $\lambda \in E_M$. If $\alpha \notin \operatorname{Tot}(E_M)$, there exists $\beta \in E_M$ such that $0 \neq (\beta\alpha)^2 = \beta\alpha \in E_M$, so $\operatorname{Im}(\beta\alpha) = \operatorname{Ker}(1 - \beta\alpha) = 0$ and that $\beta\alpha = 0$ a contradiction. Thus $\alpha \in \operatorname{Tot}(E_M)$. (3). By (1) and (2). \Box

The following Proposition describe the Jacobson radical of E_M when E_M is a semipotent ring.

Proposition 3.4. Let M_R be a module with E_M is a semipotent ring. The following hold:

(1) $J(E_M) = \widehat{\nabla}(E_M).$ (2) $J(E_M) = \widehat{\triangle}(E_M).$ (3) $\widehat{\nabla}(E_M) = \widehat{\triangle}(E_M).$

Proof. (1). By Lemma 3.3 we have $J(E_M) \subseteq \widehat{\nabla}(E_M)$. Let $\alpha \in \widehat{\nabla}(E_M)$. Then $\operatorname{Im}(1 - \alpha\lambda) = M$ for all $\lambda \in E_M$. If $\alpha \notin J(E_M)$ there exists $\beta \in E_M$ such that $0 \neq \beta = \beta\alpha\beta \in E_M$, therefore $0 \neq (\alpha\beta)^2 = \alpha\beta \in E_M$ and $\operatorname{Ker}(\alpha\beta) = \operatorname{Im}(1 - \alpha\beta) = M$. So $\alpha\beta = 0$ a contradiction. Thus, $\alpha \in J(E_M)$.

(2). By Lemma 3.3 we have $J(E_M) \subseteq \widehat{\triangle}(E_M)$. Let $\alpha \in \widehat{\triangle}(E_M)$. Then $\operatorname{Ker}(1 - \lambda \alpha) = 0$ for all $\lambda \in E_M$. If $\alpha \notin J(E_M)$ there exists $\beta \in E_M$ such that $0 \neq \beta =$

 $\beta\alpha\beta\in E_M$, therefore $0 \neq (\beta\alpha)^2 = \beta\alpha\in E_M$ and $\operatorname{Im}(\beta\alpha) = \operatorname{Ker}(1-\beta\alpha) = 0$. So $\beta\alpha = 0$ a contradiction. Thus, $\alpha\in J(E_M)$. (3). By (1) and (2). \Box

Corollary 3.5. Let M_R be a module with E_M is a semipotent ring and $\alpha \in E_M$. The following hold: (1) $\alpha \in J(E_M)$ if and only if $\operatorname{Im}(1 - \alpha\beta) = M$ for all $\beta \in E_M$, if and only if $\operatorname{Ker}(1 - \beta\alpha) = 0$ for all $\beta \in E_M$. (2) $\alpha \in J(E_M)$ if and only if $\operatorname{Im}(1 - \beta\alpha) = M$ for all $\beta \in E_M$, if and only if $\operatorname{Ker}(1 - \alpha\beta) = 0$ for all $\beta \in E_M$.

Proof. By Proposition 3.4. \Box

Theorem 3.6. (1). For every module M the following are equivalent:

(i) $\widehat{\nabla}(E_M) \subseteq J(E_M)$. (ii) For every $\alpha \in E_M$ with $1 - \alpha \in \widehat{\nabla}(E_M)$ is one-to-one. (2). For every module M the following are equivalent: (i) $\widehat{\Delta}(E_M) \subseteq J(E_M)$. (ii) For every $\alpha \in E_M$ with $1 - \alpha \in \widehat{\Delta}(E_M)$ is onto.

Proof. $(1)(i) \Rightarrow (ii)$. Let $\alpha \in E_M$ with $1 - \alpha \in \widehat{\nabla}(E_M)$, by assumption $1 - \alpha \in J(E_M)$, so $\alpha = 1 - (1 - \alpha) \in U(E_M)$. Thus, α is one-to-one.

 $(ii) \Rightarrow (i).$ Let $\alpha \in \nabla(E_M)$, then $\operatorname{Im}(1 - \alpha\beta) = M$ for all $\beta \in E_M$. Also, for all $\lambda \in E_M$; $\operatorname{Im}(1 - (\alpha\beta)\lambda) = \operatorname{Im}(1 - \alpha(\beta\lambda)) = M$, hence $\alpha \in \widehat{\nabla}(E_M)$. So $\alpha\beta = (1 - (1 - \alpha\beta)) \in \widehat{\nabla}(E_M)$, by assumption $1 - \alpha\beta$ is one-to-one. Thus, $1 - \alpha\beta \in U(E_M)$ and that $\alpha \in J(E_M)$.

 $(2)(i) \Rightarrow (ii)$. Let $\alpha \in E_M$ with $1 - \alpha \in \Delta(E_M)$, by assumption $1 - \alpha \in J(E_M)$, so $\alpha = 1 - (1 - \alpha) \in U(E_M)$. Thus, α is onto.

 $(ii) \Rightarrow (i)$. Let $\alpha \in \widehat{\bigtriangleup}(E_M)$, then $\operatorname{Ker}(1 - \beta \alpha) = 0$ for all $\beta \in E_M$. Also, for all $\lambda \in E_M$; $\operatorname{Ker}(1 - \lambda(\beta \alpha)) = \operatorname{Ker}(1 - (\lambda \beta)\alpha) = 0$, hence $\alpha \in \widehat{\bigtriangleup}(E_M)$. So $\beta \alpha = (1 - (1 - \beta \alpha)) \in \widehat{\bigtriangleup}(E_M)$, is onto by assumption. Thus, $1 - \beta \alpha \in U(E_M)$ and that $\alpha \in J(E_M)$. \Box

Theorem 3.7. (1). For every module M the following are equivalent:

(i) $\operatorname{Tot}(E_M) = \nabla(E_M)$.

(*ii*) For every $\alpha \in E_M$ with $\operatorname{Im}(\alpha)$ is not small in M there exists $\beta \in E_M$ such that $\operatorname{Im}(\beta) \cap \operatorname{Im}(1 - \beta\alpha) = 0$.

(*iii*) For every $\alpha \in E_M$ with $\operatorname{Im}(\alpha)$ is not small in M there exists $\beta \in E_M$ such that $\operatorname{Ker}(\beta) + \operatorname{Ker}(1 - \alpha\beta) = M$.

(2). For every module M the following are equivalent:

(i)
$$\operatorname{Tot}(E_M) = \triangle(E_M)$$
.

(*ii*) For every $\alpha \in E_M$ with $\operatorname{Ker}(\alpha)$ is not large in M there exists $\beta \in E_M$ such that $\operatorname{Im}(\beta) \cap \operatorname{Im}(1 - \beta \alpha) = 0$.

(*iii*) For every $\alpha \in E_M$ with $\operatorname{Ker}(\alpha)$ is not large in M there exists $\beta \in E_M$ such that $\operatorname{Ker}(\beta) + \operatorname{Ker}(1 - \alpha\beta) = M$.

Proof.(1)(i) \Rightarrow (ii). Let $\alpha \in E_M$ with Im(α) is not small in M. Then $\alpha \notin \nabla(E_M)$,

 $\mathbf{6}$

by assumption there exists $\lambda \in E_M$ such that $0 \neq (\lambda \alpha)^2 = \lambda \alpha \in E_M$. For $\beta = \lambda \alpha \lambda$; $\beta \alpha \beta = \beta$. By Lemma 2.1, $0 = \text{Im}(\beta - \beta \alpha \beta) = \text{Im}(\beta) \cap \text{Im}(1 - \beta \alpha)$.

 $(ii) \Rightarrow (iii)$. Suppose (2) holds. Let $\alpha \in E_M$ with $\operatorname{Im}(\alpha)$ is not small in M. By assumption there exists $\beta \in E_M$ such that $\operatorname{Im}(\beta) \cap \operatorname{Im}(1 - \beta \alpha) = 0$, by Lemma 2.1; $\beta - \beta \alpha \beta = 0$ and $M = \operatorname{Ker}(\beta - \beta \alpha \beta) = \operatorname{Ker}(\beta) + \operatorname{Ker}(1 - \alpha \beta)$.

 $(iii) \Rightarrow (i)$. It is clear that $\nabla(E_M) \subseteq \operatorname{Tot}(E_M)$. Let $\alpha \in \operatorname{Tot}(E_M)$. Suppose that $\alpha \notin \nabla(E_M)$, then $\operatorname{Im}(\alpha)$ is not small in M, by assumption there exists $\beta \in E_M$ such that $M = \operatorname{Ker}(\beta) + \operatorname{Ker}(1 - \alpha\beta)$. By Proposition 3.1; $\beta = \beta\alpha\beta$, so $0 \neq (\beta\alpha)^2 = \beta\alpha \in E_M$ a contradiction, hence $\alpha \in \operatorname{Tot}(E_M)$. Thus $\alpha \in \nabla(E_M)$. $(2)(i) \Rightarrow (ii)$. Let $\alpha \in E_M$ with $\operatorname{Ker}(\alpha)$ is not large in M. Then $\alpha \notin \Delta(E_M)$, by assumption there exists $\lambda \in E_M$ such that $0 \neq (\alpha\lambda)^2 = \alpha\lambda \in E_M$. For $\beta = \lambda\alpha\lambda$; $\beta\alpha\beta = \beta$. By Lemma 2.5, $\operatorname{Im}(\beta) \cap \operatorname{Im}(1 - \beta\alpha) = 0$.

(*ii*) \Rightarrow (*iii*). Suppose (2) holds. Let $\alpha \in E_M$ with Ker(α) is not large in M. By assumption there exists $\beta \in E_M$ such that Im(β) \cap Im($1 - \beta \alpha$) = 0, by Lemma 2.1; Im($\beta - \beta \alpha \beta$) = 0, so $\beta - \beta \alpha \beta = 0$ and $M = \text{Ker}(\beta - \beta \alpha \beta) = \text{Ker}(\beta) + \text{Ker}(1 - \alpha \beta)$. (*iii*) \Rightarrow (*i*). It is clear that $\triangle(E_M) \subseteq \text{Tot}(E_M)$. Let $\alpha \in \text{Tot}(E_M)$. Suppose that $\alpha \notin \triangle(E_M)$, then Ker(α) is not large in M, by assumption there exists $\beta \in E_M$ such that Ker(β) + Ker($1 - \alpha \beta$) = M. By Proposition 3.1; $\beta = \beta \alpha \beta$, so $0 \neq (\alpha \beta)^2 = \alpha \beta \in E_M$ a contradiction, hence $\alpha \in \text{Tot}(E_M)$. Thus $\alpha \in \triangle(E_M)$. \Box

A module Q is called *locally injective* [3] if, for every submodule $A \subseteq Q$, which is not large in Q, there exists an injective submodule $0 \neq B \subseteq Q$, with $A \cap B = 0$.

A module P is called *locally projective* [3] if, for every submodule $B \subseteq P$, which is not small in P, there exists a projective direct summand $0 \neq A \subseteq^{\oplus} P$, with $A \subseteq B$.

F. Kasch in [3] studied conditions on modules Q and P, which imply that $\operatorname{Tot}(E_Q) = \triangle(E_Q) = J(E_Q)$ and $\operatorname{Tot}(E_P) = \nabla(E_P) = J(E_P)$. He showed that these equalities hold if Q is injective, respectively P is semiperfect and projective. Also, it was proved in [3], that $\operatorname{Tot}(E_Q) = \triangle(E_Q)$ if Q is a locally injective module and $\operatorname{Tot}(E_P) = \nabla(E_P)$ if P is a locally projective module.

The following questions were raised by Kasch in [3].

(1) If Q is locally injective, then it is true that $\operatorname{Tot}(E_Q) = \triangle(E_Q) = J(E_Q)$?.

(2) If P is locally projective, then it is true that $Tot(E_P) = \nabla(E_P) = J(E_P)$?.

Zhou in [6], proved that the answer to question (1) is "Yes" if a ring R is left Noetherian. But in general, the answer to the question is "No" by [6, Example 4.2]. During our study of answer to questions it is obtained the following results:

Corollary 3.8. (1). If Q is a locally injective module, then $Tot(E_Q) = \triangle(E_Q) = \widehat{\triangle}(E_Q)$.

(2). If P is a locally projective module, then $\operatorname{Tot}(E_P) = \nabla(E_P) = \widehat{\nabla}(E_P)$.

Proof. (1). Since Q is locally injective, then $\operatorname{Tot}(E_Q) = \triangle(E_Q) \subseteq \widehat{\triangle}(E_Q) \subseteq \operatorname{Tot}(E_Q)$ by definition and Lemma 3.2, so $\operatorname{Tot}(E_Q) = \triangle(E_Q) = \widehat{\triangle}(E_Q)$.

(2). Since P is locally projective, then $\operatorname{Tot}(E_P) = \nabla(E_P) \subseteq \widehat{\nabla}(E_P) \subseteq \operatorname{Tot}(E_P)$ by

definition and Lemma 3.2, so $\operatorname{Tot}(E_P) = \nabla(E_P) = \widehat{\nabla}(E_P)$. \Box

Corollary 3.9. (1). If Q is a locally injective module and $\alpha \in E_Q$, then $\operatorname{Ker}(\alpha) \leq_e Q$ if and only if $\operatorname{Ker}(1 - \alpha\beta) = 0$ for all $\beta \in E_Q$ if and only if $\operatorname{Ker}(1 - \beta\alpha) = 0$ for all $\beta \in E_Q$.

(2). If P is a locally projective module and $\alpha \in E_P$, then $\operatorname{Im}(\alpha) \ll P$ if and only if $\operatorname{Im}(1 - \alpha\beta) = P$ for all $\beta \in E_P$ if and only if $\operatorname{Im}(1 - \beta\alpha) = P$ for all $\beta \in E_P$.

Proof by Corollary 3.8. \Box

REFERENCES

[1] F. Kasch: Modules and Rings. Academic Press, 1982.

[2] F. Kasch, A. Mader: Rings, Modules, and the Total. Front. Math., Birkhauser Verlag, Basel, 2004.

[3] F. Kasch: Locally injective and locally projective modules. Rocky Mountain J. Math. 32 (4) (2002) 1493-1504.

[4] W. K. Nicholson: I- Rings. Trans. Amer. Math. Soc. 207, (1975), p. 361-373.
[5] R. Ware: Endomorphism Rings of Projective Modules. Trans. Amer. Math. Soc. 155, (1971), p. 233-256.

[6] Y. Zhou: On (Semi)regularity and the total of rings and modules. Journal of Algebra, 322, (2009), p.562-578.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE DAMASCUS UNIVERSITY *E-mail address*: hhakmi-640hotmail.com