ENDOMORPHISM RINGS OF MODULES

HAMZA HAKMI

ABSTRACT. Let M be a module over a ring R and Ej; the endomorphism ring
of M. The concern is study some fundamental properties of Ej; when Ej; is
regular or semipotent. New results obtained include necessary and sufficient
conditions for Ej; to be regular or semipotent. New substructures of Ej; are
studied and its relationship with the Tot of Ej;.

1. Introduction.

In this paper rings R, are associative with identity unless otherwise indicated.
All modules over a ring R are unitary right modules. We write J(R) and U(R)
for the Jacobson radical and the group of units of a ring R. A submodule N of a
module M is said to be small in M, if N+ K # M for any proper submodule K of
M [1]. Also, a submodule @ of a module M is said to be large (essential) in M if
QNK # 0 for every nonzero submodule K of M [1]. For a submodule N of a module
M, we use N C® M to mean that N is a direct summand of M, and write N <, M
and N <« M to indicate that N is an large, respectively small, submodule of M.
We use the notation: Ey = Endr(M), V(Ey) ={a: a € Ey;Im(a) < M} and
A(Ey) ={a: a € Ep;Ker(a) <. M}. It is known that V(E)ys) and A(E)y) are
ideals in Epy [1].

2. Regular Endomorphism Rings.

We start with the following fundamental lemma which gives information about
relationship between any two elements of Ej;.

Lemma 2.1. Let Mg be a module and «, 8 € Ey;. The following hold:
(1) Im(e) + Im(1 — af) = M.

(2) Im(o — afar) = Im(a) N Im(1 — aff).
(3) Im(B8) + Im(1 — Ba) = M.

(4) Tm(8 — Baff) = Im(8) N Tm(1 — fa).
(5) Ker(a) NKer(1 — fa) = 0.
(6) Ker(a — afa) = Ker(a) + Ker(1 — Ba).
(7) Ker(6) NKer(1 — af) = 0.

(8) Ker(8 — paf) = Ker(5) + Ker(1 — af).

Proof. (1) It is clear, hence M = Im(a3) +Im(1 —af) C Im(a) +Im(1 —af) C M.
Similarly, (3) holds.

Key words and phrases. Regular ring, semipotent ring, Radical Jacobson, The Total,
(Co)Singular ideal.
2010 Mathematics Subject Classification. Primary: 16E50,16E70. Secondary: 16D40, 16D50.

1



2 HAMZA HAKMI

(2) Tt is clear that Im(a — afa) C Im(a) N Im(1 — af), hence Im(a — afa) =
a(Im(1 — fa)) C Im(e) and Im(a — afa) = (1 — af)(Im(a)) C Im(1 — af).

Let z € Im(a) NIm(1 — @f). Then z = a(y) = (1 — af)(z) where y,z € M and
z=z+af(z) = a(y + (z) € Im(a). For yo =y + B(2); 2 = alyo). Thus,
z=(1-af)(z) =1 —-ab)aly) = (@ — afa)(ye) € Im(a — afar). Similarly, (4)
holds. (5) and (7) are clear.

(6) It is clear that Ker(a) C Ker(a — afa) and Ker(1 — fa) C Ker(a — afar), so
Ker(a)+Ker(1—pa) C Ker(a—afa). Let y € Ker(a—afa). Then a(y) = afa(y).
Since y = fa(y) + (1 — Ba)(y); Ba(y) € Ker(1 — Ba) and (1 — Ba)(y) € Ker(Sa)
which implies y € Ker(a) 4+ Ker(1 — Sa). Similarly, (8) holds. O

From Lemma 2.1 we derive the following

Corollary 2.2. Let Mp be a module and a € Ep, n € N*. The following
hold:

(1) M =Im(«) + Im(1 — a™).

(2) Im(a — a™*1) = Im(a) N Im(1 — ™).

(3) Ker(a) NKer(1 —a™) =0.

(4) Ker(a — a™*1) = Ker(a) + Ker(1 — a™).

The following Lemma is continuation of Lemma 2.1 [2].

Lemma 2.3. Let My be a module and «, 8 € Ey;. The following hold:
(1) 1 — af is onto if and only if 1 — Ba is onto.

(2) 1 — af is one-to-one if and only if 1 — S« is one-to-one.

(3)1—aB € U(Ey) if and only if 1 — fa € U(Ew).

Proof. (1)(=). Suppose that Im(1 — a8) = M. Then Im(5 — faf) = Im(8) N
Im(1 — fa) = Im(B(1 — af)) = B(Im(1 — af)) = Im(5) by Lemma 2.1(4). So
Im(B) C Im(1 — Ba). Thus M = Im(f) +Im(1 — o) = Im(1 — Ser). Similarly, (<)
holds.

(2)(=). Suppose that Ker(1—af) = 0. Let « € Ker(1—«). Then (1—fa)(xz) =0
and that (o — afa)(z) = (1 — af)(a(z)) = 0, so a(x) € Ker(1 — af) = 0 and
x € Ker(a). Thus Ker(1 — fa) C Ker(a). By Lemma 2.1(5), Ker(1 — fa) =
Ker(a) NKer(1l — fa) = 0. Similarly, (<=) holds.

(3) By (1) and (2). O

An element a of a ring R is called regular if a = aba for some b € R. A ring R is
called regular ring if each a € R is regular. The next Proposition gives information
about a € Fjy, when « is a regular element.

Proposition 2.4. Let Mg be a module and a € Fj;. The following are equivalent:
(1) There exists § € Ejs such that a = afa.

(2) Im(a) and Ker(a) are direct summands of M.

(3) There exists 0 € Ejs such that Im(a) NIm(1 — aB) = 0.

(4) There exists § € Ejs such that Ker(a) + Ker(1 — fa) = M.

Proof. (1) < (2). By [5, Lemma 3.1].
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(1) = (3). Suppose that a = afa for some B € Ey;. Then a—afBa = 0, by Lemma
2.1, 0 =Im(a — afa) = Im(a) N Im(1 — af).

(3) = (1). Since Im(a — afa) = Im(a) N Im(1 — @f) = 0 by Lemma 2.1 and our
hypothesis, implies that a — afa = 0.

(1) = (4). Suppose that « = afa for some S € Ep. Then a — afa = 0 and
Ker(a — afBa) = M = Ker(a) + Ker(1 — Sa) by Lemma 2.1.

(4) = (1). If M = Ker(a) + Ker(1 — fa); by Lemma 2.1 Ker(a — afa) = M, so
a—afa=0.0

The following Theorem describe the principal left and right ideals of Ej; when
Ejy is regular.

Theorem 2.5. Let M be a module with Ej; is a regular ring and o, € Ejy.
The following hold:

(1) Im(e) € Im(p) if and only if aEy; C BE.

(2) Im(av) = Im(B) if and only if aFEy; = BEp.

(3) aEy ={0: B € Epy; Im(B) C Im(a)}.

(4) Ker(a) C Ker(p) if and only if (En )8 C (Eum)a.

(5) Ker(a) = Ker(0) if and only if (Exr)a = (Eum)pS.

(6) (Ex)a={B: 0 € En; Ker(a) C Ker(8)}.

Proof. (1)(=). Suppose that Im(«) C Im(3). Since Ej; is regular, there exists
u € Ey such that 3 = BuB. For e = Bu; e = e € Ey and Im(e) = Im(3),
so Im(a) C Im(e). Since e = Iyye); ea(r) = a(z) for all x € M. Thus,
a=ea = PBua € BE). (<) It is clear. (2) and (3) by (1).

(4)(=). Suppose that Ker(a) C Ker(). Since E)ps is regular, there exists y € Ejy
such that o = apa. For e = pua; €? = e € Eyy. It is clear that Ker(a) C Ker(e).
Let y € Ker(e). Then a(y) = aua(y) = ae(y) = 0, so y € Ker(a). Thus,
Ker(e) C Ker(a) and that ﬁ(Ker( )) = (Im(1 —e)) = Im(B(1 —e)

) =0, so
B(l—e) =0. Sincel = e+ (1 —-¢); = e = (Bp)a € (Ey)a. Thus,
(Eum)B C (Em)a. (<) It is clear. (5) and (6) by (4). O

3. Semipotent Endomorphism Rings.

An element a of a ring R is called partially invertible or pi for short, if a is a di-
visor of an idempotent [2]. The next Proposition gives information about a € Eyy,
when « is a divisor of an idempotent.

Proposition 3.1. Let Mg be a module and a € Fj;. The following are equivalent:
(1) There exists § € Ejs such that 8 = fap.

(2) There exists § € Ejs such that Im(a3), Ker(af3) are direct summands of M.
(3) There exists § € Ejs such that Im(Sa), Ker(8a) are direct summands of M.
(4) There exists 3 € Ejs such that Im(8) NIm(1 — Ba) = 0.

(5) There exists § € Ejs such that Ker(8) + Ker(1 — af) = M

Proof. (1) = (2). Suppose that 3 = Baf for some 3 € Ep;. Then (af3)? = a3 and
so Im(af), Ker(af) = Im(1 — af) are direct summands of M.
(2) = (1). Suppose that (2) holds. By Lemma 2.1, there exists g € Ej such that
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(aB)g(aB) = aB. For p = Bgafy; pap = u, gives (1).

Similarly, the equivalence (1) < (3) holds.

(1) = (4). Suppose (1) holds. Then f—Faf = 0, by Lemma 2.1; 0 = Im(5—faf) =
Im(B) NIm(1 — Ba), gives (4).

(4) = (1). Since Im(8 — faf) = Im(B) NIm(1 — fa) = 0; by Lemma 2.1 and our
hypothesis, implies that g — Ba = 0.

(1) = (5). If B = Bap for some B € Ey; B — Baf =0, so Ker(8 — paf) = M =
Ker(3) + Ker(1 — o) by Lemma 2.1.

(5) = (1). By Lemma 2.1, Ker(8 — faf) = Ker(3) + Ker(l — af) = M, so
8—pBaf=0.0

Recall that a ring R is a semipotent ring by Zhou [6], also called an Iy—ring
by Nicholson [4], if every principal left (resp. right) ideal not contained in J(R)
contains a nonzero idempotent.

Corollary 3.2. Let Mg be a module. The following are equivalent:

(1) Ep is a semipotent ring.

(2) For every a € Ep \ J(E)) there exists 5 € Ejy such that § = faf.

(3) For every a € Ep\ J(Ea) there exists § € Ejyy such that Im(a3), Ker(af) are
direct summands of M.

(4) For every o € Epy \ J(Eps) there exists 5 € Ejy such that Im(Ba), Ker(Sa) are
direct summands of M.

(5) For every a € Ep\J(Ejy) there exists 3 € Epy such that Im(8)NIm(1—pSa) = 0.
(6) For every a € Ep\J(Es) there exists 5 € Ejs such that Ker(5)+Ker(1—af) =
M.

Proof. By Proposition 3.1. [

Let M be a module. Write:
Vi(BEym)={a:ac€ Ey, Imn(l—af)=M forall g€ Epy}.

VaEy)={a:a € Ey, Im(l—p0a)=M forall g€ Ey}.
It is clear that Vi(E)) and Va(E)ys) are non-empty subsets in Epr, (0 €
Vi(Enr), 0 € Vo(Epy)). In using Lemma 2.3(1), it is easy to see that Vi(Eys) =
Va(En). Therefore, we use the notation:

~

V(Ey)={{a:a€ Ey, Im(1—af)=M forall g€ Ey}.
={a:acEy, Im(1—-pa)=M forall € Ey}.

V(E)) is a semi-ideal in E)py, which means that it is closed under arbitrary
multiplication from either side, hence if a € V(E);) and A € Ejy; Im(1 — (a\)8) =
Im(1 — a(AG)) = M for all § € Epr and Im(1 — B(Aa)) = Im(1 — (BA)a) = M for
all B € Eyr. Thus, a), Aa € VEy,.

It is clear that V(Ey) C V(Eay).

Also, let M be a module. Write:
N (Ey)={a:a€ Ey, Ker(l—af)=0 forall ge Ey}.
Do(Ey) ={a:ae€ Ey, Ker(l—pa)=0 forall g€ Ey}.



It is clear that Aj(E)) and Ao(E)ys) are non-empty subsets in Ey, (0 €
AN1(Eyr), 0 € Aa(Epy)). In using Lemma 2.3(2), it is easy to see that Aq(Ey) =
Ao(Epr). Therefore, we use the notation:

o~

A(Ey)={a:a€ Ey, Ker(l—af)=0 forall g€ Ey}.
={a:a€ Ey, Ker(l—pa)=0 foral 3ec Ey}.

A(Ep) is a semi-ideal in FEjs, which means that it is closed under arbitrary
multiplication from either side, hence if a € A(EM) and A € Ey; Ker(1—(aM)g) =
Ker(1 — a(A3)) =0 for all g € Ep and Ker(1 — S(Aa)) = Ker(1 — (X)) = 0 for
all 3 € Epy. Thus, a), ha € AEy,.

It is clear that A(Ey) C A(Ey).

It is known that if a? = a € Epr; M = Im(a)®Im(1—a) and Im(a) = Ker(1—a),
Ker(a) = Im(1 — a).
Following [2], Tot(R) = {a: a € R; a is not pi }.

Lemma 3.3. For any module M the following hold:
(1) J(Exr) © V(Ear) N A(En).
(2) V(EpM) UA(EnN) C Tot(Ep).

Proof. (1). Let a € J(Ep). Then af, Ba € J(Ey) for every 8 € Ejy, so
g(1 —pa) =1, (1 —af)go =1 for some g, gp € Epr. Thus, Im(1 — aff) = M and
Ker(1 — Ba) = 0. Therefore, J(Ey) € V(En) N A(Ey).

(2). Let a € V(Ep). Then Im(1 — aX) = M for all A € E);. Suppose that
a ¢ Tot(Eyr), there exists 3 € Ep such that 0 # (a8)? = af € Ey, so
Ker(af) = Im(1 — a8) = M and that a8 = 0 a contradiction. Thus « € Tot(Eyy).
Let o € A(Ey;). Then Ker(l — Aa) = 0 for all A € Eyy. If o & Tot(Ey), there
exists 3 € Eys such that 0 # (8a)? = Ba € Ejy, so Im(Ba) = Ker(1 — Ba) = 0 and
that Sa = 0 a contradiction. Thus a € Tot(Epy).

(3). By (1) and (2). O

The following Proposition describe the Jacobson radical of Ej; when Ej; is a
semipotent ring.

Proposition 3.4. Let Mpi be a module with Ej; is a semipotent ring. The
following hold:

(1) J(Em) (Enr).
(2) J(Em) = A(Ewm).
(3) V(Em) = A(Ewm).

v
A

Proof. (1). By Lemma 3.3 we have J(Ey) C V(Ey). Let o € V(Ey). Then
Im(1 —aX) =M for all A € Ey. If o & J(Es) there exists 5 € Ejy such that 0 #
B = Baf € Eyr, therefore 0 # (a3)? = af € Ey and Ker(a3) = Im(1 — af8) = M.
So a3 = 0 a contradiction. Thus, « € J(Eyp).

(2). By Lemma 3.3 we have J(E)) C A(E)y). Let o € K(EM) Then Ker(1 —
Aa) =0 for all A € Eyy. If o & J(E)y) there exists 8 € Epy such that 0 # 8 =
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Baf € Ey, therefore 0 # (Ba)? = Ba € Ey and Im(Ba) = Ker(1 — Ba) = 0. So
Ba = 0 a contradiction. Thus, a € J(Eyy).
(3). By (1) and (2). O

Corollary 3.5. Let Mg be a module with F); is a semipotent ring and a € Ej;.
The following hold:

(1) « € J(Epy) if and only if Im(1 — af) = M for all 3 € FEyy, if and only if
Ker(1 — fa) =0 for all § € Eyy.

(2) @ € J(EuN) if and only if Im(1 — Ba) = M for all 8 € Eyy, if and only if
Ker(1 — af) =0 for all § € Eyy.

Proof. By Proposition 3.4. O

Theorem 3.6. (1). For every module M the following are equivalent:
(i) V(En) C J(En). -

(#3) For every a € Epp with 1 — o € V(E)y) is one-to-one.

(2). For every module M the following are equivalent:

(i) A(Ear) C J(Ea). -

(i1) For every a € Epy with 1 — a € A(Fyy) is onto.

Proof. (1)(i) = (ii). Let o € Ep with 1 — aw € V(Eyy), by assumption 1 — v €
J(Ep),s0 a=1—(1—«) € U(Epy). Thus, « is one-to-one.

(ii) = (). Let a € V(Ey), then Im(1 — af) = M for all 3 € Ey. Also,
for all A € Ep; Im(1 — (af)A) = Im(1 — a(BA)) = M, hence o € @(EM)
Soaf =(1-(1-ap) € @(EM), by assumption 1 — a3 is one-to-one. Thus,
1—af € U(EnN) and that o € J(Ep).

(2)(4) = (ii). Let o € Epy with 1 —a € A(Eyy), by assumption 1 — o € J(Eyy), so
a=1—(1—-a) € U(E)y). Thus, « is onto.

(ii) = (i). Let a € A(Ey), then Ker(1 — fa) = 0 for all 8 € Ey. Also, for
all A € Ep; Ker(1 — AMBa)) = Ker(l — (AB)a) = 0, hence a € A(EM) So
Ba=(1-(1-pa)) € ﬁ(EM)7 is onto by assumption. Thus, 1 — Sa € U(E)) and
that o € J(EM) |

Theorem 3.7. (1). For every module M the following are equivalent:

(#1) For every a € Ejp with Im(«) is not small in M there exists 8 € E)ps such that
Im(B) NIm(1 — Ba) = 0.

(731) For every a € Ejy with Im(a) is not small in M there exists § € Ej; such
that Ker(8) + Ker(1 — af) = M.

(2). For every module M the following are equivalent:

(#3) For every a € Ej; with Ker(a) is not large in M there exists 8 € Ej; such
that Im(5) NIm(1 — Ba) = 0.

(791) For every a € Ejp with Ker(«) is not large in M there exists § € Ejs such
that Ker(3) + Ker(1 — af) = M.

Proof.(1)(7) = (i7). Let a € Ep; with Im(e) is not small in M. Then o &€ V(Eyy),
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by assumption there exists A € Ejs such that 0 # (Aa)? = Aa € Ejy. For 8 = Aa;
Baf = (. By Lemma 2.1, 0 = Im(8 — Saf) = Im(8) NIm(1 — Ba).

(#9) = (¢9t). Suppose (2) holds. Let a € Ejy with Im(«) is not small in M. By
assumption there exists 8 € Ejs such that Im(8) NIm(1 — Sa) = 0, by Lemma 2.1;
B —BafB =0and M = Ker(8 — paf) = Ker(3) + Ker(1 — af3).

(#i1) = (i). Tt is clear that V(FEy) C Tot(Eyr). Let o € Tot(Eys). Suppose
that o ¢ V(Ej), then Im(a) is not small in M, by assumption there exists
B € Ejp such that M = Ker(8) + Ker(1 — o). By Proposition 3.1; § = faf,
so 0 # (Ba)? = Ba € Ey a contradiction, hence o € Tot(Eys). Thus o € V(Eyy).
(2)(i) = (i1). Let o € Ejpy with Ker() is not large in M. Then o & A(Eyy), by
assumption there exists A € Ej; such that 0 # (a)\)? = a\ € Eyy. For 8 = \a);
Baf = (. By Lemma 2.5, Im(8) N Im(1 — Ba) = 0.

(#9) = (i4i). Suppose (2) holds. Let o € Ejp; with Ker(«) is not large in M. By
assumption there exists 8 € Ejs such that Im(8) NIm(1 — fa) = 0, by Lemma 2.1;
Im(8—paf) =0,s0 B—Paf =0and M = Ker(8— pfaf) = Ker(8) + Ker(1l —af).
(#3i) = (i). It is clear that A(Ey) C Tot(Ep). Let a € Tot(Eys). Suppose
that o € A(Ep), then Ker(a) is not large in M, by assumption there exists
B € Ejp such that Ker(8) + Ker(1 — o) = M. By Proposition 3.1; § = faf,
so 0 # (af)? = af € Ey a contradiction, hence o € Tot(E)). Thus o € A(Eypy).
O

A module @ is called locally injective [3] if, for every submodule A C @, which
is not large in @, there exists an injective submodule 0 # B C @, with AN B = 0.

A module P is called locally projective [3] if, for every submodule B C P, which
is not small in P, there exists a projective direct summand 0 # A C® P, with
ACB.

F. Kasch in [3] studied conditions on modules @ and P, which imply that
Tot(Eq) = A(Eg) = J(Eq) and Tot(Ep) = V(Ep) = J(Ep). He showed that
these equalities hold if @ is injective, respectively P is semiperfect and projective.
Also, it was proved in [3], that Tot(Eq) = A(Eq) if @ is a locally injective module
and Tot(Ep) = V(Ep) if P is a locally projective module.

The following questions were raised by Kasch in [3].

(1) If @ is locally injective, then it is true that Tot(Eg) = A(Eg) = J(Eg)?.
(2) If P is locally projective, then it is true that Tot(Ep) = V(Ep) = J(Ep)?.

Zhou in [6], proved that the answer to question (1) is "Yes” if a ring R is left
Noetherian. But in general, the answer to the question is "No” by [6, Example 4.2].
During our study of answer to questions it is obtained the following results:

Corollary 3.8. (1). If Q is a locally injective module, then Tot(Eqg) = A(Eg) =

A(Eg).
(2). If P is a locally projective module, then Tot(Ep) = V(Ep) = V(Ep).

Proof. (1). Since Q is locally injective, then Tot(Eg) = A(Eq) C A(EQ) C
Tot(Eq) by definition and Lemma 3.2, so Tot(Eg) = A(Eg) = A(Eg).
(2). Since P is locally projective, then Tot(Ep) = V(Ep) C V(Ep) C Tot(Ep) by
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~

definition and Lemma 3.2, so Tot(Ep) = V(Ep) = V(Ep). O

Corollary 3.9. (1). If Q is a locally injective module and o € Eg, then Ker(a) <,
Q if and only if Ker(1 — af) =0 for all § € Eg if and only if Ker(1 — Ba) = 0 for
all g € EQ.

(2). If P is a locally projective module and @ € Ep, then Im(a) < P if and only
if Im(1 — afB) = P for all 8 € Ep if and only if Im(1 — fa) = P for all 5 € Ep.

Proof by Corollary 3.8. O
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