
ENDOMORPHISM RINGS OF MODULES

HAMZA HAKMI

Abstract. Let M be a module over a ring R and EM the endomorphism ring
of M . The concern is study some fundamental properties of EM when EM is
regular or semipotent. New results obtained include necessary and sufficient
conditions for EM to be regular or semipotent. New substructures of EM are
studied and its relationship with the Tot of EM .

1. Introduction.

In this paper rings R, are associative with identity unless otherwise indicated.
All modules over a ring R are unitary right modules. We write J(R) and U(R)
for the Jacobson radical and the group of units of a ring R. A submodule N of a
module M is said to be small in M , if N +K 6= M for any proper submodule K of
M [1]. Also, a submodule Q of a module M is said to be large (essential) in M if
Q∩K 6= 0 for every nonzero submodule K of M [1]. For a submodule N of a module
M , we use N ⊆⊕ M to mean that N is a direct summand of M , and write N ≤e M
and N ¿ M to indicate that N is an large, respectively small, submodule of M .
We use the notation: EM = EndR(M), ∇(EM ) = {α : α ∈ EM ; Im(α) ¿ M} and
4(EM ) = {α : α ∈ EM ; Ker(α) ≤e M}. It is known that ∇(EM ) and 4(EM ) are
ideals in EM [1].

2. Regular Endomorphism Rings.

We start with the following fundamental lemma which gives information about
relationship between any two elements of EM .

Lemma 2.1. Let MR be a module and α, β ∈ EM . The following hold:
(1) Im(α) + Im(1− αβ) = M .
(2) Im(α− αβα) = Im(α) ∩ Im(1− αβ).
(3) Im(β) + Im(1− βα) = M .
(4) Im(β − βαβ) = Im(β) ∩ Im(1− βα).
(5) Ker(α) ∩Ker(1− βα) = 0.
(6) Ker(α− αβα) = Ker(α) + Ker(1− βα).
(7) Ker(β) ∩Ker(1− αβ) = 0.
(8) Ker(β − βαβ) = Ker(β) + Ker(1− αβ).

Proof. (1) It is clear, hence M = Im(αβ)+Im(1−αβ) ⊆ Im(α)+Im(1−αβ) ⊆ M .
Similarly, (3) holds.
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(2) It is clear that Im(α − αβα) ⊆ Im(α) ∩ Im(1 − αβ), hence Im(α − αβα) =
α(Im(1− βα)) ⊆ Im(α) and Im(α− αβα) = (1− αβ)(Im(α)) ⊆ Im(1− αβ).
Let x ∈ Im(α) ∩ Im(1 − αβ). Then x = α(y) = (1 − αβ)(z) where y, z ∈ M and
z = x + αβ(z) = α(y + β(z)) ∈ Im(α). For y0 = y + β(z); z = α(y0). Thus,
x = (1 − αβ)(z) = (1 − αβ)α(y0) = (α − αβα)(y0) ∈ Im(α − αβα). Similarly, (4)
holds. (5) and (7) are clear.
(6) It is clear that Ker(α) ⊆ Ker(α − αβα) and Ker(1 − βα) ⊆ Ker(α − αβα), so
Ker(α)+Ker(1−βα) ⊆ Ker(α−αβα). Let y ∈ Ker(α−αβα). Then α(y) = αβα(y).
Since y = βα(y) + (1 − βα)(y); βα(y) ∈ Ker(1 − βα) and (1 − βα)(y) ∈ Ker(βα)
which implies y ∈ Ker(α) + Ker(1− βα). Similarly, (8) holds. ¤

From Lemma 2.1 we derive the following

Corollary 2.2. Let MR be a module and α ∈ EM , n ∈ N?. The following
hold:
(1) M = Im(α) + Im(1− αn).
(2) Im(α− αn+1) = Im(α) ∩ Im(1− αn).
(3) Ker(α) ∩Ker(1− αn) = 0.
(4) Ker(α− αn+1) = Ker(α) + Ker(1− αn).

The following Lemma is continuation of Lemma 2.1 [2].

Lemma 2.3. Let MR be a module and α, β ∈ EM . The following hold:
(1) 1− αβ is onto if and only if 1− βα is onto.
(2) 1− αβ is one-to-one if and only if 1− βα is one-to-one.
(3) 1− αβ ∈ U(EM ) if and only if 1− βα ∈ U(EM ).

Proof. (1)(⇒). Suppose that Im(1 − αβ) = M . Then Im(β − βαβ) = Im(β) ∩
Im(1 − βα) = Im(β(1 − αβ)) = β(Im(1 − αβ)) = Im(β) by Lemma 2.1(4). So
Im(β) ⊆ Im(1−βα). Thus M = Im(β)+ Im(1−βα) = Im(1−βα). Similarly, (⇐)
holds.
(2)(⇒). Suppose that Ker(1−αβ) = 0. Let x ∈ Ker(1−βα). Then (1−βα)(x) = 0
and that (α − αβα)(x) = (1 − αβ)(α(x)) = 0, so α(x) ∈ Ker(1 − αβ) = 0 and
x ∈ Ker(α). Thus Ker(1 − βα) ⊆ Ker(α). By Lemma 2.1(5), Ker(1 − βα) =
Ker(α) ∩Ker(1− βα) = 0. Similarly, (⇐) holds.
(3) By (1) and (2). ¤

An element a of a ring R is called regular if a = aba for some b ∈ R. A ring R is
called regular ring if each a ∈ R is regular. The next Proposition gives information
about α ∈ EM , when α is a regular element.

Proposition 2.4. Let MR be a module and α ∈ EM . The following are equivalent:
(1) There exists β ∈ EM such that α = αβα.
(2) Im(α) and Ker(α) are direct summands of M .
(3) There exists β ∈ EM such that Im(α) ∩ Im(1− αβ) = 0.
(4) There exists β ∈ EM such that Ker(α) + Ker(1− βα) = M .

Proof. (1) ⇔ (2). By [5 , Lemma 3.1].
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(1) ⇒ (3). Suppose that α = αβα for some β ∈ EM . Then α−αβα = 0, by Lemma
2.1, 0 = Im(α− αβα) = Im(α) ∩ Im(1− αβ).
(3) ⇒ (1). Since Im(α − αβα) = Im(α) ∩ Im(1 − αβ) = 0 by Lemma 2.1 and our
hypothesis, implies that α− αβα = 0.
(1) ⇒ (4). Suppose that α = αβα for some β ∈ EM . Then α − αβα = 0 and
Ker(α− αβα) = M = Ker(α) + Ker(1− βα) by Lemma 2.1.
(4) ⇒ (1). If M = Ker(α) + Ker(1 − βα); by Lemma 2.1 Ker(α − αβα) = M , so
α− αβα = 0. ¤

The following Theorem describe the principal left and right ideals of EM when
EM is regular.

Theorem 2.5. Let M be a module with EM is a regular ring and α, β ∈ EM .
The following hold:
(1) Im(α) ⊆ Im(β) if and only if αEM ⊆ βEM .
(2) Im(α) = Im(β) if and only if αEM = βEM .
(3) αEM = {β : β ∈ EM ; Im(β) ⊆ Im(α)}.
(4) Ker(α) ⊆ Ker(β) if and only if (EM )β ⊆ (EM )α.
(5) Ker(α) = Ker(β) if and only if (EM )α = (EM )β.
(6) (EM )α = {β : β ∈ EM ; Ker(α) ⊆ Ker(β)}.

Proof. (1)(⇒). Suppose that Im(α) ⊆ Im(β). Since EM is regular, there exists
µ ∈ EM such that β = βµβ. For e = βµ; e2 = e ∈ EM and Im(e) = Im(β),
so Im(α) ⊆ Im(e). Since e = IIm(e); eα(x) = α(x) for all x ∈ M . Thus,
α = eα = βµα ∈ βEM . (⇐) It is clear. (2) and (3) by (1).
(4)(⇒). Suppose that Ker(α) ⊆ Ker(β). Since EM is regular, there exists µ ∈ EM

such that α = αµα. For e = µα; e2 = e ∈ EM . It is clear that Ker(α) ⊆ Ker(e).
Let y ∈ Ker(e). Then α(y) = αµα(y) = αe(y) = 0, so y ∈ Ker(α). Thus,
Ker(e) ⊆ Ker(α) and that β(Ker(e)) = β(Im(1 − e)) = Im(β(1 − e)) = 0, so
β(1 − e) = 0. Since 1 = e + (1 − e); β = βe = (βµ)α ∈ (EM )α. Thus,
(EM )β ⊆ (EM )α. (⇐) It is clear. (5) and (6) by (4). ¤

3. Semipotent Endomorphism Rings.

An element a of a ring R is called partially invertible or pi for short, if a is a di-
visor of an idempotent [2]. The next Proposition gives information about α ∈ EM ,
when α is a divisor of an idempotent.

Proposition 3.1. Let MR be a module and α ∈ EM . The following are equivalent:
(1) There exists β ∈ EM such that β = βαβ.
(2) There exists β ∈ EM such that Im(αβ), Ker(αβ) are direct summands of M .
(3) There exists β ∈ EM such that Im(βα), Ker(βα) are direct summands of M .
(4) There exists β ∈ EM such that Im(β) ∩ Im(1− βα) = 0.
(5) There exists β ∈ EM such that Ker(β) + Ker(1− αβ) = M .

Proof. (1) ⇒ (2). Suppose that β = βαβ for some β ∈ EM . Then (αβ)2 = αβ and
so Im(αβ), Ker(αβ) = Im(1− αβ) are direct summands of M .
(2) ⇒ (1). Suppose that (2) holds. By Lemma 2.1, there exists g ∈ EM such that



4 HAMZA HAKMI

(αβ)g(αβ) = αβ. For µ = βgαβg; µαµ = µ, gives (1).
Similarly, the equivalence (1) ⇔ (3) holds.
(1) ⇒ (4). Suppose (1) holds. Then β−βαβ = 0, by Lemma 2.1; 0 = Im(β−βαβ) =
Im(β) ∩ Im(1− βα), gives (4).
(4) ⇒ (1). Since Im(β − βαβ) = Im(β) ∩ Im(1 − βα) = 0; by Lemma 2.1 and our
hypothesis, implies that β − βαβ = 0.
(1) ⇒ (5). If β = βαβ for some β ∈ EM ; β − βαβ = 0, so Ker(β − βαβ) = M =
Ker(β) + Ker(1− αβ) by Lemma 2.1.
(5) ⇒ (1). By Lemma 2.1, Ker(β − βαβ) = Ker(β) + Ker(1 − αβ) = M , so
β − βαβ = 0. ¤

Recall that a ring R is a semipotent ring by Zhou [6], also called an I0−ring
by Nicholson [4], if every principal left (resp. right) ideal not contained in J(R)
contains a nonzero idempotent.

Corollary 3.2. Let MR be a module. The following are equivalent:
(1) EM is a semipotent ring.
(2) For every α ∈ EM \ J(EM ) there exists β ∈ EM such that β = βαβ.
(3) For every α ∈ EM \J(EM ) there exists β ∈ EM such that Im(αβ), Ker(αβ) are
direct summands of M .
(4) For every α ∈ EM \J(EM ) there exists β ∈ EM such that Im(βα), Ker(βα) are
direct summands of M .
(5) For every α ∈ EM\J(EM ) there exists β ∈ EM such that Im(β)∩Im(1−βα) = 0.
(6) For every α ∈ EM\J(EM ) there exists β ∈ EM such that Ker(β)+Ker(1−αβ) =
M .

Proof. By Proposition 3.1. ¤

Let M be a module. Write:

∇1(EM ) = {α : α ∈ EM , Im(1− αβ) = M for all β ∈ EM}.
∇2(EM ) = {α : α ∈ EM , Im(1− βα) = M for all β ∈ EM}.

It is clear that ∇1(EM ) and ∇2(EM ) are non-empty subsets in EM , (0 ∈
∇1(EM ), 0 ∈ ∇2(EM )). In using Lemma 2.3(1), it is easy to see that ∇1(EM ) =
∇2(EM ). Therefore, we use the notation:

∇̂(EM ) = {α : α ∈ EM , Im(1− αβ) = M for all β ∈ EM}.
= {α : α ∈ EM , Im(1− βα) = M for all β ∈ EM}.

∇̂(EM ) is a semi-ideal in EM , which means that it is closed under arbitrary
multiplication from either side, hence if α ∈ ∇̂(EM ) and λ ∈ EM ; Im(1− (αλ)β) =
Im(1− α(λβ)) = M for all β ∈ EM and Im(1− β(λα)) = Im(1− (βλ)α) = M for
all β ∈ EM . Thus, αλ, λα ∈ ∇̂EM .

It is clear that ∇(EM ) ⊆ ∇̂(EM ).

Also, let M be a module. Write:

41(EM ) = {α : α ∈ EM , Ker(1− αβ) = 0 for all β ∈ EM}.
42(EM ) = {α : α ∈ EM , Ker(1− βα) = 0 for all β ∈ EM}.



5

It is clear that 41(EM ) and 42(EM ) are non-empty subsets in EM , (0 ∈
41(EM ), 0 ∈ 42(EM )). In using Lemma 2.3(2), it is easy to see that 41(EM ) =
42(EM ). Therefore, we use the notation:

4̂(EM ) = {α : α ∈ EM , Ker(1− αβ) = 0 for all β ∈ EM}.
= {α : α ∈ EM , Ker(1− βα) = 0 for all β ∈ EM}.

4̂(EM ) is a semi-ideal in EM , which means that it is closed under arbitrary
multiplication from either side, hence if α ∈ 4̂(EM ) and λ ∈ EM ; Ker(1−(αλ)β) =
Ker(1− α(λβ)) = 0 for all β ∈ EM and Ker(1− β(λα)) = Ker(1− (βλ)α) = 0 for
all β ∈ EM . Thus, αλ, λα ∈ 4̂EM .

It is clear that 4(EM ) ⊆ 4̂(EM ).

It is known that if α2 = α ∈ EM ; M = Im(α)⊕Im(1−α) and Im(α) = Ker(1−α),
Ker(α) = Im(1− α).

Following [2], Tot(R) = {a : a ∈ R; a is not pi }.

Lemma 3.3. For any module M the following hold:
(1) J(EM ) ⊆ ∇̂(EM ) ∩ 4̂(EM ).
(2) ∇̂(EM ) ∪ 4̂(EM ) ⊆ Tot(EM ).
(3) J(EM ) ⊆ Tot(EM ).

Proof. (1). Let α ∈ J(EM ). Then αβ, βα ∈ J(EM ) for every β ∈ EM , so
g(1 − βα) = 1, (1 − αβ)g0 = 1 for some g, g0 ∈ EM . Thus, Im(1 − αβ) = M and
Ker(1− βα) = 0. Therefore, J(EM ) ⊆ ∇̂(EM ) ∩ 4̂(EM ).
(2). Let α ∈ ∇̂(EM ). Then Im(1 − αλ) = M for all λ ∈ EM . Suppose that
α 6∈ Tot(EM ), there exists β ∈ EM such that 0 6= (αβ)2 = αβ ∈ EM , so
Ker(αβ) = Im(1− αβ) = M and that αβ = 0 a contradiction. Thus α ∈ Tot(EM ).
Let α ∈ 4̂(EM ). Then Ker(1 − λα) = 0 for all λ ∈ EM . If α 6∈ Tot(EM ), there
exists β ∈ EM such that 0 6= (βα)2 = βα ∈ EM , so Im(βα) = Ker(1−βα) = 0 and
that βα = 0 a contradiction. Thus α ∈ Tot(EM ).
(3). By (1) and (2). ¤

The following Proposition describe the Jacobson radical of EM when EM is a
semipotent ring.

Proposition 3.4. Let MR be a module with EM is a semipotent ring. The
following hold:
(1) J(EM ) = ∇̂(EM ).
(2) J(EM ) = 4̂(EM ).
(3) ∇̂(EM ) = 4̂(EM ).

Proof. (1). By Lemma 3.3 we have J(EM ) ⊆ ∇̂(EM ). Let α ∈ ∇̂(EM ). Then
Im(1− αλ) = M for all λ ∈ EM . If α 6∈ J(EM ) there exists β ∈ EM such that 0 6=
β = βαβ ∈ EM , therefore 0 6= (αβ)2 = αβ ∈ EM and Ker(αβ) = Im(1−αβ) = M .
So αβ = 0 a contradiction. Thus, α ∈ J(EM ).
(2). By Lemma 3.3 we have J(EM ) ⊆ 4̂(EM ). Let α ∈ 4̂(EM ). Then Ker(1 −
λα) = 0 for all λ ∈ EM . If α 6∈ J(EM ) there exists β ∈ EM such that 0 6= β =
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βαβ ∈ EM , therefore 0 6= (βα)2 = βα ∈ EM and Im(βα) = Ker(1 − βα) = 0. So
βα = 0 a contradiction. Thus, α ∈ J(EM ).
(3). By (1) and (2). ¤

Corollary 3.5. Let MR be a module with EM is a semipotent ring and α ∈ EM .
The following hold:
(1) α ∈ J(EM ) if and only if Im(1 − αβ) = M for all β ∈ EM , if and only if
Ker(1− βα) = 0 for all β ∈ EM .
(2) α ∈ J(EM ) if and only if Im(1 − βα) = M for all β ∈ EM , if and only if
Ker(1− αβ) = 0 for all β ∈ EM .

Proof. By Proposition 3.4. ¤

Theorem 3.6. (1). For every module M the following are equivalent:
(i) ∇̂(EM ) ⊆ J(EM ).
(ii) For every α ∈ EM with 1− α ∈ ∇̂(EM ) is one-to-one.
(2). For every module M the following are equivalent:
(i) 4̂(EM ) ⊆ J(EM ).
(ii) For every α ∈ EM with 1− α ∈ 4̂(EM ) is onto.

Proof. (1)(i) ⇒ (ii). Let α ∈ EM with 1 − α ∈ ∇̂(EM ), by assumption 1 − α ∈
J(EM ), so α = 1− (1− α) ∈ U(EM ). Thus, α is one-to-one.
(ii) ⇒ (i). Let α ∈ ∇̂(EM ), then Im(1 − αβ) = M for all β ∈ EM . Also,
for all λ ∈ EM ; Im(1 − (αβ)λ) = Im(1 − α(βλ)) = M , hence α ∈ ∇̂(EM ).
So αβ = (1 − (1 − αβ)) ∈ ∇̂(EM ), by assumption 1 − αβ is one-to-one. Thus,
1− αβ ∈ U(EM ) and that α ∈ J(EM ).
(2)(i) ⇒ (ii). Let α ∈ EM with 1−α ∈ 4̂(EM ), by assumption 1−α ∈ J(EM ), so
α = 1− (1− α) ∈ U(EM ). Thus, α is onto.
(ii) ⇒ (i). Let α ∈ 4̂(EM ), then Ker(1 − βα) = 0 for all β ∈ EM . Also, for
all λ ∈ EM ; Ker(1 − λ(βα)) = Ker(1 − (λβ)α) = 0, hence α ∈ 4̂(EM ). So
βα = (1− (1− βα)) ∈ 4̂(EM ), is onto by assumption. Thus, 1− βα ∈ U(EM ) and
that α ∈ J(EM ). ¤

Theorem 3.7. (1). For every module M the following are equivalent:
(i) Tot(EM ) = ∇(EM ).
(ii) For every α ∈ EM with Im(α) is not small in M there exists β ∈ EM such that
Im(β) ∩ Im(1− βα) = 0.
(iii) For every α ∈ EM with Im(α) is not small in M there exists β ∈ EM such
that Ker(β) + Ker(1− αβ) = M .
(2). For every module M the following are equivalent:
(i) Tot(EM ) = 4(EM ).
(ii) For every α ∈ EM with Ker(α) is not large in M there exists β ∈ EM such
that Im(β) ∩ Im(1− βα) = 0.
(iii) For every α ∈ EM with Ker(α) is not large in M there exists β ∈ EM such
that Ker(β) + Ker(1− αβ) = M .

Proof.(1)(i) ⇒ (ii). Let α ∈ EM with Im(α) is not small in M . Then α 6∈ ∇(EM ),
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by assumption there exists λ ∈ EM such that 0 6= (λα)2 = λα ∈ EM . For β = λαλ;
βαβ = β. By Lemma 2.1, 0 = Im(β − βαβ) = Im(β) ∩ Im(1− βα).
(ii) ⇒ (iii). Suppose (2) holds. Let α ∈ EM with Im(α) is not small in M . By
assumption there exists β ∈ EM such that Im(β)∩ Im(1−βα) = 0, by Lemma 2.1;
β − βαβ = 0 and M = Ker(β − βαβ) = Ker(β) + Ker(1− αβ).
(iii) ⇒ (i). It is clear that ∇(EM ) ⊆ Tot(EM ). Let α ∈ Tot(EM ). Suppose
that α 6∈ ∇(EM ), then Im(α) is not small in M , by assumption there exists
β ∈ EM such that M = Ker(β) + Ker(1 − αβ). By Proposition 3.1; β = βαβ,
so 0 6= (βα)2 = βα ∈ EM a contradiction, hence α ∈ Tot(EM ). Thus α ∈ ∇(EM ).
(2)(i) ⇒ (ii). Let α ∈ EM with Ker(α) is not large in M . Then α 6∈ 4(EM ), by
assumption there exists λ ∈ EM such that 0 6= (αλ)2 = αλ ∈ EM . For β = λαλ;
βαβ = β. By Lemma 2.5, Im(β) ∩ Im(1− βα) = 0.
(ii) ⇒ (iii). Suppose (2) holds. Let α ∈ EM with Ker(α) is not large in M . By
assumption there exists β ∈ EM such that Im(β)∩ Im(1−βα) = 0, by Lemma 2.1;
Im(β−βαβ) = 0, so β−βαβ = 0 and M = Ker(β−βαβ) = Ker(β)+Ker(1−αβ).
(iii) ⇒ (i). It is clear that 4(EM ) ⊆ Tot(EM ). Let α ∈ Tot(EM ). Suppose
that α 6∈ 4(EM ), then Ker(α) is not large in M , by assumption there exists
β ∈ EM such that Ker(β) + Ker(1 − αβ) = M . By Proposition 3.1; β = βαβ,
so 0 6= (αβ)2 = αβ ∈ EM a contradiction, hence α ∈ Tot(EM ). Thus α ∈ 4(EM ).
¤

A module Q is called locally injective [3] if, for every submodule A ⊆ Q, which
is not large in Q, there exists an injective submodule 0 6= B ⊆ Q, with A ∩B = 0.

A module P is called locally projective [3] if, for every submodule B ⊆ P , which
is not small in P , there exists a projective direct summand 0 6= A ⊆⊕ P , with
A ⊆ B.

F. Kasch in [3] studied conditions on modules Q and P , which imply that
Tot(EQ) = 4(EQ) = J(EQ) and Tot(EP ) = ∇(EP ) = J(EP ). He showed that
these equalities hold if Q is injective, respectively P is semiperfect and projective.
Also, it was proved in [3], that Tot(EQ) = 4(EQ) if Q is a locally injective module
and Tot(EP ) = ∇(EP ) if P is a locally projective module.

The following questions were raised by Kasch in [3].
(1) If Q is locally injective, then it is true that Tot(EQ) = 4(EQ) = J(EQ)?.
(2) If P is locally projective, then it is true that Tot(EP ) = ∇(EP ) = J(EP )?.

Zhou in [6], proved that the answer to question (1) is ”Yes” if a ring R is left
Noetherian. But in general, the answer to the question is ”No” by [6, Example 4.2].
During our study of answer to questions it is obtained the following results:

Corollary 3.8. (1). If Q is a locally injective module, then Tot(EQ) = 4(EQ) =
4̂(EQ).
(2). If P is a locally projective module, then Tot(EP ) = ∇(EP ) = ∇̂(EP ).

Proof. (1). Since Q is locally injective, then Tot(EQ) = 4(EQ) ⊆ 4̂(EQ) ⊆
Tot(EQ) by definition and Lemma 3.2, so Tot(EQ) = 4(EQ) = 4̂(EQ).
(2). Since P is locally projective, then Tot(EP ) = ∇(EP ) ⊆ ∇̂(EP ) ⊆ Tot(EP ) by
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definition and Lemma 3.2, so Tot(EP ) = ∇(EP ) = ∇̂(EP ). ¤

Corollary 3.9. (1). If Q is a locally injective module and α ∈ EQ, then Ker(α) ≤e

Q if and only if Ker(1− αβ) = 0 for all β ∈ EQ if and only if Ker(1− βα) = 0 for
all β ∈ EQ.
(2). If P is a locally projective module and α ∈ EP , then Im(α) ¿ P if and only
if Im(1− αβ) = P for all β ∈ EP if and only if Im(1− βα) = P for all β ∈ EP .

Proof by Corollary 3.8. ¤
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