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1. Introduction

The algorithmic generation of valid (i.e. positigemi-definite) correlation matrices is an
interesting problem with many applications. Hurlima(2012b), Theorem 3.1, derives explicit
recursively defined generic closed form correlatibaunds. Based on a new and more
appropriate version of this result, we derive senphartesian and polar coordinates for the space
of all valid correlation matrices.

A positive semi-definite matrix whose diagoeatries are equal to one is calledagrelation
matrix. The convex set ofnxr correlation matricesR = (r; ), 1<i, j < n, is calledelliptope (for

ellipsoid and poltope), a terminology coined by Laurent and Poljak (199learly, the
elliptope is uniquely determined by the set off(n—-Ln upper diagonal elements

r=(r;),lsi<j<n, denoted by E . In the main Theorem 3.1, we construct an explicit

(n-)n

parameterization of the correlation matrix, whicaps bijectively anyx = (x; ) D[—l,l]% to

r =(r;) UE,. These so-called Cartesian coordinates dependsieply on x;, as well as on

products x; X, and sums of products, which additionally invallie functional quantities

Yiio = yij,y(xiwxj() = \/(l_ Xizf)(l_ ijg/) . (1.1)

The notation (1.1) will be used throughout withtwrther mention of its definition.

2. Determinantal identitiesfor correations and partial correations

For fixed n=2 let R=(r;),1<i,j<n beanxr correlation matrix. For eachmD{Z,...,n}
and any index sets™ =(s,s,,...,.s, )with 1<s <n,i=1..,m, consider the mxm sub-
correlation matrix R™ = (rgsi),lsi,j <m , which is uniquely determined by
rm = (rys, ), 1<i<j<m. It tums out to be convenient to use own spewihtions for the
following quantities.

Definitions _2.1. (Determinant, partial correlation and d-scaled paiticorrelation The
determinanbf the matrix R™ is denoted by

A™(s'™) = A"(s,,S,,...,S,) = detR™) . (2.1)

For n>m= 3 and an index sets™ the partial correlation of (s,s,) with respect to
(ss,..-,S,,) is recursively defined and denoted by

r _Jsspisssms  sismisSma DTstm;ss,---,sm_l (2.2)

$152iSg0 e Sm 2 > 1
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where for m= 2 the quantities used on the right hand side d?)(are by convention the

correlationsr, . ,r . ,fo . . The transformed partial correlation defined dedoted by

N™(s™) = N™(S,,S,5.S0) = ees,.s Q/A™(s,,S50.8,) A™H(S,, S50nSn)  (2.3)

is called d-scaled (determinant scaled)partial correlation By convention we set
N?(s,s) =t -

Recall that the determinant of a correlation masatisfies the product representation (e.g.
Hurlimann (2012a), formula (2.10))

An (1,2,...,n) = E(l_ rirf)l:rl:j(l_ rirf—l;n)lz:ij:(l_ rirf—z;n—ln ) ;Iijz{njj._l(l_ rirf—k;n—k+1,...n )} ’ (24)

where an empty product equals one by conventioe. fbHowing result is a new version of
Proposition 2.1 in Hirlimann (2012b), which by thay needs correction for misprints.

Proposition _2.1. (Recursive relation for d-scaled partial correlatgyn For all
i=1...n-k, k=4,..,n-1 n=5, one has the identity

N¥G,n—-k+Ln-k+3..nD3n-k+4,...n)
=N*'(i,n-k+Ln-k+4,.,nD?*(n-k+3...,n) (2.5)
-N*'(i,n-k+3n-k+4,..,nN)IN“'(n-k+Ln-k+3n-k+4,...n).

Proof. This is shown by induction. Fok = #ne has by the defining recursion (2.2) that

r _ rin—3;n - rin—l;n |]n—Sn—l;n Wlth
in-3:n-1n — ’
\/(1_ rirf—l;n) Q(l_ rn2—3n—1;n))
3 1 3 _
- N°(s,n-1n) s=in-3 r .. N*(@,n-3;n)

:\/Az(s,n)mz(n—ln)’ :JAZ(i,n)mz(n—s,n)'

Using these relations and the defining relatioB)(#r the d-scaled partial correlation one gets

N*G,n-3n-1n)=r, . . Q/AG,n-1Ln) @B (n-3n-1n) =
NeGi,n-3n)@(n-1n)-N3@i,n-Ln)IN*(n-3,n-1n)
N (n-1,n) Q/A(i,n) ¥ (n-3n)

@12 ) A1 g00)

EL/A3(i,n—ln) °(n-3,n-1,n)




Now, from the version of (2.4) fon= Rwith index sets® =(s,s,,s;) =(s,n—-1n )one gets
N(s,n=1,n) =A%(s,n) X (n-Ln)[{L-rZ,.), s=i,n-3.

Inserted into the preceding relation shows theltdsu k = 4. It remains to show that if (2.5)
holds for the indexk then it holds for the indexk + . Proceeding similarly one notes that

r - rin—k;n—k+3,...n - rin—k+2;n—k+3,...n [rn—kn—k+2;n—k+3,...n
in-k;n—k+2,..n > 2 ’
\/(1_ r.in—k+2;n—k+3,...,n) Eﬂ(l‘ r.n—kn—k+2;n—k+3,...,n))
with
N (s,n-k+2;n-k+3,...,n) i n—k
rsn—k+2;n—k+3,...n S=1,n—K,

AN (s n-k+3...n) N (n—k+2,n-k+3...n)
B N*@i,n—k;n-k+3,...,n)
r.in—k;n—k+3,...,n - k=1 /- K1
JAT(i,n=-k+3,..,n) N (n-k,n-k+3,...,n)

Inserting these relations into (2.3) one obtains

N*t(i,n-k;n—-k+2,...,n)
A G n-K+2,...m D (n-kn-K+2,...n)
N¥G,n-k;n-k+3,...,n) A (n-k+2,...,n)
A=k +2,..,n) Q/A,n-k+3,...,n) D (n—k,n-k+3,...,n)

= rin—k;n—k+2,...n =

N¥G,n—-k+2n-k+3..nIN“(n-k,n-k+2n-k+3...,n)
CANYn-k+2,..,0)0/A[n-k+3...,n) A (n-kn-k+3,..,n)

Now, Proposition 2.2 in Hurlimann (2012b) remaingetwhen replacing the canonical index set
by any other index set. In particular (2.8) (loit.)ds valid for the index sets® =(s,s,,....5. )

with s =s0O{i,n-k},s,=n-k+2,s = j,j =n—k+3,...,n, which yields

A(s,n-Kk+2,...nN)[A?(n-k+3,...,n)

Inserted into the preceding relation shows (2.5}He index k+ 1 ¢



3. Cartesian and polar coordinatesfor the n-dimensional eliptope

As a main result, we derive the following canonipalameterization for correlation matrices.
The representation is canonical in the sensetlhalds up to a permutation matrix of ordar.

Theorem 3.1 (Cartesian coordinates ofn -dimensional elliptope There exists a bijective
(n-1)n

mapping between the cube{—l,l]% and E,, which maps the Cartesian coordinates
X=(x;) to r=(r;) suchthat

rh=%,, 1=1...,n-1 n=2, (3.1)

rin—l = Xinxn—ln + Xin—lyin—:Ln’ I ::L""n_ 2’ nz 3’ (32)

k n
link = Xin Xnokn T Z:Z)(in—j+1xn—kn—j+l/_ U_+2 Yin-i,e
] - - (3.3)
+ Xk Yiorer 1=L..,n=-k-1 k=2..n-2 nz4
(=n-k+1

Corollary 3.1 (Polar coordinates ofn-dimensional elliptope There exists a bijective mapping

773(0-Ln

between the cube[-%,Z and E_, which maps the polar coordinateg =(¢;, tp
r=(r;) suchthat

r, =sin@,), i=1..,n-1 nx2, 3.4)
i = SIN@,,) SIN@,4,) +siN@,,_,) COS@P,,) cos@, ,,), 1=1...n-2, n=z3, (3.5)

rin—k = Sin(¢in)5in(¢n—kn) + iSin(¢in—j+1) Sin(¢n—kn—j+1) n_COS@ié/)COS@n—k()
i j=2 (=n—j+2 (36)
+sin(@,,_.) []cos@,)cos@, ), 1=1...n-k-1, k=2..,n-2 n=4
k+1

r=n-k+
Proof. Set x; =sin(@; ) in the formulas of Theorem 3.2.

Remarks 3.1.

(i) Researchers in Applied Mathematics often regoe difficulty to generate valid correlation

(covariance) matrices. For example Hirschberget.R007) “were not able to generate a single
valid 50x50 covariance matrix by assigning randarmbers in 800 tries” and state that “sizes of
1000x1000 are not uncommon” in portfolio selectibheorem 3.1 solves this practical problem
from an algebraic viewpoint. To generate a valind@n correlation matrix, it suffices to choose
3(n=Dn uniform[-1,1] random numbersg, ,1<i < j<n, and apply the formulas (3.1)-(3.3).

(i) Another different but less general trigonometapproach to correlation matrices than
Corollary 3.1 is the hyper-sphere decompositiorRyponato (1999) (see also Brigo (2002) and
Rebonato (2004)).



The derivation of the explicit coordinates (3.1)3)3relies on the following new and more
appropriate version of Theorem 3.1 in Hurlimannl@8). Note the misprint in the denominator

of formula (3.4) (loc. cit.), which should b&*(n-k +1,....,n 3s in (3.10) below.

Theorem 3.2. (Recursive generation of valid correlation matricesA correlation matrix
parameterized byr =(r;),1<i<j<n in E_, is positive semi-definite if, and only if, the

following bounds are fulfilled:

r, 0[-1,1] i=1..,n-1 n=2 (3.7)
loa Olfs il 1=1%.,n=2, n23 (3.8)
r.|r;—l_r|nrn—ln—\/(:|' rln)(l r.—1n)
Moo Olfn2 fnels 1=1..,n=3, n24
. N3@i,n-1,n)IN3(n-2,n-1n) \/A3(|n 1,n) 2¥(n-2,n-1n) (3.9)
r.in—2 - r.in r.n—2n +
1 r—1n l r—1n
oo 000 Fs s 1=4..,n—k-1 k=3..,n-2, n=5
N R il T AP

o=+ Z @i,n- J+],‘rj1 j+?,...,ﬂ)[N (n kfn j+tLn-j+2..,n) (3.10)

j=2 A7 (n-j+2..,n)A(n-j+1,..,n)
\/A'“l(ln k+1..,nA(n-k,n-k+1...,n)

A(n-k+1...,n)

Proof. A correlation matrix is positive semi-definite @nd only if, all correlations and partial
correlations in the product expansion (2.4) beltmghe interval [- 1,1)e.g. Lemma 2.1 in

Hurlimann (2012a)). The bounds are derived in treps.
Step 1 derivation of (3.7)-(3.9)

From the first product one gets immediately theralsu(3.7). The partial correlations in the
second product satisfy the condition

r|n—1 r|nrn—1n D[—l 1]

Ja-rdHa-rz,)

|n 1n

if, and only if, one hasr,_, O[r, ,r Jwith r>, =r.r_. * _\/ @-r2)@-r?2,) , which shows the
bounds (3.8). For the partial correlations in thedtproduct, one sees first that



r

in-2;n

il (TR § .
in-Ln" n-2n-1;n D[_l,l]

I =
\/ (1 - rir?—l;n )(l - rn2—2n—1;n)

in-2;n-1,n

H H - + H + — 2 2
If, and Only If, one hasr‘in—2;n |:][rin—z;n’ r‘in—2;n] Wlth r.in—2;n - r.in—l;nrn—2n—l;n * \/(1_ r.in—l;n)(l_ r.n—2n—1;n) '

Since

fin2 ~ fin,

in"n-2n

Ja-ra-r,)

rin—2;n

this condition is fulfilled if, and only if, one bar,,_, O[r, _,,r_,] with

£ _ + 2 2
rir:—z =lalhan rir:—Z;n\/ (1_ i )(1_ rn—2n)

= rin rn—2n +{ rin—1;nrn—2n—1;n * \/(1_ rir?—l;n)(l_ rn2—2n—1;n) }\/(1_ rir?)(l_ rn2—2n)'

But, one has

r.in—l - r.in r.n—ln — r.n—2n—1 - r.n—2n r.n—ln

’ r.n—2n—1;n - ,
\/(1_ rirf)(l_ rn2—1n) \/(1_ rn2—2n)(1_ rn2—1n)

r.in—l;n -

which implies by definition of the d-scaled partairelations that

NeGi,n-Ln)[IN*(n-2n-1n)

r.in—l;n r.n—2n—1;n \/ (1 - r.irf ) (1 - r.n2—2n ) =

1_ rn2—1n
Furthermore, one has
1-r2 = DG.n-1n) _ 2 _ K(n-2n-1n)
in=Ln 2 2 ! n-2n-Ln 2 2 .
(1_ r.in )(1_ r.n—ln) (1_ r.n—2n)(1_ r.n—ln)

By inserting both expressions into the above, diains the bounds (3.9).
Step 2 derivation of (3.10)

For each fixed k=3,...,n— 2 the curly bracket in the last product of (3.1hYisfies the
conditions

fnctcinozeplokockstiodozn g 1] =1, n—k-1,

\/(1_ r.ir?—k+1;n—k+2,...n)(:I-_ r.n2—kn—k+1;n—k+2,...,n)

r - rin—k;n—k+2,...n -

in—k;n-k+1,n




Ofr.. re ] with

if, and only if, one hasr, n—kenk+2,...n Finmkoneks2,...n

in-k;n-k+2,...n

+

— _ 2 H
rin—k;n—k+2,...n - rin—k+1;n—k+2,...nrn—kn—k+1;n—k+2,...n t \/(1 rin—k+1;n—k+2,...n)(1 rn—kn—k+1;n—k+2,...n) . Since

— r.in—k;n—k+3,...,n

in-k;n-k+2,..n — > >
\/(1_ rin—k+2;n—k+3,...n)(1_ I’n—kn—k+2;n—k+3,...n)

- r.in—k+2;n—k+3,...,nrn—kn—k+2;n—k+3’>,...n

r

this condition is fulfilled if, and only if, one kar. afr... r ] with

in—k;n-k+3,...n in—k;n-k+3,...n? "in-k;n-k+3,...n

+ —_ + _ 2 _ 2
r.in—k;n—k+3,...,n - r.in—k+2;n—k+3,...,nrn—kn—k+2;n—k+3,.. n r.m -k;n-k+2,.. ,n\/(l r.in—k+2;n—k+3,...,n)(1 r.n—kn—k+2;n—k+3,...,n)

— 2 2 2
- rin rn—2n +{ rin—k+1;n—k+2,...nrn—kn—k+1;n—k+2,...n t \/ (1_ rin—k+1;n—k+2,...n)(1_ rn—kn—k+1;n—k+2,...4r1) }\/ (1 - rin )(1 - rn—2n ) '

+
in—k? |nk

One continues this way untt,_, O[r,, Yvith (proof by induction onk)

2 2
k rin—j+1;n—j+2,...n En—kn—j+1;n—j+2,...n Q/(l_ rin) Hl_ rn—kn)

j-1
= EDZ\/ (1_ rir?—s+1;n—s+2,...n) ul_ rn2—kn—s+1;n—s+2,...n) (3 11)
k
t \/(1_ r.ir?) E(l‘ r.n2—kn) EISJZ\/ (1_ r.ir?—s+l;n—s+2,...,n) [(1‘ r.n2—kn—s+l;n—s+2,...,n)

E
rin—k - rin |]n—kn +

One must show that (3.11) coincides with (3.10). Fe= 2 one has by Definition (2.3)

N3(@i,n-1n)
Ja-r)a-rz,)

r.|n—1n n—| kn—ln\/(l r.|n)(:|- r.n kn) -

, 1=1...n—k, hence

in-Ln —

N°(@i,n—-Ln)IN®(n-k,n- Ln)
1-r2,

n

which coincides with the term forj = 2n the second sum of (3.10). Similarly, fgr=3,...,k
one has by Definition (2.3)

N (i,n-j+Ln-j+2,..,n)
\/A’(ln—j+2n)m’(n—j+ln—j+2 n)

r , 1=1..,n-Kk. (3.12)

in-j+Ln-j+2,..n

On the other hand, from a general version of (¥«#th arbitrary index set, one obtains for
] =3,...,k+1 the recursive relationships

BN~ +200) 2A (0= 42,0 012 ] A ), 51— 41, (3.13)
s=2



If one combines (3.12) and (3.13), one sees tletdims for j =3,...,k in the second sum of
(3.11) coincide with the corresponding terms il (3. Finally, using (3.13) forj =k + Ihows
that the last term in (3.11) coincides with thd tasm in (3.10). The result is showf.

Before entering into the proof of Theorem 3t1s necessary to explain how the coordinates
x; U[-1,1] are actually defined. Clearly, the formulas (33.p) are restatements of the bounds

(3.7)-(3.8) and show howx,,,x,,, O[— 1,1are chosen. Similarly, to satisfy the bounds)(3.9
(3.10) it suffices to definer,_, through these formulas by multiplying the squeoet terms
with  x,,_, O[-1,1], where i=1..,n- 3 when k=2, n= 4 and i=1...n—-k- 1 when

(n-1)n

k=3..n-2n=k+2. This settles uniquely the choice af = (xij)D[—l,l]% . Now, the

derivation of the Cartesian coordinates dependsupe following main auxiliary identity,
whose proof is postponed to Section 4.

Lemma3.l. Foralli=1..n-k, k=2,..n-2 n= 4, one has the identity

N“(,n—K+Ln—K+2,...,n) = X, ., Q/A(,n-k+2,...,n) A (n—k +1,...,n)

Corollary 3.1. Forall i =1,.....n-k, k=2...n—2, n= 4, one has the identity

Ak+l(i,n—k+1,---,n) :A"(n—k+],...,n) U |£| (1_ X.i)
1

r=nk+
Proof. This is shown by induction. Fok =2,n> , #ne has

N (i,n=10) =1=17 =X = Xog + 260 3% X gn.-

Since (3.2) is just a restatement of the bound,(8ne hasr, , =X, X, + X, Y1, » hENCE
N (1,0 =1n) =1= XX 10 = 2% X 30 %01 Yin-10 ~ Xina @~ X)L X000

= X = Xy F 2XAXE 1+ 2% X0 X Vi = @ X)) = X (L= X ) = X (L= X0 ) (A= X3 4,)
== %) O] @ %) =8 (n-1m 0] A= %),

=n- /=n-

as should be. Now, assume the identity holds ferindex k — 1 and show it for the index.
From Proposition 2.2 in Hurlimann (2012b) one basdhe identity

AMGi,n-k+1..,n) A" (n-k+2,...,n)
=A@,n-k+2,....nA(n-k+1...,n) - N*(,n-k+Ln-k+2,...n)?
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With the Lemma 3.1 this can be rewritten as
A(n-K+1,..,n)[{L-x. ) DG, n-k+2,..n),

which by induction assumption is equal to

M -K+1,...0) [L- %) D=k +2,...0) 0 [] A= %2).

=n—k+2
Dividing both sides of the identity byA*(n—k+2,....,n shows the desired identity for the
index k. Corollary 3.1 is shown¢

Proof of Theorem 3.1. As already made clear, the formulas (3.1)-(3.2)rastatements of the
bounds (3.7)-(3.8). In a first step, one showsvidelity of (3.3) for k=2,i=1,....n-3 n=> 4

From the bounds (3.9) one has for some, O[- 1tHg identity

N N3Gi,n-1n)IN*(n-2,n-1n) x \/A3(i,n—],n)m3(n—2,n—],n)

I =r.r
2 n-2 2
1- Fnn 1- Mnan

in-2 = Yin'n-2n

Clearly, the first term coincides witlx, X _,,. For the middle term, use Lemma 3.1 to see that

N3(,n-Ln) =x G/ @ x2)1-x2,), N3(n-2n-Ln)=x ., O/ Q- X2, )0-x%,),
which implies that

N3Gi,n=2n)IN3(n-2,n-1n
( i_rz( ) = Xin—lxn—2n—1Yin—2,n'
n-1n

On the other hand, Corollary 3.1 shows that

Fn-1n)=0-%,) [0-%), Fn-2n-1m=0-x,) [10-%,).

=n- =Nn-.

Inserted into the third term yields

\/A (,n-LmA'(n-2n-1n) _ Iﬂll\/(l_xii)(l_xr?—%) =

— 2 o
1 rn_ln /=n-=

l:l Yin-2, -

/=n-1

Together, this shows (3.3) fok=2,n> . 8low, let i =1,...n-k-1,k=3,...,n-2,n=> 5 From
the bounds (3.10) one has for somg, U[- 1ti¢ identity
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i+l o i j+1 _ . . .
rin—k:rinrn—kn-i_iN (I’n J+1'n J+2’".’n)|:N (n k’n J+ln J+21"-1n)

j=2 ANYn-j+2..nNA(n-j+1...,n)
. VAR i, n—Kk+1,..,n)AY (N -k n-k+1,...,n)
K A(n-k+1,...,n) '

One argues similarly to the above. The first teoimcides with x,, x,_,. For the summands of
the middle term one has with Lemma 3.1 that

N n=j+Ln-j+2,..,0) = %0 QA (N ] +2,..,n) A (N-j +1,...,0),
N =k,n=j+Ln=j+2,..,0) =X QA (N—k,n= | +2,. ) D (N— j +1,...,n),

which implies that
N {@,n-j+Ln-j+2..nN)IN"*(n-k,n-j+Ln-j+2..n)
ANrn-j+2,..nHA(n-j+1...,n)

JAN(,n-j+2,...mA(n-kn-j+1..,n)
N(n-j+2,...n) '

= Xin-j+1 Xn-kn-j+1
Through application of Corollary 3.1 one obtaindHer

NG,n=j+2..,0)=A%n-j+2..,n0 [ 0-%),

/=n-j+2

Nn-kn=j+2..0)=A%n-j+2,..,0)0 [10-X,)

/=n—-j+2

Therefore, the preceding term coincides with

Xin—j+1xn—kn—j+1 D[:nljﬁz\/(l_ Xlzf)(l_ Xr?—k/) = Xin—j+1xn—kn—j+1 [f|:n|j|j+2 yin—k,/, '

Finally, for the last term, one obtains from Caaoyl 3.1 that

\/A'“l(i,n—k+l...,n)A"+1(n—k,n—k+l...,n) B n . .
Xin—k Ak(n—k+1’,,_'n) _Xin_k(:rl;lkﬂ\/(l Xi()(l Xn—k/)

n
=Xink [T Yink-

/=n-k+1

Together, this shows (3.3) fok =3,...,n—2,n> . JFhe proof is completed
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4. Derivation of theremaining main auxiliary identity

It remains to show the validity of Lemma 3.1. Wewhthe following slightly more general
identity, which for s=- 1 reduces to Lemma 3.1.

Lemma 4.1. For all i=1...n-k, k=2,...n-2 s=-101...k—-3 n=4, one has the
identity
N“°@{,n—k+Ln-k+s+3..,n)=A?(n-k+s+3,...,n)

s n
mz Xin—k+j+2Xn—k+1n—k+j+2 I_l . yin—k+1,l + Xin—k+1 I_l yin—k+1,()
j=0 = +3 (=n-k+2

(4.1)

Proof. This is shown by forward induction on the inddéx (with arbitrary s) and backward
induction on the indexs (with arbitrary k). If k=2 one has necessarilg=- . Then from
(3.2) of Theorem 3.1 (which as already mentiongdvglly true) one gets

N3(| ,N _:L' n) = rin—l - rinrn—ln = Xin—l |1/(1_ )(Ii)(l_ Xr?—ln) )

Now, assume that (4.1) is true for all indices I#&mn or equal tok— land show it for the
index k. In particular, Lemma 3.1 is true for the indék— dhd in virtue of the proof of
Theorem 3.1, the identity (3.3) is also true far thdex k — 1 a property which is used to settle
the base cases=k - .3ndeed, for this index the identity (4.1) follorem (3.3) with index
k-1 because

n

k-1 n
37 . _ —_
N @, n=K+Ln) =1y = alnokan = 2 XKoo jsXomkean-jsn 1 Yioksns T Xnoer T[] Yinokens
j=2 /=n—j+2 r=n—-k+2

k-3 n
= Z%))gn—k+j+zxn—k+ln—k+j+2 |_| yin—k+],( + Xin—k+1 |_| yin—k+1,/:'
J: /=Nn—|

(=n-k+j+3 (=n-k+2
Now, by Proposition 2.1 one has the identity

N °@{,n—-k+Ln-k+s+3..nN)RA3*(n-k+s+4,...n)
=N**ti,n-k+Ln-k+s+4,..,nA?(n-k+s+3,...,n)
-N**(i,n-k+s+3n-k+s+4,...nN)IN“*(n-k+Ln-k+s+3n-k+s+4,...,n).

By the backward induction assumption with index tHe identity (4.1) yields

NG, n-k+Ln-k+s+4,..,n)=A3(n-k+s+4,...,n)

s+l n n
mz Xin—k+j+2Xn—k+ln—k+j+2 I_l . yin—k+1,/: + Xin—k+l |_| yin—k+1,/:)'
j=0 /=n—k+j+3 (=n-k+2

By the forward induction assumption the identityteinma 3.1 yields
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Nk—s—l(i'n_k+S+3;n—k+s+4,...,n)
= Kin—kes+3 |Q/Ak_s_z(i,n—k'i'S'i'4-,...,r]) mk—s—Z(n_k+ln—k+S+4,...,n),
Nk_s_l(i,n—k"'S+3;n_k+s+4""’n)

=X, rers El/A"’S’Z(i,n—k+s+4,...,n) ?(n-k+Ln-k+s+4,...,n).

Inserted into the above one gets

N“°@{,n—k+Ln-k+s+3..,n)RA3(n-k+s+4,..,n)
=N (n-k+s+3,..N)A3(n-k+s+4,...,n)

n

s n
qz&))(in—k+j+zxn—k+ln—k+j+2( |_| ) 3Yin—kﬂ,( + Xin—k+1 |_| yin—k+1,/:)'
]:

=n-k+j+ /=n—k+2

Dividing by A“*®(n—k +s+4,...,n) one obtains the desired expression (401).
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