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Abstract

The boundary layer flow of nanofluids are usually described by a system of nonlinear
differential equations with infinity boundary conditions. These boundary conditions at
infinity are transformed into classical boundary conditions via two different transforma-
tions. Accordingly, the original heat transfer equation is changed into a new one which is
expressed in terms of the new variable. The exact solutions have been obtained in terms
of the exponential function for the stream function and in terms of the incomplete Gamma
function for the temperature distribution. Furthermore, it is found in this paper that a
certain transformation reduces the computational work that required to obtain the exact
solution of the heat transfer equation. Hence, such transformation is recommended for
future analysis of similar physical problems. Besides, the other published exact solution
was expressed in terms of the WhittakerM function which is more complicated than the
generalized incomplete Gamma function of the current analysis. It is important to refer
to that the analytical procedure followed in our paper is easier and more direct than the
one considered in a previous published work.
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1 Introduction

Nanofluids is a relatively new area of research which attracted attention in recent years because

of their applications in engineering and applied sciences. The flow and heat transfer of such

nanofluids are usually described by a system of nonlinear differential equations. Such system

can be solved using numerical methods [1] or series methods such as Adomian decomposition

method (ADM) [2-7], differential transformation/Taylor method (DTM) [8-9], and homotopy
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perturbation method (HPM) [10-13]. The solutions using any of the just mentioned methods are

usually called approximate numerical or analytical solutions. These approximate solutions have

been extensively used to investigate various physical models because the non availability of the

exact solutions of these models. However, the exact solution of any system is the best if it can

be obtained. Such exact solution gives us a better understanding about the phenomena involved

in the physical model than the approximate solutions. Due to the difficulty of obtaining the

exact solution many authors implement either approximate numerical methods or approximate

analytical methods. However, we are interested in this paper in the exact solution of an example

from nanofluid mechanics. Hence, an analytical approach shall be suggested with the help of

two transformations to facilitate the task of the current study. The example considered in this

paper is governed by the following system of nonlinear differential equations ([14], [15]):

f ′′′(η) + (1− φ)2.5 [1− φ + φ(ρs/ρf )]
[
f(η)f ′′(η)− (f ′(η))

2
]
−M(1− φ)2.5f ′(η) = 0, (1)

1

Pr

(
knf

kf

)
1

[1− φ + φ(ρCp)s/(ρCp)f ]
θ′′(η) + f(η)θ′(η) = 0, (2)

which represent the steady laminar two-dimensional flow of an incompressible viscous nanofluid

past a linearly semi-infinite stretching sheet under the influence of a constant magnetic. The

primes denote the differentiation with respect to a similarity variable η. f and θ are the

dimensionless stream function and temperature, respectively, φ is the solid volume fraction,

ρf and ρs are the densities, (ρCp)f and (ρCp)s are the heat capacitances, M is the magnetic

parameter, Pr is the Prandtl number, and knf is the thermal conductivity defined as follows

([16], [17])

knf

kf

=
(ks + 2kf )− 2φ(kf − ks)

(ks + 2kf ) + φ(kf − ks)
, (3)

where kf and ks are the thermal conductivities, where ()f and ()s denote the basic fluid and

solid fractions, respectively. The flow is subject to the boundary conditions:

f(0) = 0, f ′(0) = 1, f ′(∞) = 0, (4)

θ(0) = 1, θ(∞) = 0. (5)

The exact solution of the stream function f(η) shall be discussed in the next section. In the

subsequent section, we discuss the effectiveness of two transformations in obtaining the exact

solution of the heat transfer equation to get θ(η) for the present physical model.
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2 Exact solution for the stream function f (η)

Equations (1) and (2) can be rewritten as

f ′′′(η) + α
[
f(η)f ′′(η)− (f ′(η))

2
]
− γf ′(η) = 0, (6)

τθ′′(η) + f(η)θ′(η) = 0, (7)

where

α = (1− φ)2.5 [1− φ + φ(ρs/ρf )] , γ = M(1− φ)2.5, (8)

τ =
1

Pr

(
knf

kf

)
1

[1− φ + φ(ρCp)s/(ρCp)f ]
. (9)

In order to solve the system (6-7) with the boundary conditions (4-5) we begin with solving

the f -differential equation (6). To do that, the following assumption is assumed

f(η) = a + b e−βη. (10)

Here, it should be noted that the infinity boundary condition in (4) is already satisfied provided

that β > 0. On using Eq. (10) into Eq. (6), we have

βb
(
β2 − αaβ − γ

)
e−βη = 0, (11)

which leads to

β2 − αaβ − γ = 0. (12)

Applying the first two boundary conditions given in (4), we obtain

a + b = 0, bβ + 1 = 0. (13)

In view of Eqs. (11-13), we have

a =
1

β
, b = − 1

β
, β =

√
α + γ. (14)

Therefore,

f(η) =
1

β

(
1− e−βη

)
. (15)

Inserting Eq. (15) into Eq. (7), yields

τθ′′(η) +
1

β

(
1− e−βη

)
θ′(η) = 0. (16)

Regarding the heat transfer equation, i.e. Eq. (16), we shall discuss in the next section the use

of two transformations for obtaining the exact solution in terms of the generalized incomplete

gamma function.
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3 Exact solution of the heat transfer θ(η)

3.1 Transformation 1

Suppose the following transformation: t = 1−e−βη. The unbounded domain of the independent

variable η ∈ [0,∞) can be changed into a bounded one by using a new independent variable t

(say)∈ [0, 1) using the transformation [18-20]:

t = 1− e−βη. (17)

Accordingly, the governing system should be expressed in terms of the new variable t. In

order to do that, we introduce the following relations between the derivatives w.r.t η and the

derivatives w.r.t t:

d

dη
(¤) = β(1− t)

d

dt
(¤), (18)

d2

dη2
(¤) = β2

[
(1− t)2 d2

dt2
(¤)− (1− t)

d

dt
(¤)

]
. (19)

The relations given by Eqs. (18-19) are obtained by using the chain rule in the differential

calculus. Therefore, the system Eq. (16) becomes

β2τ(1− t)2θ′′(t) + (1− t)(t− β2τ)θ′(t) = 0, (20)

which can be simplified to

β2τ(1− t)θ′′(t) + (t− β2τ)θ′(t) = 0, (21)

subject to the following set of boundary conditions

θ(0) = 1, θ(1) = 0. (22)

From Eq. (21) and using the separation of variables, we get

θ′′(t)
θ′(t)

=
1

β2τ

(
β2τ − t

1− t

)
, (23)

or

θ′′(t)
θ′(t)

=
1

β2τ

(
1 +

β2τ − 1

1− t

)
. (24)

Integrating Eq. (24) once w.r.t. t from 0 to t, we have

ln

[
θ′(t)
θ′(0)

]
=

1

β2τ

[
t− (β2τ − 1)ln(1− t)

]
. (25)
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Therefore

θ′(t) = θ′(0) (1− t)

�
1−β2τ

β2τ

�

e
t

β2τ . (26)

Integrating Eq. (26) once again w.r.t. t from 0 to t, we obtain

θ(t) = θ(0) + θ′(0)

∫ t

0

(1− σ)

�
1−β2τ

β2τ

�

e
σ

β2τ dσ. (27)

In view of the first condition in (22), we have

θ(t) = 1 + θ′(0)I(t), (28)

where

I(t) =

∫ t

0

(1− σ)

�
1−β2τ

β2τ

�

e
σ

β2τ dσ. (29)

The integration in the right hand side can be analytically solved in terms of a well known

special function as declared by the following procedure. We first suppose that

µ = 1− σ. (30)

Accordingly

I(t) = e
1

β2τ

∫ 1

1−t

µ

�
1−β2τ

β2τ

�

e
− µ

β2τ dµ. (31)

We then assume that

z =
µ

β2τ
, dµ = β2τdz. (32)

Accordingly

I(t) =
(
β2τ

) 1
β2τ e

1
β2τ

∫ 1
β2τ

1−t

β2τ

z
1

β2τ
−1

e−z dz. (33)

Using the definition of the generalized incomplete Gamma function, we have

I(t) =
(
β2τ

) 1
β2τ e

1
β2τ Γ

(
1

β2τ
,
1− t

β2τ
,

1

β2τ

)
. (34)

On inserting (34) into (28), we get

θ(t) = 1 + θ′(0)
(
β2τ

) 1
β2τ e

1
β2τ Γ

(
1

β2τ
,
1− t

β2τ
,

1

β2τ

)
. (35)

Applying the boundary condition θ(1) = 0, we obtain

θ′(0) = − (β2τ)
−1

β2τ e
−1

β2τ

Γ
(

1
β2τ

, 0, 1
β2τ

) . (36)
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From Eq. (35) and Eq. (36), we have

θ(t) = 1−
Γ

(
1

β2τ
, 1−t

β2τ
, 1

β2τ

)

Γ
(

1
β2τ

, 0, 1
β2τ

) , (37)

which can be simplified to

θ(t) =
Γ

(
1

β2τ
, 0, 1−t

β2τ

)

Γ
(

1
β2τ

, 0, 1
β2τ

) . (38)

In terms of η, we have the following final form for the temperature distribution

θ(η) =
Γ

(
1

β2τ
, 0, e−βη

β2τ

)

Γ
(

1
β2τ

, 0, 1
β2τ

) . (39)

This exact solution can be verified by direct substitution into Eq. (16). It is also important here

to mention that the exact solution of the heat transfer equation has been already obtained in [14]

in terms of the WhittakerM function. However, the current exact solution is expressed in terms

of the generalized incomplete Gamma function which is easier than the WhittakerM special

function. It may be reasonable to refer here to that the analytical procedure we followed in this

paper not only easier but also direct in comparison to the one considered in [14]. Furthermore,

it agrees with the exact solution obtained very recently by Ebaid et. al [15] (Eq. (26)) in the

absence of the slip parameter.

3.2 Transformation 2:

Suppose the following transformation: t = e−βη, hence we have

d

dη
(¤) = −βt

d

dt
(¤), (40)

d2

dη2
(¤) = β2

[
t2

d2

dt2
(¤) + t

d

dt
(¤)

]
. (41)

Therefore, the Eq. (16) becomes

β2τ tθ′′(t) +
(
β2τ − 1 + t

)
θ′(t) = 0, (42)

subject to the following set of boundary conditions

θ(0) = 0, θ(1) = 1. (43)
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We rewrite Eq. (42) as

θ′′(t)
θ′(t)

= − 1

β2τ

(
β2τ − 1

t
+ 1

)
. (44)

Integrating Eq. (44) once w.r.t. t from 0 to t, we obtain

ln

[
θ′(t)
θ′(1)

]
= − 1

β2τ

[
t + (β2τ − 1)ln(t)− 1

]
, (45)

or

θ′(t) = θ′(1) e
1

β2τ t
1

β2τ
−1

e
− t

β2τ . (46)

Integrating Eq. (46) once again w.r.t t from 0 to t and using the boundary condition θ(0) = 0,

we obtain

θ(t) = θ′(1) e
1

β2τ (β2τ)
1

β2τ2

∫ t
β2τ

0

z
1

β2τ
−1

e−z dz. (47)

In terms of the generalized incomplete Gamma function, Eq. (47) can be rewritten as

θ(t) = θ′(1) e
1

β2τ (β2τ)
1

β2τ2 Γ

(
1

β2τ
, 0,

t

β2τ

)
. (48)

On applying the boundary condition θ(1) = 1, yields

θ′(1) =
e
− 1

β2τ (β2τ)
− 1

β2τ2

Γ
(

1
β2τ

, 0, 1
β2τ

) . (49)

Inserting this value of θ′(1) into Eq. (48), we have

θ(t) =
Γ

(
1

β2τ
, 0, t

β2τ

)

Γ
(

1
β2τ

, 0, 1
β2τ

) , (50)

which in terms of η gives the following exact solution:

θ(η) =
Γ

(
1

β2τ
, 0, e−βη

β2τ

)

Γ
(

1
β2τ

, 0, 1
β2τ

) . (51)

Here, we can easily observe that less computational work is needed to getting the exact solution

of the heat transfer equation. Therefore, the transformation t = e−βη may be recommended for

any future analysis to analyze similar physical models.

7



4 Conclusion

The nonlinear differential equations governing the flow and heat transfer of nanofluids in the

presence of a magnetic field have been solved exactly. Two transformations have been suggested

to change the domain from unbounded domain into a bounded one. It was observed that one

of the two transformations is easier than the other where few steps were required in getting

the exact solution. Moreover, the obtained exact solution for the heat transfer equation agreed

with the results in literature at a special case. Furthermore, the other previous exact solution

published in [14] (Eq. 26) was expressed in terms of the WhittakerM function which is more

complicated special function than the generalized incomplete Gamma function of the current

analysis. It may be reasonable to refer here to that the analytical procedure followed in our

paper is easier and more direct than the one considered in [14].
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