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Abstract. 
 

The problem of finding an algorithm for matrix feedback, providing the specified zeros 
individual transfer functions, until finally solved in control theory of linear stationary systems. The 
siting of individual zeros of transfer functions has been widely discussed. As for a multidimension-
al system matrix system provides a predetermined range of the poles is not unique , then, generally 
speaking , this is not the only can be used to organize the above mentioned zeros , followed by the 
possibility of compensation. However, procedures that would allow arbitrarily select all the zeros 
of the transfer functions of individual multidimensional system do not yet exist. Attempt to solve 
this problem and the subject of this article. 
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1. Introduction 
 

The modern theory of linear systems based on state-space methods [1-3, 6, 7, 
11, 12], has a vast array of feedback systems [3, 5, 12, 15]. However, the matrix of 
feedback (SF) on the state vector satisfies only one requirement - placing the roots 
of the characteristic equation of the system. The rest of the requirements for the 
control system (compensation zeros of the transfer matrix) are ignored in the cal-
culation of the matrix. The theory of linear systems generates explicit and implicit 
algorithms for computing the coefficients of the matrix [2, 5, 6, 7, 14]. Under the 
explicit algorithms are understood such calculation algorithms, which can be 
made non-linear equations for the unknown coefficients of the matrix SF, and 
their number is equal to the number of unknowns [2, 11, 14]. Among such algo-
rithms can also be attributed, and such algorithms in which the transition from the 
original basis for a new, more appropriate to calculate the coefficients of the ma-
trix [2, 11].  By the implicit algorithms should include such algorithms, which 



formed the system of nonlinear equations with a number greater than the number 
of unknown coefficients compiled equations. In such cases, part of the "free" ma-
trix coefficients specified arbitrarily, or from which, or the requirements for the 
system [1], and thus, the original is not redefining the system of nonlinear equa-
tions becomes a system with an equal number of unknowns and equations. 

However, in all known methods of calculating the matrix SF is not fully re-
solved the issue of compensation zeros of the transfer matrix [1, 6, 7, 11, 14]. In 
domestic and foreign literature payment methods such zeros and management is 
not fully developed, since when the spectrum of individual zeros of the transfer 
matrix is changed and range poles. Uncompensated zeros distort the transient re-
sponse of the system [14]. Such systems typically provide only shift the poles, 
leaving unchanged the number of dominant zeros. Similar problems in the modern 
control theory of linear systems are solved by selecting such an arbitrary spectrum 
of poles at which the transient quality output meets the specified requirements. 
Avoid such drawbacks modifications allow various kinds of methods of calcula-
tion of the matrix feedback, in which the result set of zeros of the transfer matrix 
offset without degrading the quality of the remaining indicators. 

 
2. Statement of the Problem 

 
Consider multivariate, fully control and observe a linear stationary system in 

which the dimension of the vectors of input and output matching:  

         
( ) ,

,
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x = A BK x + Bu

y = Cx

ɺ
       (1) 

where x  – n - dimensional vector of state coordinates, u  – m - dimensional vec-
tor of control impacts, y  – m - dimensional vector of output variables, n m≥ , 
A – own matrix system, B – matrix controls, C – matrix output, K  –  feedback 
matrix vector coordinates state. Dimension of these vectors and matrices as fol-

lows: n∈x R , m∈u R , m∈y R , n n×∈A R , n m×∈B R , , m n×∈C K R . It is assumed 
that the vector of the state coordinates x  is fully accessible to direct measurement. 

The procedure for calculating the matrix K  implies finding the transformation 
matrix from the initial basis of the model (1), for a given basis [1, 11]. Require 
that it was possible to calculate the feedback matrix K , through the matrix A , B , 
C , i.e., in the original basis (the invariance of the algorithm for calculating the 
matrix K  on the basis of which is represented by the system (1)), to simplify the 
implementation of this relation, the matrix K , on a computer.  Require that the 
algorithm for calculating the matrix feedback provides a set of full range of poles 
of the system (1). Poles in the system (1) and define matching lying at the point 
Ω , see Fig. 1, on the left of the real axis of the complex plane. This ensures the 
monotony of the transient response, i.e., the absence of the vibrational nature of 
the transition process.  



 

 
 

Fig. 1. Spectrum of poles of the system (1) 
 

Require that the individual poles and zeros of the transfer functions were coinci-
dent. 

 
3. The method of solution 

 

Represent the output in equation (1) as ( )0

1, 1,i ii m i m
y

= =
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where - iс - i -th row, 1,i m= , the matrix C  in the model, we have:   
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Differentiation will continue as long as the block matrix 
1,

ji
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c A B  will not 

block the zero line ji
ic A B  to ∀  i , ∈  [ ]1, m , for i ∈R . Given a whole, positive 

numbers 1 2, , , mj j j… , are the minimal indices of the matrix product " j
ic A B , 

1,i m= , 0, 1j n= − : (3)      
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Given (2) introduce the matrix D , and the matrix D -non-degenerate m m×∈D R : 
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Continuing to differentiation of (2) we obtain:  
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Calculating the product of matrices j
ic A B , gives  
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Taking into account (6) we introduce the matrix *A , * m n×∈A R : 
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By Theorem Kelly Hamilton have: 
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where Ω -square geometric average, 
n

k

 
 
 

-binomial coefficients. Write (2) taking 

into account (4) and (7): 
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A DK x Du .      (9) 

Feedback matrix can be found as follows:  1 *− ⋅= −K D A . Since in this case the 
condition - 1 * *−⋅ ⋅= − = −DK D D A A , then 

( ) ( )( ) [ ]11
1

T nj k j km
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The resulting expression is valid for any positive integer k , 0k >∈R . As a result, 

(5) can be represented as:  
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where  ( )Sp •  - denotes the trace of the matrix. Matrix L  and Θ , n m×∈L R ,  
m n×∈Θ R   in (11) has the form: 
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Matrix L  contains a single non-zero block string - ji
i i
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L c A B , 1,i m=  

then 1irank   = L . Rewrite (9), using (8):  
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Given (13) define a matrix of poles PK , m n×∈PK R :  
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Using (10) we have ( ) [ ]* 0+ + ⋅ =PA K D K . The last expression can be found ma-

trix K , given the notation (4), (7), (14) - ( )*1 1− −= − + PK D A D K : 
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As a result, the ratio obtained for the matrix K , which is calculated directly from 
the matrix A ,B ,C  (1), in the original basis. According to (15), the matrix K  can 
be "easily" calculated by computer. It remains an open question - what class of 
controlled objects of the form (1) expression (15) can be calculated? To do this, 
we consider the transfer matrix of a closed system: 
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where ( ) [ ]m m
p p

×∈W R , p  - Laplace operator. From the right side of (16) we 

see that the zeros of the transfer functions of the individual and the poles are con-
tractile. 

Considering the method of calculating the complete set of zeros [13] for con-
trol and observe system having an equal number of inputs and outputs, we have:  

( ) [ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ]0

det det
0 0

n nk
k

k

p p
p p

µ

ψ ψ
=

   − − − − −
= = =   

   
∑

I A B I A BK B

C C
, (17) 

where ( )pψ  - the zero polynomial, ( ) [ ]p p
µψ ∈R , µ  - number of finite zeros (1), 

( )n mµ ≤ − . Expression (17) holds for ∀  K , and in particular for [ ]0=K . This 

follows directly from the principle of invariance of the set of trailing zeros for the 
matrix K .  Block matrix, standing under the sign of the determinant in (17) is 
called the "Rosenbrock matrix" or "matrix system" [13], for which we introduce 

the following notation - ( )pΡ , ( ) [ ]( ) ( )n m n m
p p

+ × +∈Ρ R . Given (16) and opening 

qualifier for the block matrix (17), we obtain: 
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Rewrite the expression (18):  
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Consider the degree of the polynomial in the left and right sides. 
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If the system is µ  zeros with the number of "free" poles lτ , l nτ ≤  to µ  times 

less. As a result, µ  are not subject to the poles shear and are invariant under feed-
back. It is therefore advisable to choose a class of systems (1) for which the 0=µ . 
In this all-pole system with feedback and a matrix (15) are free and may have the 
desired spectrum. If the matrix is unimodal Rosenbrock:  

[ ] [ ]
[ ] [ ]0
np

const
− −

=
I A B

C
,       (20) 

the degree of the polynomial ( )pψ  is zero ( 0=µ ). Availability unimodal Rosen-
brock matrix indicates the absence decoupled zeros; the system has no uncon-
trolled and unobservable subsystems. Equation (19) finally determines the class of 
systems (1) for which can be found by the expression (15). 
 

4. Conclusions 
 

When placing the roots of the characteristic equation of the system transient 
response significantly depends on the actual poles and zeros of a plurality of indi-
vidual transfer functions. The proposed algorithm for finding a feedback matrix 
completely inhibits the action of individual zeros of the system, pulling them to 
the point of the complex plane. In calculating the coefficients of the matrix con-
troller SF there is no need to form a system of nonlinear equations or the transition 
from the original basis for a new, more acceptable to the calculation of the matrix 
of feedback (for example, the canonical form of control), as in the classical ap-
proach of calculation. The proposed algorithm is applicable if the following condi-
tions. If a set of trailing zeros is empty, then the spectrum of individual zeros of 
transfer functions and the spectrum of the system poles can be arbitrarily set using 
matrix feedback. This fact can be used as the basis of the compensation algorithm 
for calculating the matrix state feedback. 
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