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Abstract.

The problem of finding an algorithm for matrix fdeatk, providing the specified zeros
individual transfer functions, until finally solved control theory of linear stationary systemseTh
siting of individual zeros of transfer functionsshHaeen widely discussed. As for a multidimension-
al system matrix system provides a predetermineger®f the poles is not unique , then, generally
speaking , this is not the only can be used tororgathe above mentioned zeros , followed by the
possibility of compensation. However, procedures thould allow arbitrarily select all the zeros
of the transfer functions of individual multidimeémsal system do not yet exist. Attempt to solve
this problem and the subject of this article.

Keywords: Matrix calculation feedback in the original basispwding a full range of
poles of the system, Compensation zeros of thefeamatrix method for calculating the matrix
modification feedback.

1. Introduction

The modern theory of linear systems based on sfatee methods [1-3, 6, 7,
11, 12], has a vast array of feedback systems, [B2 515]. However, the matrix of
feedback (SF) on the state vector satisfies ondéyrequirement - placing the roots
of the characteristic equation of the system. Tds of the requirements for the
control system (compensation zeros of the tramstgrix) are ignored in the cal-
culation of the matrix. The theory of linear systegenerates explicit and implicit
algorithms for computing the coefficients of thetma[2, 5, 6, 7, 14]. Under the
explicit algorithms are understood such calculatadgorithms, which can be
made non-linear equations for the unknown coefiitseof the matrix SF, and
their number is equal to the number of unknownsl[2,14]. Among such algo-
rithms can also be attributed, and such algorittmvghich the transition from the
original basis for a new, more appropriate to daleuthe coefficients of the ma-
trix [2, 11]. By the implicit algorithms should alude such algorithms, which



formed the system of nonlinear equations with a lmemgreater than the number
of unknown coefficients compiled equations. In suakes, part of the "free” ma-
trix coefficients specified arbitrarily, or from wdh, or the requirements for the
system [1], and thus, the original is not redefinthe system of nonlinear equa-
tions becomes a system with an equal number ofawika and equations.

However, in all known methods of calculating thetmmaSF is not fully re-
solved the issue of compensation zeros of the feansatrix [1, 6, 7, 11, 14]. In
domestic and foreign literature payment method$ aagros and management is
not fully developed, since when the spectrum ofviiddial zeros of the transfer
matrix is changed and range poles. Uncompensated géstort the transient re-
sponse of the system [14]. Such systems typicalbyide only shift the poles,
leaving unchanged the number of dominant zerosil&iproblems in the modern
control theory of linear systems are solved byctilg such an arbitrary spectrum
of poles at which the transient quality output reetbie specified requirements.
Avoid such drawbacks modifications allow variousds of methods of calcula-
tion of the matrix feedback, in which the result gezeros of the transfer matrix
offset without degrading the quality of the remagindicators.

2. Statement of the Problem

Consider multivariate, fully control and observdirear stationary system in
which the dimension of the vectors of input andoatimatching:

x =(A+BK)x+Bu,
y =Cx,

where X —n - dimensional vector of state coordinatas;- m- dimensional vec-

tor of control impactsy — m- dimensional vector of output variablesz m,

A — own matrix systemB —matrix controls,C— matrix output,K — feedback
matrix vector coordinates state. Dimension of thesetors and matrices as fol-
lows: xOR", uOR™, yOR™, AOR™", BOR™™, C,K OR™". It is assumed
that the vector of the state coordinatess fully accessible to direct measurement.
The procedure for calculating the matkx implies finding the transformation
matrix from the initial basis of the model (1), fargiven basis [1, 11]. Require
that it was possible to calculate the feedbackim#tr, through the matriXA |, B,
C, i.e., in the original basis (the invariance of thigorithm for calculating the
matrix K on the basis of which is represented by the sy$iginto simplify the
implementation of this relation, the mati, on a computer. Require that the
algorithm for calculating the matrix feedback pies a set of full range of poles
of the system (1). Poles in the system (1) andhdefnatching lying at the point
Q, see Fig. 1, on the left of the real axis of tbenplex plane. This ensures the
monotony of the transient response, i.e., the a@sehthe vibrational nature of
the transition process.
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Fig. 1. Spectrum of poles of the system (1)

Require that the individual poles and zeros ofttaasfer functions were coinci-
dent.

3. The method of solution

. : _ 0
Represent the output in equation (1) Eatﬁl:m—[ci (A+BK) me,
where -¢; - i -th row, i =1,m, the matrixC in the model, we have:
(J'i+1)} _ ji+1 i
[yi - [ci (A+BK) lzmx{ciA Bl:rmu. 2
Differentiation will continue as long as the blooiatrix [ciA“B} . will not
1=1,m

block the zero IineciAjiB to 0 i, U [1Lm]|,foriOR. Given a whole, positive
numbers j,, j,,..., ., are the minimal indices of the matrix productA’'B,
i=1m, j=0,n-1 (3)
Jy =min j
cA'B=[0]™
j=0,n-1i=1m

Given (2) introduce the matri®, and the matrixD -non-degenerat® OR™™:
. . . T
D= ([clA J 1B:| [CZAJZB} [cmA JmBD , )
Continuing to differentiation of (2) we obtain:

[yi(“)}_r =[ci (A+BK)”1 TXJ{Ci (A+BK)n_1B} l7u+...+Du(n_ji_1). (5)
I=Lm i=1,m i=lm

Calculating the product of matricesA'B, gives

=cAi(A+BK)<,

=cA", ¢, (A+BK)"
k=(j, +1).n.

k=0,j,

¢, (A+BK)" )




Taking into account (6) we introduce the matfix, A" OR™":
. . . T
A" = (|:C1AJ 1+1:| |:C2AJ2+1} |:CmA Jm+1:|) . 7)
By Theorem Kelly Hamilton have:

[ci (A+BK)”} =—|:Cir§(nﬁkjg”-k(A+BK)k:| . (8

i=1m k=0 i1
where Q -square geometric averag{ekj -binomial coefficients. Write (2) taking

into account (4) and (7):
[yp”n}z(A*+DK)x+Du. 9)

i=1,m
Feedback matrix can be found as followk: =-D™A". Since in this case the
condition -DK =-DMD™ A" =-A", then

(c(a+BR)E™ e (AvBK) ™) =0, (10)

The resulting expression is valid for any positiveegerk, kOR_,. As a result,
(5) can be represented as:

g o

k=0
where S(+) - denotes the trace of the matrix. Matiix and ®, L OR™™,

OOR™" in (11) has the form:
L:(o 0 ... [cA'B] [o])

Matrix L contains a single non-zero block strin@L—i ] :[ciA” B] i=1,m

.
: 0] :(u| u®

‘u(”_l)) . a2

then rank[Li } =1. Rewrite (9), using (8):

{J'zﬂ( i +1 JjSﬂ—ky(k)} =
H — |
Ui+l k i=Lm

=| A+ C-i b+ Qlittkpk +DK |x+Du
T +1-Kk . '
k=0\ " i=1,m

(13)

Given (13) define a matrix of polg§,, K, OR™":

Kp=|:Cii:[jijli_lkj9hﬂ_kAk}_' (14)

k=0 '_1,m



Using (10) we haveéA* +K,+D EIK) =[O] . The last expression can be found ma-
trix K , given the notation (4), (7), (14K-= —(D_lA* + D_]KP):

15
=0 j; +1-k)!K! (13)

i=1,m

As a result, the ratio obtained for the matkix, which is calculated directly from
the matrixA ,B,C (1), in the original basis. According to (15), tinatrix K can
be "easily" calculated by computer. It remains @eroquestion - what class of
controlled objects of the form (1) expression (&&h be calculated? To do this,
we consider the transfer matrix of a closed system:

~ cAlB
( [ JQJI_HL_k k
. —k P
L k=0 Ji +1 —i:lT‘n

where W(p)DR[ p]mxm, p - Laplace operator. From the right side of (16) we

see that the zeros of the transfer functions ointtlievidual and the poles are con-
tractile.

Considering the method of calculating the compssteof zeros [13] for con-
trol and observe system having an equal numberits and outputs, we have:

e [P A —[B]j ([ pl, ~A-BK] —[B]j
y\p)=) Y.p :det( =de , (17)
P)=2, o [0
wherey(p) - the zero polynomialy (p) OR|[p]“, u# - number of finite zeros (1),
(< (n-m). Expression (17) holds fdd K, and in particular folK =[0]. This

follows directly from the principle of invariancé the set of trailing zeros for the
matrix K . Block matrix, standing under the sign of theedetinant in (17) is
called the "Rosenbrock matrix" or "matrix systerd3], for which we introduce

the following notation -P(p), P(p)OR| p](”+m)x(”+m)
qualifier for the block matrix (17), we obtain:

A S 1 Bl M D NI
J i n—j
det{ciA '( kZ_;) (n—ji —1—kJQ " p ]B] B
- i=1m
m-1 — (18)
(i( ) jQ”"‘pk]
kso\N—K

Rewrite the expression (18):

. Given (16) and opening

w(p)=




(Eer e

Consider the degree of the polynomial in the laft aght sides.

mn—(zm:ji+m] p#-n(m-1) or (n-u) (Zj +m]—rI (19)

i=1
If the system isy zeros with the number of "free" poles, 7, <n to u times
less. As a resulty are not subject to the poles shear and are imtasiader feed-
back. It is therefore advisable to choose a clasgsiems (1) for which thg=0.

In this all-pole system with feedback and a matti%) are free and may have the
desired spectrum. If the matrix is unimodal Roseokr

[pl,-A] ~[B]
[c] [
the degree of the polynomiai(p) is zero (u=0). Availability unimodal Rosen-

brock matrix indicates the absence decoupled zéhaessystem has no uncon-
trolled and unobservable subsystems. Equation {A8l)yf determines the class of
systems (1) for which can be found by the expresgis).

=const (20)

4. Conclusions

When placing the roots of the characteristic egmatf the system transient
response significantly depends on the actual pateszeros of a plurality of indi-
vidual transfer functions. The proposed algorithm fioding a feedback matrix
completely inhibits the action of individual zerokthe system, pulling them to
the point of the complex plane. In calculating tdoefficients of the matrix con-
troller SF there is no need to form a system ofinear equations or the transition
from the original basis for a new, more acceptablide calculation of the matrix
of feedback (for example, the canonical form oftool), as in the classical ap-
proach of calculation. The proposed algorithm idiapple if the following condi-
tions. If a set of trailing zeros is empty, thee #pectrum of individual zeros of
transfer functions and the spectrum of the systelaspcan be arbitrarily set using
matrix feedback. This fact can be used as the lbasiee compensation algorithm
for calculating the matrix state feedback.

Acknowledgements. | wish to express my gratitude for the assistanabe prep-
aration of the manuscript,. A. Trapeznikov Institute of Control Sciences afsR
sian Academy of ScienceSiberian State University of Telecommunications and



Informatics, Astrakhan State Technical Universigmsk State University, as
well as the Novosibirsk State Technical University.

Refer ences

[1]

[2]

[3]

[4]
[5]

[6]
[7]

[8]

[9]

Y.N. Andreev, Algebraic methods of space conditiothe theory of line-
ar objects,Automation and Remote Control, 3 (1977), 5 - 49.

Y.N. Andreev,Manage finite dimensional linear objects, Nauka, Mos-
cow, 1976.

R. Gabasov, F.M. Kirillova, E.A. Ruzhitskaya, Syesis of feedback sys-
tems for performing the specified motioMutomation and Remote Con-
trol, 8 (2003), 26 - 39.

F.R. GantmaheiTheory of Matrices, Fizmatlit, Moscow, 2004.

V.V. Grigoriev, N.V. Zhuravlev, G.V. Lukyano¥.A. SergeevSyn-
thesis of automatic control systems by modal control, University ITMO,
St. Petersburg, 2007.

P. Derusso3ate space in control theory, Higher School, Moscow, 1986.

R. Dorf, R. Bishop,Modern control systems, Laboratory of Basic
Knowledge, Moscow, 2002.

E.G. Kreventsov , The Compensation Algorithm foldQkating the Ma-
trix State Feedback, HIKARI Ltd, Applied MathemaiicSciences 134
(2013), Vol. 7, 6683 — 6694ttp://dx.doi.org/10.12988/ams.2013.310615

E.G. Kreventsov, Modification of calculating matrix feedback on the
state vector, LAP LAMBERT Academic Publishing, Saarbrucken, 201

[10] G.I. Lozgachsv, Modal synthesis regulators closgdesn transfer func-

tion, Automation and Remote Control, 4 (1995), 49 - 55.

[11] K.A. Pupkov, N.D. Egupov, Methods of classical anddern control

theory, Bauman University, Moscow, 2004, Vol.1.

[12] V. Polyak, P.S. Shcherbakov, Hard problems in lineantrol theory.

Some approaches to solvirgytomation and Remote Control, 5 (2005), 7
- 46.



[13] H.H. Rosenbrock, The zeros of a systdmt, J. Control. —2 (1973), Vol.
18, 297 - 299.

[14] V.G. RoubanovAutomatic Control Theory. Mathematical models, analy-
sis and synthesis of linear systems, Publ BSTU V.G. Shukhov, Moscow,
2005.

[15] K. Harris, Sability of dynamical systems with feedback, Mir, Moscow,
1987.



