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Abstract

In the present study we consider the scattering of time-harmonic acoustic
waves from a penetrable obstacle on which is imposed conductive transmis-
sion conditions. For this problem the far-field pattern is derived and general
scattering theorems for both plane and spherical waves are proved. For the
spherical waves has been used a far-field generator in order to formulate the
general scattering theorem in plane-wave form. The extinction cross-section
is evaluated through optical theorem which is derived as corollary of the
general scattering theorem.
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1 Introduction

Conservation of energy for electromagnetic or acoustic waves, or conservation of
probability in quantum mechanics, leads to the optical theorem. The optical the-
orem correlates the power extinguished from an incident wave on an object to the
far-field pattern [8],[16]. The extinction cross-section is the power lost due to scat-
tering and absorption of the incident field (total extinguished power) normalized by
the power per unit area incident on the scatterer. The optical theorem in essence
implies that the total power extinguished from the incident field is removed from
the incident field by the interference between the incident field and the forward
scattered field. For details on the connection of the extinction cross-section and
the optical theorem we refer to the books [8] and [11].

In this paper we study general scattering and optical theorems for a scatterer
which is covered by a thin layer with very high conductivity. From a physical
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viewpoint, scatterers covered by a thin layer of high conductivity can be important
in the modeling of electromagnetic induction in the Earth [1]. The physical meaning
of conductive conditions have been previously investigated, for example by Senior
[13] and [14]. Angell, Kleinman and Hettlich in [1] have proved the well-posedness
of the corresponding direct scattering problem. Bondarenko and Liu in [3] apply
the factorization method to solve an inverse scattering problem for an obstacle with
conductive boundary conditions. Generalized optical theorems and extinction of
power for scalar fields are proved in [5]. General scattering and optical theorems
for both spherical acoustic and electromagnetic waves by a layered scatterer with
a resistive or conductive core are included in [15]. In [17] an extended optical
theorem for a non-diffracting beam is used to examine the exctintion cross-section
of a sphere centered on the axis of the beam. In [18] a generalizated optical theorem
which relates the extincion cross-section to the angular function of the incident field
is derived. A formula for the acoustic integral extinction is derived in [12].

We consider time-harmonic acoustic plane and spherical waves. The conditions
on the surface of the scatterer describe a conductive boundary transmission prob-
lem which includes the classical acoustic transmission problem [6], [8]. Relations
between the solutions of the scattering problems due to two distinct waves incident
on the same scatterer are proved. The paper is organized as follows: In section 2
we formulate the conductive scattering problem and calculate the corresponding
far-field pattern. In section 3 we consider plane incidence, prove a general scat-
tering theorem and as corollary we derive the optical theorem. In section 4 we
have defined the plane and spherical far-field generators in order to be used for
the formulation of scattering theorems. Spherical waves are considered in section
5 and a general scattering theorem is proved. Using these results we prove an
optical theorem for spherical waves. Finally, in section 6 we discus some remarks
and special problems which can be obtained as degenerate cases of the conductive
problem.

2 Formulation

Let D be a bounded region in R3 with a C2− boundary S. The complement of D,
that is R3\D̄, is assumed to be simply connected and will be denoted by D0. The
set D will be referred to as the scatterer. The exterior D0 of the scatterer is an
infinite homogeneous isotropic lossless acoustic medium with mass density ρ0 and
mean compressibility γ0. The interior of D within lies the origin is a homogeneous,
isotropic, lossy medium with mass density ρ, mean compressibility γ and compres-
sional viscosity δ. At each point r on the surface S there is a normal unit vector
ν̂(r) pointing into D0.

Let ui be an incident on D acoustic wave which may be either plane or spherical.
We note that the incident plane waves are defined in R3, whereas the spherical
incident waves are defined in R3\{a}, where a is the position vector of point source.
If us is the corresponding scattered field then the total exterior field ut is given by

ut = ui + us (1)
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and satisfies the Helmholtz equation

∆ut + k2ut = 0 inD0, (2)

where k = ω
√
γ0ρ0 is the wave number and ω is the angular frequency.

The scatterer field us is a solution of (2) in R3\D̄ since ui solves the equation
(2). Also us satisfies the Sommerfeld radiation condition

r · ∇us − ikus = o(
1

r
), r = |r| → ∞, (3)

uniformly in all directions r̂ = r
r
∈ S2, where S2 is the unit sphere. In the sequel

for a vector w we shall denote w = |w| for the measure and ŵ = w
w

for the
corresponding unit vector. The total field u in D solves the Helmholtz equation

∆u+ η2k2u = 0 in D, (4)

where η is the relative index of diffraction and it is given by η =
√
γρ√

γ0ρ0(1−iωγδ)
.

The surface S is covered by a thin layer with very high conductivity. This phys-
ical consideration is described by the general conductive transmission conditions
[1]

ut = u on S, (5)

∂ut

∂v
= λ

∂u

∂ν
− µu on S, (6)

where λ ∈ C, λ 6= 0 and µ ∈ L∞(S) with Re(µ) ≤ 0. If µ = 0 and λ = ρ0
ρ

(1− iωγδ)
then relations (5),(6) become the classical transmission conditions [8].
The scattered field has the following asymptotic form [8]

us(r) = h(kr)u∞(r̂) + O

(
1

r2

)
, r →∞, (7)

where h(x) = eix

ix
is the spherical Hankel function of the first kind and zero order.

The function u∞(r̂) is the far-field pattern and is given by

u∞(r̂) = − ik
4π

∫
S

[
∂us(r′)

∂ν
+ ik(r̂ · ν̂)us(r′)

]
e−ikr̂·r

′
ds(r′) . (8)

In particular, applying the conductive transmission conditions and using the Green’s
first theorem we have the far-field pattern for the problem (1)-(6)

u∞(r̂) =
ik3η2(λ− 1)

4π

∫
D

u(r′)e−ikr̂·r
′
dv(r′) +

ik

4π

∫
S

µ(r′)u(r′)e−ikr̂·r
′
ds(r′) (9)

In what follows we shall make use of Twersky’s notation [16]

{u, ν}S =

∫
S

(
u
∂v

∂ν
− v∂u

∂ν

)
ds (10)

and we shall denote with z̄ the complex conjugation of z.
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3 Plane waves

We consider the scattering of time-harmonic plane acoustic waves by the conductive
scatterer D. Let the incident field be

ui(r;p̂) = eikp̂·r, (11)

where p̂ describes the direction of propagation. We shall indicate the dependence
of the scattered field, the far-field pattern and the total fields in D0 and D on the
incident direction p̂ by writing us(r; p̂), u∞(r̂; p̂), ut(r; p̂) and u(r; p̂) respectively.

We prove a general scattering theorem for plane acoustic waves, [8], from which
the optical theorem is derived as a simply consequence.

Theorem 3.1. Theorem Let ui(r; p̂) and ui(r; q̂) be two plane waves incident upon
the conductive scatterer D. Then for the corresponding far-field patterns we have

u∞(q̂; p̂) + u∞(p̂; q̂) +
1

2π

∫
S2

u∞(r̂; p̂)u∞(r̂; q̂)ds(r̂) = A(p̂; q̂), (12)

where

A(p̂; q̂) = −k
3Im(λη2)

2π

∫
D

u(r; p̂)u(r; q̂)dv(r)+
kIm(λ)

2π

∫
D

∇u(r; p̂)·∇u(r; q̂)dv(r)

− k

2π

∫
S

Im(µ(r))u(r; p̂)u(r; q̂)ds(r) (13)

Proof. In view of (1) and the bilinearity of the form (10) we take

{ut(·; p̂), ut(·; q̂)}S = {ui(·; p̂), ui(·; q̂)}S + {ui(·; p̂), us(·; q̂)}S
+ {us(·; p̂), ui(·; q̂)}S + {us(·; p̂), us(·; q̂)}S (14)

For the first integral in (14) using the conductive transmission conditions (5), (6),
applying the Green’s first theorem in D and taking into account that u(r; p̂), u(r; q̂)
are regular solutions of Helmholtz equation in D we take

{ut(·; p̂), ut(·; q̂)}S = −2ik2Im(λη2)

∫
D

u(r; p̂)u(r; q̂)dv(r)

+ 2iIm(λ)

∫
D

∇u(r; p̂) · ∇u(r; q̂)dv(r)− 2i

∫
S

Im(µ(r))u(r; p̂)u(r; q̂)ds(r) (15)

The incident waves ui(·; p̂), ui(·; q̂) are regular solutions of Helmholtz equation in
R3 and an application of the second Green’s theorem in D gives

{ui(·; p̂), ui(·; q̂)}S = 0. (16)
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From (8) we have

{ui(·; p̂), us(·; q̂)}S = −4π

ik
u∞(p̂; q̂), (17)

{us(·; p̂), ui(·; q̂)}S = −4π

ik
u∞(p̂; q̂). (18)

For the last integral of (14) we consider a sphere SR, centered on the origin with
radius R surrounding the scatterer. Let DR be the region exterior to S and interior
to SR. Applying Green’s second theorem on the functions us(r; p̂) and us(r; q̂) in
DR, where they are regular solutions of the Helmholtz equation, we take

{us(·; p̂), us(·; q̂)}S = {us(·; p̂), us(·; q̂)}SR
. (19)

Then, letting R→∞ we pass to radiation zone and thus we can use the asymptotic
form (7) giving

{us(·; p̂), us(·; q̂)}S =
2i

k

∫
S2

u∞(r̂; p̂)u∞(r̂; q̂)ds(r̂). (20)

Substituting (15)-(20) into (14) the theorem is proved.

The energy that a scatterer extracts from the incident wave is described by scat-
tering cross-section and by absorption cross-section. The scattering cross-section
is a measure of the disturbance caused by the obstacle to the incident wave and is
defined by

σs(p̂) =
1

k2

∫
S2

|u(r̂; p̂)|2ds(r̂). (21)

The absorption cross-section is defined by

σα(p̂) =
1

k

∫
S

ut(r; p̂)
∂ut(r; p̂)

∂ν
ds(r), (22)

and the extinction cross-section is defined by

σe(p̂) = σs(p̂) + σα(p̂). (23)

The cross-section and the optical theorem connect the far-field pattern and the
extinction. For a conductive scatterer the optical theorem is the following.

Theorem 3.2. Theorem Let ui(r; p̂) be a plane wave incident on the conductive
scatterer D and σe(p̂) the corresponding extinction cross-section. Then we have

σe(p̂) = −4π

k2
Re[u∞(p̂; p̂)]. (24)
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Proof. If we put p̂ = q̂ in (12) we obtain

2Re[u∞(p̂; p̂)] = − 1

2π

∫
S2

|u(r̂; p̂)|2ds(r̂) +A(p̂; p̂). (25)

Applying the conductive transmission conditions in (22) and using the Green’s first
theorem we find

σα(p̂) = −2π

k2
A(p̂; p̂). (26)

From (25), (26) we get (24).

4 Far-field generators

We consider an incident spherical acoustic wave due to a source located at a point
with position vector a, given by

uia(r) = aeika
eik|r−a|

|r− a|
, r 6= a, (27)

where a = |a|. The corresponding scattered, total exterior, total interior and far-
field pattern are denoted by usa, u

t
a, ua and u∞a respectively.

The scattering theorems for spherical waves are more complicated than the corre-
sponding theorems for plane waves. This due to the fact that the spherical acoustic
waves are singular solutions of the Helmholtz equation and the Green’s theorem
does not apply in spaces where there are point sources. In order to formulate the
general scattering theorem in the plane-wave form we introduce the spherical and
the plane far-field generators [2].

For two point sources a and b we define the spherical far-field pattern generator
by

Ub(a) = ikaeika
[
usb(a)− 1

2π

∫
S2

u∞b (r̂)eika·̂rds(r̂)

]
(28)

and the plane far-field pattern generator by

U(a;−b̂) = ikaeika
[
us(a;−b̂)− 1

2π

∫
S2

u∞(r̂;−b̂)eika·̂rds(r̂)

]
. (29)

When the observation point a recedes to infinite the generators become far-field
patterns. When both observation point a and the point - source b recede to infinity
Ub(a) reduces to the plane far-field pattern defined on −â and is derived from plane
incidence in the direction −b̂. In particular, in [2] the following theorem is proved.
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Theorem 4.1. Theorem For two incident spherical waves uia and uib we have

lim
a→∞

Ub(a) = u∞b (−â), (30)

lim
a→∞

U∞(a;−b̂) = u∞(−â;−b̂), (31)

lim
a,b→∞

Ub(a) = u∞(−â;−b̂). (32)

Now we can formulate the general scattering theorem for spherical acoustic waves.

5 Spherical waves

From the normalization of the spherical wave (27), which first introduced in [18],
it follows that as the location of the point a recedes to infinite, the point source
field degenerates to a plane wave with direction of propagation −â, that is

lim
a→∞

uia(r) = e−ikâ·r = ui(r;−â). (33)

Furthermore the normal energy fluxes for the spherical and plane waves are the
same [7].
We consider the incident spherical acoustic wave uia due to a source located at a
point with position vector a given by (27). In the exterior domain D0\{a} we have
again the superposition

uta = uia + usa in D0\{a}. (34)

The scattered and the incident fields usa and uia satisfy the Sommerfeld radiation
condition (3).
A general scattering theorem is also valid for the spherical waves. We consider two
point-source positions a and b and using the notation (28) the general scattering
theorem for acoustic spherical waves is formulated as follows.

Theorem 5.1. Theorem Let uia(r) and uib(r) be two spherical incident waves on
the conductive scatterer D. Then we have

Ua(b) + Ub(a) +
1

2π

∫
S2

u∞a (r̂)u∞b (r̂)ds(r̂) = Ba,b, (35)

where

Ba,b = − k
3

2π
Im(λη2)

∫
D

ua(r)ub(r)dv(r) +
k

2π
Re(λ)

∫
D

∇ua(r) · ∇ub(r)dv(r)

− k

2π

∫
S

Im(µ(r))ua(r)ub(r)ds(r). (36)
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Proof. As in the plane case, in view of (34) and the bilinearity of the form (10) we
take

{uta, utb}S = {uia, uib}S + {uia, usb}S + {usa, uib}S + {usa, usb}S. (37)

The three integrals {uta, utb}S, {uia, uib}S, {usa, usb}S are evaluated as in Theorem 1
provided the fact that the point sources are located outside the area of calculation.
In particular we have

{uta, utb}S = −2ik2Im(λη2)

∫
D

ua(r)ub(r)dv(r) + 2iIm(λ)

∫
D

∇ua(r) · ∇ub(r)dv(r)

−2i

∫
S

Im(µ(r))ua(r)ub(r)ds(r). (38)

As in the plane case, we have

{uia, uib}S = 0, (39)

{usa, usb}S =
2i

k

∫
S2

u∞a (r̂)u∞b (r̂)ds(r̂). (40)

Figure 1: The scatterer D and the point sources with vector positions a and b.

For the two other integrals of (37) we consider two small spheres of surfaces Sa
and Sb with a and b their centers respectively and a large sphere SR surrounding
Sa, Sb and the scatterer. We apply the second Green’s theorem in the region be-
tween the surfaces Sa, Sb, SR and S, where the spherical incident waves are regular
solutions of the Helmholtz equation and we take
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{uia, usb}S = −4πaeikausb(a) + 2aeika
∫
S2

u∞b (r̂)eikr̂·ads(r̂) = −4π

ik
Ub(a), (41)

{usa, uib}S = 4πbe−ikbusa(b)− 2beikb
∫
S2

u∞a (r̂)e−ikr̂·bds(r̂) = −4π

ik
Ua(b). (42)

Substituting (38)-(42) to (36) the theorem is proved.

The scattering and the absorption cross-sections σsa and σαa respectively are defined
as in the plane case and they are given by

σsa =
1

k2

∫
S2

|u∞a (r̂)|2ds(r̂), (43)

σαa =
1

k

∫
S

uta(r)
∂uta(r)

∂ν
ds(r). (44)

The extinction cross-section σea is given by

σea = σsa + σαa . (45)

The optical theorem for spherical acoustic waves can be formulated in the same form
as the plane waves where the far-field pattern has been replaced by its generator.

Theorem 5.2. Theorem Let uia(r) be a spherical wave incident on the conductive
scatterer D and σea be the corresponding extinction cross-section, then we have

σea = −4π

k2
Re[Ua(a)]. (46)

Proof. If we put a = b in (35) we obtain

2Re[Ua(a)] = − 1

2π

∫
S2

|u∞a (r̂)|2ds(r̂) + Ba,a. (47)

Taking into account the conductive transmission conditions the absorption
cross-section from (44) is given by

σαa = −2π

k2
Ba,a. (48)

From (47) and (48) we obtain (46).

6 Discussion and Summary

The absorption cross-section provides a measure of total energy taken from the
incident wave. We remark that in the case of the conductive scatterer both the
plane and spherical absorption cross-sections are expressed as a sum of three inte-
grals (13), (26) for plane and (36), (48) for spherical waves. The first two integrals
give the energy that is absorbed by the lossy medium occupying D and the third
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integral gives the energy absorbed by the surface of the scatterer and it depends
on the conductive parameter µ. From (24) we see that for plane incident waves
the extinction cross-section σe(p̂) is related to the far-field pattern in the forward
direction p̂. From (46) and (36) the extinction cross-section due to a point source
at a is related to the scattered field at a and a Herglotz wave function with kernel
u∞. The formula (9) expresses the far-field pattern for both plane and spherical
waves for the conductive scatterer.

Taking into account the formula (9) and the optical theorem we conclude:

• If λ = 1 and µ 6= 0, then the far-field pattern is depended on the surface of
the scatterer only.

• If λ 6= 1 and µ = 0, then we have a sample transmission problem. Especially
if λ = ρ0

ρ
(1 − iωδγ) then we have the classical acoustic penetrable problem

[8].

• If λ = 1 and µ = 0 then u∞ = 0. It is known that [6] if the far-field pattern
is zero then the scattered field is identically zero and therefore no scattering
occurs.

• If Im(λ) = Im(µ(r)) = 0 and the material in D is lossless then the absorp-
tion cross-section is zero.

In the study of inverse scattering problem we use mixed scattering relations
[2] which connect plane and spherical waves. If we consider that b → ∞ in
Theorem 2 we take the mixed general scattering theorem for the conductive
problem

u∞a (−b̂) + U(a;−b̂) +
1

2π

∫
S2

u∞a (r̂)u∞(r̂;−b̂)ds(r̂) = Ba(−b̂), (49)

where
Ba(−b̂) = lim

b→∞
Ba,b. (50)
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