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Abstract

An effective scheme for coding Boolean networks is proposed, by
which one can uniquely designate a distinguished integer in the range
from 0 to (2n×2n − 1) for any given n-node Boolean network. More im-
portantly, by analyzing the characteristic polynomial of the linearized
matrix of any given Boolean network, the connection between the dy-
namics of the network and the solution of a linear Diophantine equation
can be established. Based on the calculation of the number of nonneg-
ative integer solutions of the Diophantine equation, all n-node Boolean
networks can be classified into several classes and the members in the
same one have the same limit dynamical behaviors, i.e., same topological
structures of invariant sets such as attractors and isles of Eden.

Mathematics Subject Classification: 11C08; 11D04; 37F99; 37N25; 92B05;
92B20

keywords: Boolean network; Linearized matrix; Diophantine equation; at-
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1 Introduction

Boolean network (or switching net), introduced by Kauffman [1,2], and then
developed in [3-12] and many others, has become a powerful tool for model-
ing cell networks, consisting of behaviors and relationships of cells, proteins,
DNA and RNA in biological systems. In a Boolean network, the gene state
is quantized to only two levels: True (on) and False (off). The state of each
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2 Dynamics classification of Boolean networks and solutions of DE

gene is synchronously determined by those of its neighbors. The dynamics of
a Boolean network is described in terms of its limit sets as attractors and isles
of Eden which may be circles or fixed points, and the corresponding transient
states. Since the logic can be arbitrarily specified, in general any state can
move to any other state and there can be many different circles in the same
network. For any particular Boolean network, most likely defined by n logical
tables which can be converted into equations, the main task is to find all limit
sets therein. Because of the exponential growth of the number of states, this
is the nontrivial task when n is large. It was pointed out in [13] that finding
fixed points and circles in a Boolean network is an NP-hard problem.

Several different methods, iterations, scalar and matrix expression forms
were developed in [14-18] to determine the limit set structures and the transient
states, and several useful Boolean networks have also been analyzed and their
cyclic structures have been revealed (see, e.g., [14,15] and references therein).
The role of the matrix expression is essentially linearizing a Boolean network,
which typically is a discrete-time dynamical system. However, determining
the expression matrix associated with a Boolean network is a very complex
process when the node number n is large.

In this paper, we propose a scheme for coding n-node Boolean networks,
which can uniquely designate a distinguished integer in the range from 0 to
(2n×2n−1) for any given Boolean network. At the same time, we synchronously
obtain the linearized matrix of the given Boolean network. This matrix actu-
ally depends only on the information embed in the logical table of the given
network. More importantly, by analyzing the characteristic polynomial of the
linearized matrix of a Boolean network, we establish the connection between
the dynamics of the network and the nonnegative integer solutions of a linear
Diophantine equation. In this way, one can easily deal with the dynamics of
the network by using the solutions of the Diophantine equation. Moreover, we
successfully derive an innovation recurrence formula for calculating the num-
bers of the nonnegative integer solutions of the Diophantine equation. Thus,
all 2n×2n of n-node Boolean networks can be partitioned into several equiva-
lent classes such that the networks in each class possess the same limit sets,
such as attracts (contain fixed points or circles) and isles of Eden, i.e., same
limit dynamical behaviors. For example, all 2-node Boolean networks can be
classified into 11 classes, and all 3-node Boolean networks can be classified into
66 classes, and so on.

The rest of the paper is organized as follows. Section 2 describes the code
of n-node Boolean network. Section 3 discusses the dynamics of the network
via determining the characteristic polynomial, and gives a linear Diophantine
equation. Section 4 derives a recurrence formula of the numbers of solutions of
the Diophantine equation, and deduces a dynamics classification for all n-node
Boolean networks under the viewpoint of the same topological structures of
the limit set. Finally, Section 5 briefly concludes the paper.
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2 Code of Boolean Network

2.1 Code of Boolean matrix

A (2n × 2n)-order matrix B is called a Boolean matrix if there is only one
element “1” and the rest are “0” in its each row. i.e., the form of a Boolean
matrix is

B = (δTi0+1, δ
T
i1+1, δ

T
i2+1, · · · , δTi2n−1+1)

T , (1)

where ik ∈ {0, 1, 2, · · · , 2n − 1}, and δTik+1 denotes the (k+ 1)-th row vector of

B, i.e., δTik+1 = (

ik︷ ︸︸ ︷
0, · · · , 0, 1, 0, · · · , 0), in which the (ik +1)-th element is 1 and

the rest are 0, k = 0, 1, · · · , 2n − 1. For convenience, B may be written for

B =

[
k 0 1 · · · 2n − 2 2n − 1
ik i0 i1 · · · i2n−2 i2n−1

]
. (2)

It will be seen that the compact expression formulas are very useful and effec-
tive in the code and classification of Boolean networks.

The code of the Boolean matrix B thus can be defined as

CB =
2n−1∑
k=0

ik2
nk. (3)

Example 1 Let a (23 × 23)-order Boolean matrix B be

B =



1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0


,

then it is easy to see that i0 = i7 = 0, i1 = 2, i2 = 1, i3 = 4, i4 = i6 = 5, i5 =

3. So its compact expression is B =

[
k 0 1 2 3 4 5 6 7
ik 0 2 1 4 5 3 5 0

]
, and its

decimal code is CB = 2×23+1×23×2+4×23×3+5×23×4+3×23×5+5×23×6 =
1431632.

Conversely, for a given integer n and a number C on the range from 0 to
(2n×2n − 1), one can easily derive an 2n× 2n-order Boolean matrix whose code
is C. In particular, the code number CB of the Boolean matrix B = (bi,j)2n×2n

with bi,1 = 1 (i = 1, 2, · · · , 2n) is equal to 0, and the one of the matrix B =
(bi,j)2n×2n with bi,2n = 1 (i = 1, 2, · · · , 2n) is (2n×2n − 1).
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2.2 Code of Boolean network

A Boolean network is a set of n nodes, A1, A2, · · · , An, which interact with
each other in a synchronous manner. At each time t = 0, 1, 2, · · · , a node has
only one of two different values: 0 or 1, i.e., the network is a set of equations
as follows: 

A1(t+ 1) = f1(A1(t), A2(t), · · · , An(t))
A2(t+ 1) = f2(A1(t), A2(t), · · · , An(t))

...
An(t+ 1) = fn(A1(t), A2(t), · · · , An(t)),

(4)

where fi (i = 1, 2, · · · , n) are n-bit Boolean functions.

Equations (4) defines an iteration map F : {0, 1}n −→ {0, 1}n start-
ing from the initial value (A1(0), A2(0), · · · , An(0))

T ∈ {0, 1}n, where F =
(f1, f2, · · · , fn)T . It also can be illustrated as its logical table (Table 1).

Table 1: Logical table of n-node Boolean network
Input Window f1 f2 · · · fn

u(0) = (0, 0, · · · , 0, 0)T v
(1)
0 v

(2)
0 · · · v

(n)
0

u(1) = (0, 0, · · · , 0, 1)T v
(1)
1 v

(2)
1 · · · v

(n)
1

u(2) = (0, 0, · · · , 1, 0)T v
(1)
2 v

(2)
2 · · · v

(n)
2

...
...

...
...

...

u(k) = (u
(k)
1 , u

(k)
2 , · · · , u(k)n )T v

(1)
k v

(2)
k · · · v

(n)
k

...
...

...
...

...

u(2
n−2) = (1, 1, · · · , 1, 0)T v

(1)
2n−2 v

(2)
2n−2 · · · v

(n)
2n−2

u(2
n−1) = (1, 1, · · · , 1, 1)T v

(1)
2n−1 v

(2)
2n−1 · · · v

(n)
2n−1

Let the decimal code of a n-dimensional vector u = (ui, u2, · · · , un) be
k =

∑n
i=1 ui2

n−i. For a given n-node network (4), let ik be the decimal code

of the vector (v
(k)
1 , v

(k)
2 , · · · , v(k)n ) consisting of n elements of the k-th row in

Table 1, k = 0, 1, · · · , 2n − 1, then a (2n × 2n)-order Boolean matrix B can be
obtained based on formula (1)

The Boolean matrix B derived from the above method is called the lin-
earized matrix or the expression matrix of the Boolean network (4). Obviously,
any n-node Boolean network (4) and its linearized matrix B has an one-to-
one relationship. Hence, the code of the linearized matrix B of (4) can be
considered as the code of the network itself.

Definition 1 The code CB in the formula (3) of the linearized matrix B of
the n-node Boolean network (4) is called the code of the network.
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3 Dynamics of n-node Boolean Network and

Diophantine Equation

3.1 State transform defined by Boolean network

The network (4) defines a state transform in {0, 1}n:

F (u(k)) = (f1(u
(k)), f2(u

(k)), · · · , fn(u(k)))T = u(ik), (5)

where u(ik) = (v
(1)
k , v

(2)
k , · · · , v(n)k )T ∈ {0, 1}n is the state vector consisting of

the k-th components of the n Boolean functions fi (i = 1, 2, · · · , n), ik is the

decimal code of the vector (v
(k)
1 , v

(k)
2 , · · · , v(k)n ).

Supposing U = {u(0), u(1), u(2), · · · , u(2n−1)} is the state set, then (5) defines
a self-map B : U → U with

Bu = u∗, (6)

where u = (u(0), u(1), · · · , u(2n−1))T and u∗ = (u(i0), u(i1), · · · , u(i2n−1))T and B
is the linearized matrix of the network (4).

The map (6) also can be considered as a directed graph G = G(U , EB),
where U = {u(0), u(1), u(2), · · · , u(2n−1)} is the vertex set, and EB is the arc set
with EB = {(i → j)| bi,j = 1, i, j = 0, 1, 2, · · · , 2n − 1}, and bij is the element
of the matrix B = (bij)2n×2n . The graph G = G(U , EB) is called the state-
transition graph of matrix B containing the dynamics of the network (4). The
state-transition graph of the matrix B in Example 1 is shown in Fig.1, where
{0, 1, 2, · · · , 7} briefly on behalf of the vertex set U = {u(0), u(1), u(2), · · · , u(7)}.

Figure 1: State-transition structures of the network with linearized matrix B
in Example 1

3.2 Characteristic polynomial of Boolean matrix and
Diophantine equation

As mentioned above, there exists only one element “1” and the rest are “0”
in its each row in a (2n × 2n)-order Boolean matrix B. Thus, according to
the basic knowledge of matrix algebra, there exists a non-degenerate matrix
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W such that B̃ = WBW−1 (or say B̃ similar to B), where B̃ is the following
form:

B̃ =


A0 A1 A2 · · · Ar

O Bi1 O · · · O
O O Bi2 · · · O
...

...
...

. . .
...

O O O · · · Bir


2n×2n

, (7)

where {i1, i2, · · · , ir} ⊆ {1, 2, · · · , 2n}, i1 < i2 < · · · < ir, are there exist
positive integers sij (j = 1, 2, · · · , r) such that

s0 + i1si1 + i2si2 + · · ·+ irsir = 2n. (8)

In (7), A0 is a (s0×s0)-order square matrix, Aj (j = 1, 2, · · · , r) are (s0×ijsij)-
order matrices, andBij (j = 1, 2, · · · , r) are (ijsij×ijsij)-order square matrices,
where

Bij =


Cj O · · · O
O Cj · · · O
...

...
. . .

...
O O · · · Cj


ijsij×ijsij

, (9)

and Cj (j = 1, 2, · · · , r) are (ij × ij)-order square matrices

Cj =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
...

0 0 0 · · · 1
1 0 0 · · · 0


ij×ij

. (10)

When s0 = 0, then B̃ is

B̃ =


Bi1 O · · · O
O Bi2 · · · O
...

...
. . .

...
O O · · · Bir


2n×2n

. (11)

Moreover, |Eλ− A0| = λs0 , |Eλ−Bij | = |Eλ− Cj|sij = (λij − 1)sij , and

Φ(λ) = |Eλ−B| = |Eλ− B̃| = |Eλ−A0||Eλ−Bi1 ||Eλ−Bi2 | · · · |Eλ−Bir |,

hence, the characteristic polynomial of B is

Φ(λ) = λs0(λi1 − 1)si1 (λi2 − 1)si2 · · · (λir − 1)sir . (12)

Note that s0 ̸= 2n, because otherwise all the eigenvalues are zero.
In formula (8), {i1, i2, · · · , ir} ⊆ {1, 2, · · · , 2n} and i1 < i2 < · · · < ir,

so set S = {s0, s1, s2, · · · , s2n} can be divided into two parts: one is the set
{si1 , si2 , · · · , sir} that are positive numbers, and the other is the rest elements
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of S that are zero. Therefore, the characteristic polynomial of (2n × 2n)-order
Boolean matrix is

Φ(λ) = λs0(λ− 1)s1(λ2 − 1)s2(λ3 − 1)s3 · · · (λ2n − 1)s2n , (13)

where si (i = 0, 1, 2, · · · , 2n − 1, 2n) are nonnegative integers, s0 ̸= 2n, and
satisfy the following equation:

s0 + s1 + 2s2 + 3s3 + · · ·+ 2ns2n = 2n. (14)

It is quite clear that (14) is a linear Diophantine equation. We thus have
established the connection between the characteristic polynomial of a Boolean
matrix and the solutions of a Diophantine equation.

3.3 Dynamics of Boolean networks

It is well known that the dynamics of a Boolean Network can be described in
terms of the topological structure of the state-transition graph G. In general,
there are some circles, which can be fixed points, and the transient states in its
state-transition. The cyclic structures may be separated into two kinds: one
is the attractor and the other is the so-called isle of Eden [20,21].

A period-p circle γ = {u(k0), F (u(k0)), F 2(u(k0)), · · · , F p−1(u(k0))} of network
(4) with u(k0) = F p(u(k0)) is called an attractor if there exist a state u(j0) /∈ γ
and a positive integer q such that F q(u(j0)) ∈ γ, and u(j0) is called a transient
state. If period circle γ is not an attractor, it is called an isle of Eden. The
special case of p = 1, i.e., γ is degraded to be a fixed point which is also
contained in these definitions.

Definition 2 A subset Y of the state set U = {u(0), u(1), u(2), · · · , u(2n−1)} is
called the invariant set of the network (4) (or (5)) if F (Y) = Y . A point (state)
z ∈ U is called a limit point of (4) if there exist x ∈ U and a subsequence {nk}
with nk → +∞ (k → +∞) such that z = limk→+∞ F nk(x). The set of all limit
points of (4), Q, is called the limit set of (4).

Obviously, all attractors and isles of Eden of any Boolean network are invariant
sets. The union of all invariant sets forms the limit set of the network.

Lemma 1 For two Boolean matrices B and B̃, if B̃ is similar to B, then the
dynamics of both the Boolean network with linearized matrix B and the one
with linearized matrix B̃ are completely identical.

Proof. In fact, if B̃ is similar to B, then there exists a non-degenerate W such
that B̃ = WBW−1, where W is the product of some elementary matrices, and
also is a Boolean matrix but |W | ̸= 0. Thus, let ū = Wu, then ū∗ = Wu∗, and
based on (6), one has u∗ = Bu = BW−1ū, and ū∗ = WBW−1ū, i.e.,

ū∗ = B̃ū, (15)

where u and u∗ are two vectors defined in (6). Hence the state-transition graph
G(Ū , EB̃) is same as G(U , EB), i.e., the dynamics of the both two networks are
completely identical.
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Theorem 1 For a Boolean network (4), which associated with linearized ma-
trix B, the characteristic polynomial of B is denoted in (12), then:
(i) if s0 = 0 in (12), then there exist (si1 + si2 + · · ·+ sir) circles. They are all
isles of Eden and their periods respectively are ij (j = 1, 2, · · · , r) and further
satisfy i1si1 + i2si2 + · · · + irsir = 2n, where sij is the number of the period-ij
circle (j = 1, 2, · · · , r);
(ii) if s0 ̸= 0 in (12), then there exist s0 transient states and (si1+si2+· · ·+sir)
circles, and the periods of these circles respectively are ij (j = 1, 2, · · · , r) and
further satisfy s0 + i1si1 + i2si2 + · · · + irsir = 2n, where sij is the number of
the period-ij circle (j = 1, 2, · · · , r). Further, if there exists q (1 ≤ q ≤ r) such
that the matrix Aq in (7) is a null matrix, the period-iq circle associated with
the matrix block Biq is an isle of Eden.

Proof. In fact, matrix B is similar to matrix B̃ denoted in (11) (when s0 = 0),
or in (7) (when s0 ̸= 0), thus:
(i) when s0 = 0, each matrix block Cj in Bij determines a state-transition
graph G(Uj, ECj

), where Uj ⊂ U is the state set consisting of ij states, and
ECj

is the arc set determined by Cj. Obviously, the graph G(Uj, ECj
) generates

a period-ij circle, so each Bij has sij period-ij circles (j = 1, 2, · · · , r), and
i1si1 + i2si2 + · · · + irsir = 2n. Moreover, any state in a circle will not be
transferred to any another circle, so these period-ij (j = 1, 2, · · · , r) circles are
isles of Eden;
(ii) when s0 ̸= 0, same as (i), it holds sij period-ij circles (j = 1, 2, · · · , r), but
at the time, i1si1 + i2si2 + · · · + irsir = 2n − s0, and the first s0 rows of the
matrix B̃ consist of a (s0× 2n)-order matrix (A0 A1 A2 · · · Ar). On one hand,
a state-transition graph determined by A0 can not generate a circle because
its eigenvalues are zeros, so the states except all circles are transient ones, and
their number is s0. On the other hand, if a matrix block Aq0 (1 ≤ q0 ≤ r) in
(7) is a null matrix, then there exists not a state which transfers to any circle,
thus, the period-iq0 circle associated with the matrix block Biq0

is an isle of
Eden. Note that s0 ̸= 2n, otherwise all 2n states will become transient states,
and this is not possible.

Corollary 1 The limit set of the Boolean network (4) consists of the (2n−s0)
points that form sij period-ij circles (j = 1, 2, · · · , r), where i1si1 + i2si2 + · · ·+
irsir = 2n − s0.

Example 2 For the matrix B in Example 1, it is easy to know that there
exists a non-degenerate matrix W such that B̃ = WBW−1, where

B̃ =



0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
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=


A0 A1 A2 A3

O Bi1 O O
O O Bi2 O
O O O Bi3

 ,

where

A0 =

(
0 0
0 0

)
, A1 =

(
0
1

)
, A2 =

(
0 0
0 0

)
, A3 =

(
0 0 1
0 0 0

)
,

Bi1 =
(
1
)
, Bi2 =

(
0 1
1 0

)
, Bi3 =

 0 1 0
0 0 1
1 0 0

 ,

and i1 = 1, i2 = 2, i3 = 3, s0 = 2, si1 = si2 = si3 = 1. Clearly that there
exist two transient states {u∗(0), u∗(1)}, a fixed point {u∗(2)}, a period-2 circle
{u∗(3), u∗(4)}, a period-3 circle {u∗(5), u∗(6), u∗(7)}. The fixed point and period-3
circle are attractors, and the period-2 circle is an isle of Eden. They consti-
tute the invariant sets. The union of these invariant sets forms the limit set
Y = {u∗(2), u∗(3), u∗(4), u∗(5), u∗(6), u∗(7)}. Its state-transition graph is the same
with Fig. 1, with u∗(0) = u(6), u∗(1) = u(7), u∗(2) = u(0), u∗(3) = u(1), u∗(4) =
u(2), u∗(5) = u(3), u∗(6) = u(4), u∗(7) = u(5).

4 Solutions of Diophantine Equation and Dy-

namics Classification of Boolean Networks

In the previous section, the relationship between the characteristic polynomial
of Boolean matrix and the solutions of a linear Diophantine equation is estab-
lished. Now, one can derive a recurrence formula for calculating the numbers
of nonnegative integer solutions of the Diophantine equation (14), and discuss
the dynamics classification of n-node Boolean networks from the viewpoint of
the same topological structures of the limit set.

4.1 Numbers of solutions of Diophantine equation

A Diophantine equation is an equation in which only integer solutions are
allowed. The linear diophantine equations and their solutions are among the
well-known results in number theory. The study of these equations can be
found in many works such as [22].

For Diophantine equation (14), s0 + s1 + 2s2 + 3s3 + · · ·+ 2ns2n = 2n, the
existence of solution is obvious, since its coefficient set is {1, 1, 2, · · · , 2n}. The
difficult problem is how to find the number of its solutions.

Theorem 2 Let φm(M) denote the number of the nonnegative integer solu-
tions of the following equation

s0 + s1 + 2s2 + 3s3 + · · ·+msm = M, (16)

where m and M are positive integers. Then,
(i) φ1(M) = M + 1;
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(ii) when m > M , φm(M) = φM(M);
(iii) when m ≤ M , it satisfies the recursive formula:

φm(M) =

{ ∑[M
m

]

j=0 φm−1(M − j ·m) if M
m

̸= [M
m
]∑[M

m
]−1

j=0 φm−1(M − j ·m) + 1 if M
m

= [M
m
],

(17)

where [M
m
] is a positive integer no than M

m
.

Proof. (i) it is clear that the number of the nonnegative integer solutions of
the equation s0 + s1 = M is φ1(M) = M + 1;
(ii) when m > M , (16) is

s0 + s1 + 2s2 + 3s3 + · · ·+MsM + (M + 1)sM+1 + · · ·+msm = M,

then all si (i = M + 1, · · · ,m) will be zeros, this implies φm(M) = φM(M);
(iii) when m ≤ M , the equation (16) can be turned into another form:

s0 + s1 + 2s2 + 3s3 + · · ·+ (m− 1)sm−1 = M −msm, (18)

if sm to be determined, then the number of the nonnegative integer solutions
of (18) is φm−1(M −msm). Because sm can only be allowed to be nonnegative
integer, so if M −msm > 0, i.e., M

m
̸= [M

m
], then for m = 2, 3, · · · ,

φm(M) =

[M
m

]∑
j=0

φm−1(M − j ·m),

ifM−msm = 0, i.e., sm = M
m

= [M
m
], then {s0, s1, · · · , sm−1, sm} = {0, 0, · · · , 0, M

m
}

is an nonnegative integer solution of (16), so for m = 2, 3, · · · ,

φm(M) =

[M
m

]−1∑
j=0

φm−1(M − j ·m) + 1.

Note that Diophantine equation (14) is a special case of equation (16)
when m = M = 2n, thus we know that the number of the nonnegative integer
solutions of Diophantine equation (14) is φ2n(2

n). These values of φ2n(2
n) for

n = 1, 2, · · · , 8 are listed in the second column in Table 2.

4.2 Dynamics classification of Boolean networks

Note that the number of all n-node Boolean networks and the decimal coding
number of all (2n × 2n)-order Boolean matrices are exactly identical, both e-
qualling to 2n×2n , and the relationship between the Boolean network (4) and its
linearized matrix B is an one-to-one bijection. Thus, one can classify Boolean
networks by using the characteristic of B, especially the numbers of nonnega-
tive integer solutions of the Diophantine equation (14).

Two n-node Boolean networks are said to be equivalent if the topologi-
cal structures of their state-transition graphs are identical. For example, in
Fig. 2, the networks (a) and (b) are equivalent, because they have the same
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state-transition structure. But (c) and (a) (or (c) and (b)) are not equivalen-
t. Obviously, two topologically equivalent Boolean networks have the same
dynamical behaviors. Thus, one of the most important objectives in study-
ing Boolean networks is the topological equivalence classification of all n-node
Boolean networks. Unfortunately, with the increase of n, the number of all
n-node Boolean networks will increase rapidly, and therefore, the topological
equivalence classification of Boolean networks becomes more and more diffi-
cult. But from another point of view, since F n(U) → Q (n → +∞), where U
is the state set and Q is the limit set of the Boolean network. The limit set Q
reflects the asymptotic behavior of the network.

Figure 2: State-transition structures of Boolean networks (a), (b) and (c)

Fortunately, the nonnegative integer solution of Diophantine equation (14)
contains the information of the limit set of a Boolean network.

Theorem 3 A group of solutions {s0, s1, · · · , s2n} of Diophantine equation
(14) except of s0 = 2n corresponds to a class of n-node Boolean networks, the
networks in the class have the same limit set, i.e., they have exactly the same
limit dynamical behaviors.

Proof. In fact, for a given n-node Boolean network, its dynamics was com-
pletely characterized by the characteristic polynomial (13) or the nonnegative
integer solutions of Diophantine equation (14) of the Boolean matrix associ-
ated with the network. In brief, it has s0 (s0 ̸= 2n) transient states and the
limit set which is the union of all attractors and isles of Eden consisting of
(2n − s0) states. Thus, two n-node Boolean networks that have same non-
negative integer solutions of Diophantine equation (14) have the same limit
set.

Based on this theorem, and taking note of s0 ̸= 2n, we finally get the
following dynamics classification result of Boolean networks:

Theorem 4 All n-node Boolean networks can be divided into (φ2n(2
n) − 1)

classes, the networks in each class have the same limit set, where φ2n(2
n) is

the number of the nonnegative integer solutions of Diophantine equation (14).

For example, the topological structures of the limit sets of the state-transition
graphs (a), (b) and (c) in Fig. 2 are completely the same, i.e., these networks
associated with (a), (b) and (c) have the same asymptotic behaviors, and thus
are in the same class.
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Table 2: Number of nonnegative integer solutions of Diophantine equation (14)

φ2n(2
n) and proportion φ2n (2

n)−1

2n×2n for n = 1, 2, · · · , 8.
n φ2n(2

n) (φ2n(2
n)− 1)/2n×2n

1 4 0.75
2 12 ≈ 4.296875× 10−2

3 67 ≈ 3.933907× 10−6

4 915 ≈ 4.96739130× 10−17

5 43820 ≈ 3.00130136× 10−44

6 12308139 ≈ 3.12389289× 10−109

7 41959382090 ≈ 7.946852668× 10−260

8 4861560552351727 ≈ 1.593954279× 10−601

... · · · · · ·

The proportion, φ2n (2
n)−1

2n×2n , of the number of dynamics classification of n-
node Boolean networks in all 2n×2n Boolean networks is listed in the fifth
column in Table 2 for n = 1, 2, · · · , 8. As for the larger n, the classification
number are also readily available, but more computer capacity and longer
calculation time are need. It is particularly important that the proportion
of number of dynamics classification in all 2n×2n n-node Boolean networks is
becoming smaller and smaller with the increase of n. For n = 3, the proportion
of number of dynamics classification can be approximated at zero. This implies
a substantial and considerable saving of otherwise wasted man hours in the
sense that the limit dynamics of any one of the remaining 3-node Boolean
networks can be derived exactly from one of the 66 equivalent networks.

5 Conclusion

The simplest possible conceptual model that mimics signal transduction might
be Boolean network, due to the only alternative values 0 and 1 of each node
at any time. In this paper, an effective scheme for coding n-node Boolean
networks has been proposed via coding its linearized matrix. Meanwhile, the
connection between the dynamics of the networks and a linear Diophantine
equation is established, and a recurrence formula for calculating the number of
nonnegative integer solution of the Diophantine equation is derived. Moreover,
a dynamics classification for all n-node Boolean networks is obtained under the
viewpoint of the same topological structures of the limit set.

Indeed, Boolean networks are useful for modeling cell networks such as
genetic regulation in biological systems. The results presented in this work
maybe provide a new basis for the elucidation of the function of complexity
in the living cells, and therefore are significant and meaningful for systems
biology and mathematical biosciences research.
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