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Abstract

In this paper, an implementation of an efficient numerical method of linear fractional

integro-differential equations (LFIDEs) by least squares method with aid of shifted

Chebyshev polynomials of the third kind method. The fractional derivative is described in the

Caputo sense. The method is based upon shifted Chebyshev polynomials of the third kind

approximations is introduced. Some numerical examples are presented to illustrate the

theoretical results and compared with the results obtained by other numerical methods. We

have computed the numerical results using Mathematica 9 programming.
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1. Introduction

Fractional derivatives have recently played a significant role in many areas of sciences, en-

gineering, fluid mechanics, biology, physics and economies ([4], [15], [17]). Many real-world

physical systems display fractional order dynamics, that is their behavior is governed by frac-

tional order differential equations. Consequently, considerable attention has been given to the

solutions of fractional differential equations (FDEs) and integral equations of physical inter-

est ([1], [2], [10], [18], [20], [25] , [28]). Most non-linear FDEs do not have exact analytic

solutions, so approximate and numerical techniques ([23]-[26]) must be used. Many mathe-

matical problems in science and engineering are set in unbounded domains. There is a need

to consider practical design and implementation issues in scientific computing for reliable and

efficient solutions of these problems. Several numerical methods to solve the FDEs have been

given such as variational iteration method [10], homotopy perturbation method ([20], [23]),

Adomian’s decomposition method ([11], [14]), homotopy analysis method [9] and collocation

method ([12], [18], [28]).
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Representation of a function in terms of a series expansion using orthogonal polynomials

is a fundamental concept in approximation theory and forms the basis of spectral methods of

solution of differential equations ([5], [8], [13]). In [12], Khader introduced an efficient numerical

method for solving the fractional diffusion equation using the shifted Chebyshev polynomials.

In [26] and et. al introduced an efficient numerical method for solving the fractional diffusion

equation using the shifted Chebyshev polynomials of the third kind. Spectral collocation meth-

ods are efficient and highly accurate techniques for numerical solution of non-linear differential

equations. The basic idea of the spectral collocation method is to assume that the unknown

solution v(x) can be approximated by a linear combination of some basis functions, called the

trial functions, such as orthogonal polynomials. The orthogonal polynomials can be chosen ac-

cording to their special properties, which make them particularly suitable for a problem under

consideration ([13], [22]).

Our fundamental goal of this work is to develop a suitable way to approximate the fractional

integro-differential equations using the shifted Chebyshev polynomials of the third kind with

finite difference method together with Chebyshev collocation method [26].

In this paper, least squares method with aid of shifted Chebyshev polynomials of the third

kind method is applied to solving fractional integro-differential equations. Least squares method

has been studied in ([3], [7], [16], [21], [29]).

In this paper, we are concerned with the numerical solution of the following linear fractional

Integro-differential equation [16]:

Dνϕ(x) = f(x) +

∫ 1

0

K(x, t)ϕ(t)dt, 0 ≤ x, t ≤ 1, (1)

with the following supplementary conditions:

ϕ(i)(0) = δi, n− 1 < ν ≤ n, n ∈ N, (2)

where Dνϕ(x) indicates the νth Caputo fractional derivative of ϕ(x), f(x), K(x, t) are given

functions, x and t are real variables varying in the interval [0, 1] and ϕ(x) is the unknown

function to be determined.

The structure of this paper is arranged in the following way: In section 2, we introduce some

basic definitions about Caputo fractional derivatives. In section 3, we give some properties of

Chebyshev polynomials of the third kind which are of fundamental importance in what follows

and we derive an approximate formula for fractional derivatives using Chebyshev polynomials

of the third kind expansion. In section 4, the procedure of solution of linear fractional integro-

differential equation. In section 5, numerical example is given to solve the LFIDEs and show
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the accuracy of the presented method. Finally, in section 6, the report ends with a brief

conclusion and some remarks.

2. Preliminars and notations

In this section, we present some necessary definitions and mathematical preliminaries of the

fractional calculus theory required for our subsequent development.

2.1 The Caputo fractional derivative

Definition 1.

The Caputo fractional derivative operator Dν of order ν is defined in the following form:

Dνf(x) =
1

Γ(m− ν)

∫ x

0

f (m)(t)

(x− t)ν−m+1
dt, ν > 0,

where m− 1 < ν ≤ m, m ∈ N, x > 0.

Similar to integer-order differentiation, Caputo fractional derivative operator is a linear opera-

tion:

Dν (λ f(x) + µ g(x)) = λDν f(x) + µDν g(x),

where λ and µ are constants. For the Caputo’s derivative we have

Dν C = 0, C is a constant, (3)

Dν xn =

{
0, for n ∈ N0 and n < dνe;

Γ(n+1)
Γ(n+1−ν)

xn−ν , for n ∈ N0 and n ≥ dνe.
(4)

We use the ceiling function dνe to denote the smallest integer greater than or equal to ν, and

N0 = {0, 1, 2, ...}. Recall that for ν ∈ N, the Caputo differential operator coincides with the

usual differential operator of integer order.

For more details on fractional derivatives definitions and its properties see ([6], [15], [17], [19]).

3. Some properties of Chebyshev polynomials of the third kind

3.1. Chebyshev polynomials of the third kind

The Chebyshev polynomials Vn(x) of the third kind ([13], [26]) are orthogonal polynomials

of degree n in x defined on the [−1, 1]

Vn =
cos(n+ 1

2
)Θ

cos(Θ
2

)
,
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where x = cosΘ and Θ ∈ [0, π].

They can be obtained explicitly using the Jacobi polynomials P
(α,β)
k (x), for the special case

β = −α = 1/2.

These are given by:

Vk(x) =
22kP

(−1/2,1/2)
k (x)(Γ(k + 1))2

Γ(2k + 1)
. (5)

Also, these polynomials Vn(x) are orthogonal on [−1, 1] with respect to the inner product:

< Vn(x), Vm(x) >=

∫ 1

−1

√
1 + x

1− x
Vn(x)Vm(x) =

{
π, for n = m;

0, for n 6= m;
. (6)

where
√

1+x
1−x is weight function corresponding to Vn(x).

The polynomials Vn(x) may be generated by using the recurrence relations

Vn+1(x) = 2xVn(x)− Vn−1(x), V0(x) = 1, V1(x) = 2x− 1, n = 1, 2, ... .

The analytical form of the Chebyshev polynomials of the third kind Vn(x) of degree n, using

Eq. (5) and properties of Jacobi polynomials to obtain they are given as:

Vn(x) =

[ 2n+1
2

]∑
k=0

(−1)k (2)n−k
(2n+ 1)Γ(2n− k + 1)

Γ(k + 1) Γ(2n− 2k + 2)
(x+ 1)n−k, n ∈ Z+, (7)

where [2n+1
2

] denotes the integer part of (2n+ 1)/2.

3.2. The shifted Chebyshev polynomials of the third kind

In order to use these polynomials on the interval [0, 1], we define the so called shifted

Chebyshev polynomials of the third kind by introducing the change of variable s = 2x−1. The

shifted Chebyshev polynomials of the third kind are defined as V ∗n (x) = Vn(2x− 1).

These polynomials are orthogonal on the support interval [0, 1] as the following inner product:

< V ∗n (x), V ∗m(x) >=

∫ 1

0

√
x

1− x
V ∗n (x)V ∗m(x)dx =

{
π
2
, for n = m;

0, for n 6= m;
. (8)

where
√

x
1−x is weight function corresponding to V ∗n (x). and normalized by the requirement

that V ∗n (1) = 1.

The polynomials V ∗n (x) may be generated by using the recurrence relations

V ∗n+1(x) = 2(2x− 1)V ∗n (x)− V ∗n−1(x), V ∗0 (x) = 1, V ∗1 (x) = 4x− 3, n = 1, 2, ... .
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The analytical form of the shifted Chebyshev polynomials of the third kind V ∗n (x) of degree n

in x given by:

V ∗n (x) =
n∑
k=0

(−1)k (2)2n−2k (2n+ 1)Γ(2n− k + 1)

Γ(k + 1) Γ(2n− 2k + 2)
(x)n−k, n ∈ Z+, (9)

In a spectral method, in contrast, the function g(x), square integrable in [0, 1], is represented

by an infinite expansion of the shifted Chebyshev polynomials of the third kind as follows:

g(x) =
∞∑
i=0

bi V
∗
i (x), (10)

where bi is a chosen sequence of prescribed basis functions. One then proceeds some how to

estimate as many as possible of the coefficients bi, thus approximating g(x) by a finite sum of

(m+ 1)-terms such as:

gm(x) =
m∑
i=0

bi V
∗
i (x), (11)

where the coefficients bi, i = 0, 1, ... are given by

bi =
1

π

∫ 1

−1

g(
x+ 1

2
)Vi(x)

√
1 + x

1− x
dx, (12)

where the coefficients bi, i = 0, 1, ... are given by

bi =
2

π

∫ 1

0

g(x)V ∗i (x)

√
x

1− x
dx, (13)

Theorem 1. (Chebyshev truncation theorem) ([13], [22])

The error in approximating g(x) by the sum of its first m terms is bounded by the sum of

the absolute values of all the neglected coefficients. If

gm(x) =
m∑
i=0

bi Vi(x), (14)

then

ET (m) ≡ |g(x)− gm(x)| ≤
∞∑

k=m+1

|bi|, (15)

for all g(x), all m, and all x ∈ [−1, 1].

The main approximate formula of the fractional derivative of gm(x) is given in the following

theorem.
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Theorem 2.

Let g(x) be approximated by shifted Chebyshev polynomials of the third kind as (11) and

also suppose α > 0, then

Dα(gm(x)) =
m∑

i=dαe

i−dαe∑
k=0

biN
(α)
i, k x

i−k−α, (16)

where N
(α)
i, k is given by

N
(α)
i, k = (−1)k

22i−2k (2n+ 1)Γ(2i− k + 1)Γ(i− k + 1)

Γ(k + 1)Γ(2i− 2k + 2)Γ(i− k + 1− α)
. (17)

Proof. ([26]).

4. Procedure solution using shifted Chebyshev polynomials of the third kind

collocation method

In this section, the least squares method with aid of shifted Chebyshev polynomials of the

third kind collocation method is applied to study the numerical solution of the linear fractional

Integro-differential equation (1).

The procedure of the implementation is given by the following steps:

1. Substitute by Eq.(11) into Eq.(1) we obtain [16]:

Dν

(
m∑
i=0

ciV
∗
i (x)

)
= f(x) +

∫ 1

0

K(x, t)

(
m∑
i=0

ciV
∗
i (x)

)
dt. (18)

2. Hence the residual equation is defined as

R(x, c0, c1, ..., cn) =
m∑
i=0

ciD
νV ∗i (x)− f(x)−

∫ 1

0

K(x, t)

(
m∑
i=0

ciV
∗
i (x)

)
dt. (19)

3. Let

S(c0, c1, ..., cn) =

∫ 1

0

(R(x, c0, c1, ..., cn))2 · ω(x)dx. (20)

where ω(x) is the positive weight function defined on the interval [0, 1]. In this work we

take ω(x) =
√

x
1−x .
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4. Thus

S(c0, c1, ..., cn) =

∫ 1

0

(
m∑
i=0

ciD
νV ∗i (x)− f(x)−

∫ 1

0

K(x, t)

(
m∑
i=0

ciV
∗
i (x)

)
dt

)2

ω(x)dx.

(21)

5. So, finding the values of ci, i = 0, 1, ..., n, which minimize S is equivalent to finding the

best approximation for the solution of the LFIDEs (1).

6. The minimum value of S is obtained by setting

∂S

∂ci
= 0 i = 0, 1, ...,m. (22)

7. Applying (22) to (21) we obtain∫ 1

0

(
m∑
i=0

ciD
νV ∗i (x)− f(x)−

∫ 1

0
K(x, t)

(
m∑
i=0

ciV
∗
i (x)

)
dt

)
×
(
DνV ∗i −

∫ 1

0
K(x, t)V ∗i (x)

)
ω(x)dx.

(23)

By evaluating the above equation for i = 0, 1, ..., n we can obtain a system of (m + 1) linear

equations with (m + 1) unknown coefficients ci. This system can be formed by using matrices

form as follows:

A =


∫ 1

0 R(x, c0)h0dx
∫ 1

0 R(x, c1)h0dx ...
∫ 1

0 R(x, cm)h0dx∫ 1
0 R(x, c0)h1dx

∫ 1
0 R(x, c1)h1dx ...

∫ 1
0 R(x, cm)h1dx

... ... ... ...∫ 1
0 R(x, c0)hmdx

∫ 1
0 R(x, c1)hmdx ...

∫ 1
0 R(x, cm)hmdx

 , (24)

B =


∫ 1

0 f(x)h0dx∫ 1
0 f(x)h1dx

...∫ 1
0 f(x)hmdx

 , (25)

where

hi = DνV ∗i (x)−
∫ 1

0
K(x, t)

m∑
i=0

ciV
∗
i (x)ω(x)dt, i = 1, 2, ...,m,

R(x, t) =
m∑
i=0

ciD
νV ∗i (x)−

∫ 1

0
K(x, t)

(
m∑
i=0

ciV
∗
i (x)

)
dt, i = 0, 1, ...,m

By solving the above system we obtain the values of the unknown coefficients and the approxi-

mate solution of (1).
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5. Applications and numerical results

In this section, we numerical examples of linear fractional integro-differential equation are

presented to illustrate the above results. All results are obtained by using Mathematica 9

programming.

Example 1:

Consider the following linear fractional integro-differential equation ([16])

D1/2ϕ(x) =
(8/3)x3/2 − 2x1/2

√
π

+
x

12
+

∫ 1

0

xtϕ(t)dt, 0 ≤ x, t ≤ 1, (26)

subject to ϕ(0) = 0 with the exact solution ϕ(x) = x2 − x.
Applying the least squares method with aid of shifted Chebyshev polynomials collocation of

third kind V ∗i (x), i = 0, 1, ...,m at m = 5, to the linear fractional integro-differential equation

(26), we obtain a system of (24) linear equations with (25) unknown coefficients ci, i = 0, 1, ..., 5.

Figure 1 Comparison between the numerical solution and exact solution.

The solution obtained using the suggested method is in excellent agreement with the already

exact solution and show that this approach can be solved the problem effectively. It is evident

that the overall errors can be made smaller by adding new terms from the series (11). Com-

parisons are made between approximate solutions and exact solutions to illustrate the validity

and the great potential of the proposed technique. Also, from our numerical results we can see

that these solutions are in more accuracy of those obtained in ([16].
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Example 2:

Consider the following linear fractional integro-differential equation ([16])

D5/6ϕ(x) = f(x) +

∫ 1

0

xetϕ(t)dt, 0 ≤ x, t ≤ 1, (27)

where f(x) = −3x1/6Γ(5/6)(−91+216x2)
91π

+ (2− 2e)x,

subject to ϕ(0) = 0 with the exact solution ϕ(x) = x− x3.

Similarly as in Example 1 applying the least squares method with aid of shifted Cheby-

shev polynomials collocation of third kind V ∗i (x), i = 0, 1, ...,m at m = 5, to the fractional

integro-differential equation (27) the numerical results are shown in Figure 2 and we obtain the

approximate solution which is the same as the exact solution.

Figure 2 Comparison between the numerical solution and exact solution.

Example 3:

Consider the following fractional integro-differential equation ([16])

D5/3ϕ(x) = f(x) +

∫ 1

0

(xt+ x2t2)ϕ(t)dt, 0 ≤ x, t ≤ 1, (28)

where f(x) = 3
√

3Γ(2/3)x1/3

π
− x2/5− x/4,

subject to ϕ(0) = 0 with the exact solution ϕ(x) = x2.

Similarly as in Examples 1 and 2 applying the least squares method with aid of shifted

Chebyshev polynomials collocation of third kind V ∗i (x), i = 0, 1, ...,m at m = 5, to the frac-

tional integro-differential equation (28) the numerical results are shown in Figure 3 and we

obtain the approximate solution which is the same as the exact solution.
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Figure 3 Comparison between the numerical solution and exact solution.

6. Conclusion and remarks

In this article, we introduced an accurate numerical technique for solving linear fractional

integro-differential equation. We have introduced an approximate formula for the Caputo

fractional derivative of the shifted Chebyshev polynomials of the third kind method in terms

of classical shifted Chebyshev polynomials of the third kind method. The results show that

the algorithm converges as the number of m terms is increased. The solution is expressed

as a truncated shifted Chebyshev polynomials series and so it can be easily evaluated for

arbitrary values of time using any computer program without any computational effort. Some

numerical examples are presented to illustrate the theoretical results and compared with the

results obtained by other numerical methods. We have computed the numerical results using

Mathematica 9 programming.
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