
Noname manuscript No.
(will be inserted by the editor)

The Least-squares Monte Carlo method for pricing
options embedded in mortgages

Deng Ding · Wenfei Wang · Li Wang

Received: date / Accepted: date

Abstract This paper studies the pricing problems for options embedded in
fixed rate mortgages by simulation. The least-squares Monte Carlo method,
which was initiated by Longstaff and Schwartz (Rev. Financ. Stud. 14(1): 113-
147, 2001), is applied to price the mortgage default and prepayment options in
a financial environment with two stochastic factors: house price and short term
interest rate. A series of numerical comparisons for presented methods with the
PDE analytical approximation method in (IAENG Int. J. Appl. Math. 39(1):
9, 2009) and the binomial tree method (BTM) (Decis. Econ. Financ. 35(2):
171-202, 2012) are given. The simulation experiments show the efficiency of
presented methods and some cross-validation of the obtained simulation results
are given.
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mortgages · Optimal stopping · Dynamic programming
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1 Introduction

A mortgage is a loan that is secured by an underlying real estate property,
and a mortgage-backed security is a derivative security based on the cash flows
generated by a pool of mortgages. The valuation of a mortgage embedded with
its prepayment and default risks is a difficult but widely discussed problem. In
this work, we consider such problem from the mortgage borrower’s perspective.
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The fundamental assumption is that when a mortgage payment is due, the
borrower will maximize his utility by choosing one of the following options:
continuing the scheduled payment, prepayment or default. We focus on the
option-based model to be the utility function.

There are many studies in the research of the numerical methods for the
default and prepayment option valuation. In summary, pricing of the above-
mentioned options can be classified into four categories: analytical method,
recombining binomial and trinomial trees [3], finite difference methods [2],
and Monte-Carlo simulation methods. Kau et al in [9] (1995) applied the im-
plicit difference numerical method in the default option valuation under a
two-factor model. Some promising recent attempts by Xie in [14] have been
made to obtain an analytical approximation for both of optimal prepayment
rate and callable fixed rate mortgage price within the Vasicek and the Cox-
Ingersoll-Ross model. Hurlimann in [7] (2012) considered the recombining bi-
nomial tree approach to value fixed and variable rate mortgage. On the other
hand, In an influential paper [11], Longstaff and Schwartz (2001) introduced
the least-squares Monte Carlo (LSM) method to solve the American option
value through a set of conditional expectations estimated by the least square
regressions of the future financial benefits.

In this paper, we mainly apply the LSM method to price the mortgage
default and prepayment options in a financial environment with two stochastic
factors: house price and short term interest rate. Also, by a series of numerical
tests, we compare this method with the analytical method and the binomial
tree method. Our works differ from the previous literature of prepayment
and default option valuation in following respects. We present a two steps
LSM algorithm to solve the optimal stopping problem embedded in fixed rate
mortgages. On the other hand, we not only consider the geometric Brownian
motion model for the underlying dynamics of house price, but also a jump
diffusion model.

The paper is organized as follows. In Section 2, the financial background
is introduced, and the related mathematical models are setup. In Section 3,
the valuation of a callable mortgage with the risk of prepayment is considered,
and the pricing problems with both default and prepayment risks in a finan-
cial environment with two stochastic factors are discussed. In Section 4, the
Least-Squares Monte Carlo methods for pricing default and prepayment op-
tions embedded in mortgages are presented, and the corresponding algorithms
are also given. In Section 5, some numerical results are given to support the
presented algorithms, and some conclusions about our study are drawn.

2 Amortized fixed rate mortgage

Consider an amortized fixed rate mortgage (AFRM) contract on an underlying
good, which can be a house or a more general physical good. In an AFRM,
the borrower borrows from the lender (usually a bank) a capital equal to P at
a fixed nominal instantaneous rate ρ > 0 at time 0, and pays it back with a
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continuous intensity A in the time window [0, T ], where T is the maturity of
contract. We distinguish between a continuous amortization rate A per unit
time and a recurring discrete amortization payment Ap at the end of each
interest payment cycle of length IP . We assume that the interval [0, T ] is
divided into N discrete time steps [(i−1)h, ih], i = 1, . . . , N , with the length
h = T/N . Set nP = T/IP as the number of recurring payments, and nI = IP /h
as the number of discrete steps in each interest payment cycle. Let ρN = eρh−1
be the interest rate per discrete time step and let ρP = ρNnI be the interest
rate per interest payment cycle. In the continuous time setting, we have

P = A

∫ T

0

e−ρtdt = A
1− e−ρT

ρ
.

In practical, P is calculated by a discrete time formula:

P = AP

nP∑
k=1

(1 + ρP )−k =
AP
ρP

(
1− (1 + ρP )−nP

)
,

with interest payment cycle IP = h. In this case, AP = AρN/ρ. We assume
that the borrower has an option to prepay the mortgage at an arbitrary date
t < T . In case of prepayment, the outstanding loan balance is respectively
given by

Lt = A

∫ T

t

e−ρ(u−t)du = A · 1− e−ρ(T−t)

ρ
,

for any continuous time t ∈ [0, T ], and

LkIP = AP

nP∑
j=k+1

(1 + ρP )−(j−k) =
AP
ρP

(
1− (1 + ρP )k−nP

)
,

for any discrete time k = 0, . . . , nP−1 with LT = 0. If the prepayment option is
exercised, the borrower must prepay the current outstanding loan balance plus
any accrued interest since the last recurring payment. The charged amount is
called face value and is given by

FVknI+m =
(
1 + ρNm

)
LkIP , (1)

for each k = 0, . . . , nP−1 andm = 0, . . . , nI−1 with FVN = 0. Since the option
can be exercised any time in [0, T ], the prepayment option is a contingent claim
of American type.

If the borrower exercises the prepayment option at time t (resp. at time
ih in discrete time), the lender receives immediately the face value FVt = Lt
(resp. FVi in discrete time) instead of the future stream of payments at the
amortization rate A per unit time (resp. AP at the end of each interest payment
cycle). The market value at time t (resp. at time ih in discrete time) of these
future cash-flows, also called non-callable mortgage price, are given by

Vt = A

∫ T

t

P (t, u)du, t ∈ [t, T ], (2)
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and

Vi = AP

nP∑
k=bi/nIc+1

P (ih, kIP ), i = 0, . . . , N−1, (3)

with VN = 0, respectively, where P (t, s) denotes the price at time t of a zero-
coupon bond with maturity s ≥ t, and b·c is the floor function.

Being this the framework, it seems that in order to price a callable mortgage
one has simply to price, with the aid of the usual no-arbitrage theory, the
corresponding stream of payments, which always include an American-style
option corresponding to the prepayment option of each borrower.

Throughout this paper, we always assume that (Ω,F , {Ft},P) is a filtered
probability space, and assume that P is the risk-neutral probability measure.
We also assume that the process rt is the short rate process from which the
entire term structure P (t, s) can be obtained (e.g. see [1]), and the process
Ht is the price of underlying physical good. Let V pt be the prepayment option
price at time t. Then, we have

V pt = ess sup
τ∈[t,T ]

E
[
e−

∫ τ
t
rudu(Vτ − FVτ ) | Ft

]
,

where the esssup is taken over all {Ft}-stopping times τ ∈ [t, T ], and E[· | Ft]
is the conditional expectation (e.g. see [3]). Furthermore, denote V bt the joint
option price at time t, i.e. including both the prepayment and default options.
Similarly, we have

V bt = ess sup
τ,δ∈[t,T ]

E
[
1{τ<δ}e

−
∫ τ
t
rudu(Vτ −FVτ ) + 1{δ<τ}e

−
∫ δ
t
rudu(Vδ −Hδ) | Ft

]
.

Here τ and δ indicate the stopping times corresponding respectively to a pre-
payment decision and a default decision. Now, the price of a callable (embed-
ded with prepayment option) mortgage having rate A and a fixed nominal
interest rate ρ and maturity T , at time t would simply be (e.g. see [3])

V et = Vt − V pt , (4)

and in the case when also a default decision is available and if the borrower is
fully rational,

V et = Vt − V bt . (5)

3 Prepayment and default options

To begin with, we assume that the short rate rt follows a CIR process, i.e. it
satisfies the stochastic differential equation:

drt = κ(θ − rt)dt+ σr
√
rtdW

r
t , (6)



LSM for pricing options embedded in mortgages 5

We concentrate ourselves on the LSM method to solve the problem (4). In the
discrete time setting, the problem becomes to evaluate

ess sup
τ∈[i,N ]

E
[
e−h

∑τ
j=i rj (Vτ − FVτ ) | Fi

]
, (7)

for each i = 0, . . . , N−1, and Vτ − FVτ is determined by (1) and (3) with the
discount bond values

P (ih, kIP ) = E
[
e−h

∑k·nI−1

j=i rj | Fi
]
, (8)

for any i = 0, . . . , N and k = bi/nIc, . . . , nP . Since the short rate rj build
now a Markov chain, the quantities (8) are deterministic functions of i and ri,
thus the conditional expectation in (7) is a function which only depend on i
and ri, as well as Vi(ri)−FVi. In this case, (7) can be evaluated by backward
recursion using Snell envelope as follows (e.g. see [3]):

V pN (r) = VN (r)− FVN (r) ≡ 0,

V pi (r) = max
{
Vi(r)− FVi(r), E

[
e−hri+1V pi+1(ri+1) | ri = r

]}
, (9)

for i = N−1, . . . , 1, 0, where the optimal stopping time is determined by

τ̂ = inf
{
i ≤ N : V pi (ri) = Vi(ri)− FVi(ri)

}
. (10)

We then consider the situation that there are not only the prepayment risk,
but also the default risk. We assume that the ”price of the house” evolves as
a geometric Brownian motion:

dHt = (rt − s)Htdt+ σHHtdW
H
t , (11)

where s is a constant dividend or so-called service fee for the house, σH is the
instantaneous standard deviation of returns on the house value, and WH

t is
a standard Wiener process, which is not necessarily independent of W r

t . We
assume dWH

t · dW r
t = ρHrdt.

In case of default, the borrower forfeits the house to the lender, which is
the right can be exercised any time during the time interval [0, T ]; thus, the
default option can be seen as an option of American style. The prepayment
and default option are alternative to each other, it is impossible to evaluate
them separately. Instead, their optimal combined value is given in (5). In the
discrete time setting, this problem becomes to evaluate

V bi = ess sup
τ,δ∈[t,T ]

E
[
I{τ<δ}e

−h
∑τ
j=i rj (Vτ−FVτ )+I{δ<τ}e

−h
∑δ
j=i rj (Vδ−Hδ) | Fi

]
,

(12)
for each i = 0, . . . , N − 1. Since ri is a Markov chain and Vi is deterministic
of r, we have

V bN (r,H) = 0,

V bi (r,H) = max
{

(Vi − FVi)(r), Vi(r)−H,

E
[
e−hri+1V bi+1(ri+1, Hi+1) | ri = r,Hi = H

]}
. (13)
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for i = N−1, . . . , 1, 0. Then V bi = V bi (ri, Hi) for i = N, . . . , 1, 0, and two
optimal stopping times are given by

τ̂ = inf
{
i ≤ N : V bi (ri, Hi) = (Vi − FVi)(ri)

}
,

δ̂ = inf
{
i ≤ N : V bi (ri, Hi) = Vi(ri)−Hi

}
.

In the real market, we can sometimes see very large returns (positive or nega-
tive) of the house price in small time increments. Thus, we can consider that
the house price Ht evolves as a jump diffusion process (e.g. see [12]), which
could better address the issue of fat tails.

dHt = u∗tHtdt+ σHHtdW
H
t + (JNt − 1)HtdNt, (14)

where Nt is a Poisson process with intensity λ, Jn, n = 1, 2, . . ., are i.i.d log-
normal variables, with mean µj and variance σ2

j , and u∗t = rt − λE[Jn − 1]
under the risk neutral measure.

4 Least-squares Monte Carlo methods

In this section, we present how to evaluate the backward recursion (9) by
means of the LSM method. We denote

Pi(ri) =
(
Vi(ri)− FVi(ri)

)+
,

P ci (r) = E
[
e−hri+1V pi+1(ri+1) | ri = r

]
.

Here Pi(ri) is the payoff of prepayment option at time i. At each exercise time
i, the holder decides to exercise the option and get the payoff Pi(ri) or to
continue. In this case, the payoff may only depend on the value of ri at time
i. On the other hand, P ci (ri) denotes the expected option value if the option
is not exercised at time i. The major contribution of Longstaff and Schwartz
in [11] is to estimate the continuation value P ci (ri) by ordinary least-squares
regression.

We consider J path-realizations ri with results ri,j , where i ∈ {0, . . . , N}
and j ∈ {1, . . . , J}. LSM method propose to regress the J continuation values:

e−hri+1,jV pi+1,j(ri+1,j)

against the J simulated values for ri,j . Given K basis functions b : R1×K → R,
the regression starts at the time step N−1, i.e. one step before maturity N .
The continuation value P ci,j is approximated by

P̂ ci,j(ri,j) =

K∑
k=1

a∗k,ibk(ri,j). (15)



LSM for pricing options embedded in mortgages 7

The optimal regression coefficients a∗k,i are the result of

min
a1,i,...,aK,i

1

J

J∑
j=1

( K∑
k=1

ak,ibk(ri,j)− e−hri+1,jV pi+1,j(ri+1,j)
)2

(16)

In some circumstances, the quality of the regression can be improved upon
when restricting the paths involved in the regression to those where the option
is in the money. In addition, The optimal regression coefficients a∗k,i are varying
under the backward induction, where i ∈ {0, . . . , N}.

One possible choice of basis functions is the set of (weighted) Laguerre
polynomials:

Lk(r) = e−
1
2 r
er

k!

dk

drk
(rke−r).

Other types of basis function include the Hermite, Legendre, Chebyshev, Gegen-
bauer and Jacobi Polynomials, etc.

Given that the prepayment option value at maturity equals 0, a dynamic
program solves for all values V pi,j , starting at time N and iterating backward-
s to 0. Based on the value V p0,j , we can compute an approximation to the
prepayment option value, which is known as

V̂ p0 =
1

J

J∑
j=1

V p0,j , (17)

We extend the LSM method to evaluate the backward recursion (13). Since
only one mortgage option can be exercised at a given time i, we use following
denotations:

Di(ri, Hi) = (Vi(ri)−Hi)
+,

Bi(ri, Hi) = max
{
Di(ri, Hi), Pi(ri, Hi)

}
,

where Di(ri, Hi) is the payoff of default option at time i, and Bi(ri, Hi) is the
payoff of joint option at time i.

Now, we consider J simultaneous path-realizations ri and Hi with results
ri,j and Hi,j , where i ∈ {0, . . . , N} and j ∈ {1, . . . , J}. The LSM method
proposes to regress the J continuation values

e−hri+1,jV bi+1,j(ri+1,j , Hi+1,j)

against the J simulated values for ri,j and Hi,j . Given K basis functions
b : R2×K → R, the regression start at the time step N−1, i.e. one step before
maturity N . The continuation value Bci (ri, Hi) is approximated by

B̂ci,j(ri,j , Hi,j) =

K∑
k=1

a∗k,ibk(ri,j , Hi,j). (18)
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The optimal regression coefficients a∗k,i are the result of

min
a1,i,...,aK,i

1

J

J∑
j=1

( K∑
k=1

ak,ibk(ri,j , Hi,j)− e−hri+1,jV bi+1,j(ri+1,j , Hi+1,j)
)2

(19)

Finally, the joint option value is given by

V̂ b0 =
1

J
·
J∑
j=1

V b0,j

In order to distinguish between default option and prepayment option, we
use the following dynamic programming: Set τ∗N,j = N , and

τ∗i,j =

{
i, if Bi,j(ri, Hi) ≥ Bci,j(ri, Hi), i = N−1, . . . , 1, 0,

τ∗i+1,j , otherwise,

where j ∈ {1, . . . , J}. To distinguish prepayment option and default option,
we have to denote τn,j as the optimal stopping time of prepayment option and
δn,j default option. The rule to distinguish them can be listed as follows. Set

τN,j = δN,j = τ∗N,j

Then, if Bi,j(ri,j , Hi,j) ≥ Bci,j(ri,j , Hi,j), we set

τi,j = τ∗i,j , δi,j = δi+1,j , if Pi,j(ri,j , Hi,j) ≥ Di,j(ri,j , Hi,j)

δi,j = τ∗i,j , τi,j = τi+1,j , otherwise;

and if Bi,j(ri,j , Hi,j) < Bci,j(ri,j , Hi,j), we set

τi,j = τi+1,j , δi,j = δi+1,j

Finally, based on J paths monte-carlo simulation, we can calculate respectively
the value of prepayment option and default option by the formula as follows:

V̂ p0 =
1

J

J∑
j=1

e−
∫ τ0,j
0 ruduV bτ0,j ,j(rτ0,j ,j , Hτ0,j ,j),

V̂ d0 =
1

J

J∑
j=1

e−
∫ δ0,j
0 ruduV bδ0,j ,j(rδ0,j ,j , Hδ0,j ,j).
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5 The LSM algorism and simulation results

LSM Algorism:

1) Generate J discrete paths of house value and short interest rate, respec-
tively, by the schemes given in [4];

2) Use the J short rate paths to calculate the value of mortgage without
options Vi,j and the face value FVi,j(ri,j) for i ∈ {0, . . . , N} and j ∈
{1, . . . , J}, and then set the cash-flows at maturity for each path.

3) Starting from tN−1, select in-the-money paths, and then discount those
cash-flows to prior exercise point.

4) Estimate condition expectation function using ordinary least squares re-
gression.

5) Use conditional expectation function estimated from Item 4 to compute
continuation value and then compare it with intrinsic value at current
point to determine optimal exercise decision.

6) For each path, use results of Item 5 to adjust discounted cash-flow at
current point. When updating the joint option value V bi,j(ri,j , Hi,j) under
the case of continuation, the real continuation value

e−hri+1,jV bi+1,j(ri+1,j , Hi+1,j)

is to be taken and not the estimated B̂ci,j(ri, Hi).
7) Repeat Items 3 – 6 for next exercise point until t0.
8) Average discounted cash - flows at time t0 for default paths and prepayment

paths respectively.

In Item 1), we can employ the antithetic method in the variance reduction
technique. This method relies on reducing variance by introducing a negative
or ”antithetic” relation between pairs of simulated random components [6]. In
Item 2), there are two different methods: 1-step LSM and 2-steps LSM. The
unique difference between them is how to compute Vi, which is given by

Vi = AP

N∑
k=i+1

P
(
ih, kh

)
= APP

(
ih, (i+1)h

)
+ E

[
e−hri+1Vi+1 | ri

]
, (20)

for i = N−1, . . . , 1, 0, where we suppose that IP = h. In the 2-steps LSM,
the backward recursion (9) is evaluated by two steps least squares regression
under the Monte Carlo simulation framework, i.e. the first step is to estimate
Vi by least squares regression in (20) and the second step is to estimate the op-
tion price (9) by the other least squares regression. We mention here that the
two steps of Monte Carlo regressions share the same simulated paths. On the
other hand, 1-step LSM calculates Vi by means of bond analytical formula [3]
or directly from the simulated path. Meanwhile, in Item 4, as basis function-
s in the regressions we use Laguerre polynomials evaluate the standardized
house price Ht/H0, the standardized interest rate rt/r0, the cross products
(Ht/H0)(rt/r0).
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Remarks (Simulating the Jump Diffusion Process). For easily generating the
house price path, the process (14) can be expressed in terms of Xt = logHt,

dXt = (u∗t −
σ2
H

2
)dt+ σHdWH

t + log JNtdNt, (21)

where u∗t = rt − λE[Jn − 1], and we denote κ = E[Jn − 1] = e(µj+σ
2
j ) − 1 since

log Jn ∼ N(µj , σ
2
j ). After discretized, the process (21) becomes

Xi+1,j = Xi,j + (ri,j − λκ−
σ2
H

2
)h+ σH(WH

i+1,j −WH
i,j) +

Ni+1,j∑
n=Ni,j+1

log Jn

where i ∈ {0, . . . , N − 1} time states and j ∈ {1, . . . , J} paths. The specific
algorism for the jump diffusion process

a) Generate Zi+1,j ∼ N(0, 1).
b) Generate Ni+1,j−Ni,j ∼ Poisson(λh); ifNi+1,j = Ni,j set Mi+1,j = 0 and

go to Item 5).
c) Generate log JNi,j+1, ..., log JNi+1,j

, where log Jn ∼ N(µj , σ
2
j ) for n = Ni,j+

1, ..., Ni+1,j .
d) Set

Mi+1,j =

Ni+1,j∑
n=Ni,j+1

log Jn.

e) Set Xi+1,j = Xi,j + (ri,j − λκ− σ2
H

2 )σ2
Hh+ σH

√
hZi+1,j +Mi+1,j .

Simulation experiments:
Now, we illustrate the above-presented algorism with the following basic pa-
rameters setting for the CIR model of interest rate (6), the house value process
(11) and the mortgage in Table 1, which are the same as that in paper [7] for
the comparison of different methods.

Table 1 Model parameters

A 1 κ 0.15 θ 0.05
Loan to value 1 ρ 0.055 s 0.045

σH 0.05 σr 0.065 r0 0.055
ρHr 0

The first experiment is to compare the different choice of basis functions
used to generate the LSM algorithm. In Table 2 and Table 3, we show re-
spectively how the different types of basis functions and the different numbers
of basis functions affects the simulated results. From Table 2, the obtained
results are virtually identical with three different basis. Table 3 shows us that
few basis functions K = 3 are needed to closely approximate the conditional
expectation function (15). Therefore, for following experiments, we choose the
Laguerre polynomials and K = 3 basis functions.
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Table 2 Different basic functions to get LSM estimate of prepayment options

Maturity T = 5 T = 10 T = 20 T = 30
Non-callable mortgage V0

Analytical Price 4.3853 7.7802 12.549 15.542
Basic polynomials 4.3853 7.7800 12.5516 15.5440

Laguerre polynomials 4.3854 7.7802 12.549 15.5424
Legendre polynomials 4.3853 7.7790 12.5481 15.5368

Prepay Option Price V p
0

Analytical Price 0.0593 0.2438 0.818 1.432
Basic polynomials 0.0564 0.2417 0.8172 1.4148

Laguerre polynomials 0.0566 0.2416 0.8157 1.4175
Legendre polynomials 0.0564 0.2415 0.8150 1.4153

a Number of steps N = 1, 000, the simulation paths J = 100, 000.

Table 3 Different numbers of the basic function to get the LSM estimate

T=5 T=10 T=20 T=30

V p
0 (s.e.)a V p

0 (s.e.) V p
0 (s.e.) V p

0 (s.e.)
K=2 0.055 (0.0022) 0.237 (0.0098) 0.7985 (0.0283) 1.3965 (0.0463)
K=3 0.0567 (0.0018) 0.2426 (0.0076) 0.8142 (0.028) 1.4294 (0.044)
K=4 0.0571 (0.0025) 0.242 (0.0094) 0.8231 (0.0335) 1.4285 (0.0445)
K=5 0.0569 (0.0023) 0.2443 (0.0082) 0.8173 (0.0316) 1.4214 (0.0509)
K=6 0.0534 (0.0023) 0.2378 (0.0082) 0.8082 (0.0509) 1.4129 (0.0468)

a The standard errors of the simulation estimates (s.e.) are given in parentheses.

The second experiment is to compare the simulation results of relating
mortgage values done by 2-steps LSM with BTM, PDE approximation method
and 1-step LSM, which is shown in Table 4. The LSM is done with the time
intervals N = 1, 000, the number of paths J = 100, 000 (50,000 plus 50,000
authentic) and maturities T = 5, 10, 20, 30. In general, the convergence of 2-
steps LSM to the Analytical approximation method and BTM for the price of
the callable mortgage is comparably persuasive compared with 1-step LSM.
The prices of the non-callable mortgage and the prepayment option is simulat-
ed more accurately by 1-step LSM compared with 2-steps LSM. In addition,
we also make a diagnostic test for the convergence of a simulation algorithm,
shown in Table 5. In our context, this can be implemented by estimating the
conditional expectation regressions from one set of paths and then applying
the regression functions to an out of sample set of paths [11]. Table 5 substan-
tiates that out of sample values that closely approximate the in sample values
for the prepayment option.

The third experiment is to extend our model to simulate the value of pre-
payment and default options embedded in mortgage, which is done with the
time intervals N = 1, 000, the number of paths J = 1, 000 and maturities
T = 5, 10, 20, 30, repeated 100 times with different initial seeds for the ran-
dom number generator. Its relating simulation results are found in the Table
6. We then consider the case when the house value follows the jump-diffusion
process as (14). The LSM is done with the time intervals N = 1, 000, the
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Table 4 Comparison of different methods to estimate the value of prepayment options

T = 5 T = 10 T = 20 T = 30

Non-callable mortgage V0
Analytical approximationa 4.3853 7.7802 12.549 15.542

BTMb 4.3853 7.7803 12.55 15.544
1-step LSM 4.3851 7.7802 12.549 15.5424

2-steps LSM 4.3843 7.7765 12.5388 15.5277
Callable mortgage V e

0
Analytical approximation 4.326 7.5364 11.731 14.11

BTM 4.326 7.5365 11.731 14.112
1-step LSM 4.3288 7.5386 11.7333 14.1249

2-steps LSM 4.3279 7.5361 11.7284 14.1202
Prepayment option V p

0
Analytical approximation 0.0593 0.2438 0.818 1.432

BTM 0.0593 0.2438 0.819 1.432
1-step LSM 0.0563 0.2416 0.8157 1.4175

2-steps LSM 0.0564 0.2404 0.8104 1.4075

a Analytical approximation method is done in [14]
b Binomial tree price is done in [7]

Table 5 Comparison of the in-sample and out-of-sample LSM estimates of the value of the
prepayment option

T V p,is
0 (s.e.) V p,os

0 (s.e.) V p,is
0 -V p,os

0 V p,is
0 -VBTM

5 0.0562 (0.0022) 0.0568 (0.0026) -0.0006 -0.0031
10 0.2442 (0.0095) 0.2436 (0.009) 0.0006 0.0004
20 0.8196 (0.0278) 0.8138 (0.0318) 0.0058 0.0016
30 1.4202 (0.0442) 1.416 (0.0558) 0.0042 -0.0118

a V p,is0 and V p,os0 are in-sample and out-of-sample LSM estimates of the prepay-
ment option respectively

number of paths J = 1, 000 repeated 100 times with different initial seeds for
the random number generator, maturities T = 5, the jump mean µj = −0.90,
the jump volatility σj = 0.40 , and the jump intensity λ = 0, 0.1, 0.5, 1, 1.5.
The numerical results are shown in Table 7. Considering the financial im-
plication, Table 4 and Table 6, show that the prepayment and default risks
cannot be neglected in valuing the mortgage, since they take up a compara-
bly large proportion of the mortgage value, especially when the maturity T
becomes longer. Table 7 shows the jump risks for the underlying house value.
As expected, jump intensity λ is positively correlated with the default option
value.

The last experiment is is to show the convergence of our LSM algorism to
estimate the prepayment options, under the increasing numbers of sample path
and numbers of time intervals, shown in Figure 1 and Figure 2 respectively.
From these figures, we clearly see that LSM method is a Lower bounds estima-
tor for the prepayment options values. Figure 2 also implicates the convergence
of Bermudan style prepayment options to the American style options.
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Table 6 The estimate of prepayment and default options value using 1-step LSM

T=5 T=10 T=20 T=30

V0 4.3858 7.7822 12.5475 15.5401
(0.0042) (0.0143) (0.0449) (0.073)

V e
0 4.323 7.5135 11.5866 13.7239

(0.0025) (0.0075) (0.0257) (0.0393)
V d
0 0.0193 0.088 0.3253 0.6326

(0.0024) (0.0094) (0.028) (0.0538)
V p
0 0.0435 0.1808 0.6355 1.1835

(0.0018) (0.008) (0.0225) (0.039)
V b
0 0.0628 0.2688 0.9609 1.8162

(0.0024) (0.0094) (0.028) (0.0538)

a V0 and V e0 denote the simulated pure mortgage val-

ue and the mortgage value with both risks; V d0 , V p0
and V b0 denote simulated default option value, pre-
payment option value, and joint options value re-
spectively.

Table 7 The estimate of prepayment and default options under a house jump process with
different jump intensities λ at T=5

λ 0 0.1 0.5 1 1.5

V d
0 0.018 0.0275 0.074 0.1116 0.1316

(0.0013) (0.0043) (0.012) (0.0142) (0.0161)
V p
0 0.0429 0.1103 0.3119 0.4005 0.4389

(0.0019) (0.012) (0.0233) (0.0254) (0.0253)
V0 4.3852 4.3854 4.385 4.3846 4.3857

(0.0038) (0.0042) (0.004) (0.0038) (0.0046)
V e
0 4.3242 4.2477 3.9991 3.8725 3.8152

(0.0022) (0.0116) (0.0252) (0.0276) (0.0312)

6 Conclusions

To sum up, in this paper, we have developed a model to quantify the pre-
payment and default risks embedded in mortgages within the context of the
optimal stopping theory. By means of least squares Monte Carlo method, op-
timal stopping time problem of American-style option can be well solved. We
apply this idea to our problem and obtain comparably persuasive numerical
results, which are compared with that done by binomial tree method and ana-
lytical approximation. To better solve the problem concerning the prepayment
option, we novelly present a method called two steps least squares Monte Carlo
method. After obtaining the numerical results, we make the financial analy-
sis and conclude: the prepayment and default risks embedded in mortgages
should not be neglected and the jump risk for the house price will cause the
intensity of default.
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Fig. 1 The convergence of in sample and out of sample prepayment option price under
different numbers of sample path
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Fig. 2 The convergence of in sample and out of sample prepayment option price under
different numbers of time interval
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