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§1. Introduction

Let G be a noncompact connected semisimple Lie group with finite center, a maximal

compact subgroup K and a Lie algebra g having a Cartan decomposition,

g = t⊕ p.

If we choose a maximal abelian subspace, a, of p and define A+ = {exp tH : H ∈ a, t > 0}

then G has a polar decomposition given as G = K · cl(A+) · K, where cl(A+) is the

closure of A+. This decomposition implies that every K−biinvariant function on G is

completely determined by its restriction to A+. An example of such a function is the

(zonal) spherical function, φλ, λ ∈ a∗C, on G. If we denote the restriction of φλ to A+ as

φ̃λ, then the following system of differential equations hold:

q̃φ̃λ = γ(q)(λ)φ̃λ,

where q ∈ Q(gC)(:= U(gC)
K = centralizer of K in U(gC)), γ := γg/a is the Harish-

Chandra homomorphism of Q(gC) onto U(gC)
w, the w− invariant subspace of U(gC),

with w denoting the Weyl group of the pair (g, a), tU(gC)
∩

Q(gC) is the kernel of γ and

q̃ is the restriction of q to A+. Since

q̃ · f = q̃ · f̃ ,

for every f ∈ C∞(G//K) we conclude that q̃ is the radial component of q. We define

q ∈ Q(gC) to be spherical whenever q = q̃.

The above system of differential equations have been extensively used by Harish-

Chandra in the investigation of the nature of the spherical functions, φλ, their asymptotic

expansions and their contributions to the Schwartz algebras on G. The history of this

investigation dated back to the 1950′s with the two-volume work of Harish-Chandra,

[3(a.)] and [3(b.)], which still attracts the strength of twenty-first century mathematicians

(see [10.] and [1.]). Other functions on G satisfying different interesting transformations

under members of Q(gC) have also been studied in the light of the approach taken by

Harish-Chandra. We refer to [5.] and the references cited in it for further discussion.
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Now if G is a semisimple Lie group with real rank 1 then it is known (see [3a.]) that

the above system of differential equations can be replaced with

δ
′
(ω) · φλ = γ(ω)(λ) · φλ,

where ω is the Casimir operator of G and δ
′
(ω) denotes the radial component of the

differential operator, δ
′
(ω), associated with ω. If we load the structure of G, as a real

rank 1 semisimple Lie group, into the last equation it becomes

(
d2

dt2
+ {(p+ q) coth t+ q tanh t} d

dt
)fλ = (λ2 − (p+ 2q)2

4
)fλ,

where p = n(α), q = n(2α), fλ(t) := φλ(exp tH0) and H0 is chosen in a such that

α(H0) = 1 (see [13.], p. 190 for the case of G = SL(2,R)). Setting z = −(sinh t)2

transforms the above ordinary differential equation to the hypergeometric equation

(z(z − 1)
d2

dz2
+ ((a+ b+ 1)z − c)

d

dt
+ ab)gλ = 0,

where gλ(z) = fλ(t), z < 0, a = p+2q+2λ
4 , b = p+2q2λ

4 and c = p+q+1
2 , whose solution is

from here given by the Gauss hypergeometric function, F (a, b, c : z), defined as

F (a, b, c : z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
,

| z |< 1 ([16.], p. 283). It then follows that

φλ(exp tH0) = F (a, b, c : z),

and we conclude that the spherical functions on real rank 1 semisimple Lie groups are

essentially the hypergeometric function. In other words, the hypergeometric functions

form the spherical functions on any real rank 1 semisimple Lie group.

The confluent hypergeometric function is defined as

1F (a, c : z) = limb→∞F (a, b, c : z/b) =

∞∑
k=0

(a)k
(c)k

zk

k!
.

Thus replacing z with z/b in the hypergeometric function, F (a, b, c : z), and computing

the limit as b → ∞ leads to its confluent, 1F (a, c : z). Taking the same steps for the

above hypergeometric equation shows that 1F (a, c : z) satisfies the confluent differential

equation

z
d2w

dz2
+ (c− z)

dw

dz
− aw = 0.
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Now since on any real rank 1 semisimple Lie group G, every spherical function is

expressible, as seen above, in terms of a hypergeometric function, we refer to 1F (a, c : z)

as a confluent spherical function on G and we denote it by φσ
λ(exp tH0). i.e.,

φσ
λ(exp tH0) =1 F (a, c : z),

with z = −(sinh t)2. It is however noted that if we replace z with z/b in z = −(sinh t)2,

as in the derivation of the confluent hypergeometric equation, then we have

t = sinh−1(i
√

z/b).

So that as b → ∞ it implies that values of t becomes very small. It then means that the

relationship

φσ
λ(exp tH0) =1 F (a, c : z),

is valid only for sufficiently small values of t. We conclude therefore that the spherical

function, φλ(exp tH0), becomes a confluent spherical function on G for small values of

t.

Our aim in this paper is, therefore, to study the function φλ(exp tH0) for small

values of t since this corresponds with the study of the confluent spherical function,

φσ
λ(exp tH0) as explained above. In this respect we find the Stanton-Tomas expansion

of φλ(exp tH0) very appropriate to define the general notion of a confluent spherical

function.

The paper is arranged as follows: §2. contains a discussion of the radial component

of spherical differential operators on any G of arbitrary rank, as discovered by Harish-

Chandra ([3a.] and [3b.]), while the motivation for the notion of a confluent spherical

function on a real rank 1 semisimple Lie group is developed in §3. This motivation

informs our choice of the Stanton-Tomas expansion in the definition of a confluent

spherical function. The algebra of these functions are then studied and related with the

Schwartz algebra of spherical functions.

An insight into the study of specific confluent spherical functions on the real rank 2

case of Sp(2,R), leading to the consideration of different kinds of Whittaker functions,

is contained in Hirano, et al [5.]. However the approach taken in this paper is more

general than theirs and holds for any real rank 1 semisimple Lie groups, and may be
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extended to higher ranks.

§2. Radial Components of Spherical Differential Operators

Consider a noncompact connected real semisimple Lie group G with finite center

and with the Lie algebra g, whose complexification is denoted as gC. We can identify the

members of g with left-invariant vector fields of G in the following manner. For every

X ∈ g, we define a map

X 7−→ ∂(X),

where ∂(X) is to act on members of C∞(G) by the requirement

(∂(X)f)(x) :=
d

dt
f(x · exp tX)|t=0

.

This depicts ∂(X) as a first order left-invariant differential operator on G associated to

every X ∈ g and which satisfies the relation

∂([X,Y ]) = ∂(X)∂(Y )− ∂(Y )∂(X),

for X,Y ∈ g. This outlook may be used to introduce left-invariant differential operators

of any order on G, by choosing more than one member of g at a time. Indeed, if

X1, ..., Xr ∈ g and we define the map

X1 · · ·Xr 7−→ ∂(X1 · · ·Xr)

as

∂(X1 · · ·Xr) = ∂(X1) · · · ∂(Xr)

then

∂(X1 · · ·Xr)(x) = (
∂r

∂t1 · · · ∂tr
f(x · exp tX1 · · · exp tXr))|(t1,··· ,tr)=(0,··· ,0)

,

which is a left-invariant differential operator on G of order ≤ r. These operators are

analytic and are precisely the endomorphisms of C∞(G) generated by ∂(X), X ∈ g

([13], p. 101). Thus if we define D(G) = spanC{∂(X) : X ∈ g}, then D(G) is a

subalgebra of the algebra EndC(C
∞(G)), of all endomorphisms on C∞(G), with the

identity operator as its identity element.
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However, it is known that if X1, · · · , Xr ∈ g, the product X1 · · ·Xr may not generally

be a member of g, as may easily be verified with low-dimensional Lie algebras. Thus

we should seek a gadget in which every product, X1 · · ·Xr, of members of g is always

found, and then study the structure of the map

∂ : X1 · · ·Xr 7−→ ∂(X1 · · ·Xr)

with this gadget on the foreground. With this aim in mind we consider the tensor

algebra, T (gC), of the complexification, gC, of g, given as

T (gC) = C⊕ gC ⊕ (gC ⊗ gC)⊕ (gC ⊗ gC ⊗ gC)⊕ · · · =
∞⊕
k=0

T k(gC),

where T 0(gC) := C, and T k(gC) := gC ⊗ · · · ⊗ gC. T (gC) is an associative algebra over

C with identity, and there is a natural map , ι, of gC into T (gC) given by identifying gC

with the first-order terms ([1.]). T (gC) has the following universal property.

2.1 Theorem([6.], p. 644). If A is any other associative algebra over C with

identity and τ is a linear map of g into A, then there exists a unique associative algebra

homomorphism τ̄ , with τ̄(1) = 1 such that τ̄ ◦ ι = τ. �

We conclude, from the definitions of ∂ and T (gC) above, that

∂ : T (gC) 7−→ D(G).

However, as [X,Y ], XY, Y X ∈ T (gC), for every X,Y ∈ gC and

∂([X,Y ])− ∂(X)∂(Y )− ∂(Y )∂(X) = 0,

for every X,Y ∈ gC, it would be necessary to factor, out of T (gC), the set generated by

all elements of the form X ⊗ Y − Y ⊗X − [X,Y ], for X,Y ∈ gC. Indeed

I = spanC{X ⊗ Y − Y ⊗X − [X,Y ] : X,Y ∈ gC}

is a two-sided ideal of T (gC), and we define

U(gC) := T (gC)/I.

U(gC) is also an associative algebra with identity, it contains gC and has the following

universal property inherited from T (gC).
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2.2 Theorem([6.], p. 215). Let ι be the canonical map of gC into U(gC), let A be

any complex associative algebra with identity, and let φ be a linear mapping of gC into

A such that

φ([X,Y ]) = φ(X)φ(Y )− φ(Y )φ(X), X, Y ∈ gC.

Then there exists a unique algebra homomorphism φ0 : U(gC) −→ A with φ0(1) = 1

such that φ0 ◦ ι = φ. �

The canonical map ι, in the above theorem is one-to-one ([6.], p. 217) and the object

U(gC) is called the universal enveloping algebra of gC. One of the most fundamental

results in the theory of U(gC) is the following, which gives a concrete way of constructing

it.

2.3 Theorem(Poincaré-Birkhoff-Witt Theorem)([1.], p. 32). If X1, · · · , Xn is a

basis of gC over C, then the monomials ι(X1)
j1 · · · ι(Xn)

jn , jk ≥ 0, k = 1, · · · , n, form a

basis of U(gC) over C. �

The inclusion of ι in the above is not necessary since it is a one-to-one map. How-

ever, the members of U(gC) may seem to be difficult to handle if we only the defi-

nition U(gC) := T (gC)/I in mind. However recalling, from Theorem 2.2, that, with

A = D(G), ∂ : gC −→ D(G) is a (natural) homomorphism such that ∂([X,Y ]) =

∂(X)∂(Y )− ∂(Y )∂(X), X, Y ∈ gC, and which also extends to all of U(gC), this implies

that the members of U(gC) are more concrete than predicted by the Poincaré-Birkhoff-

Witt Theorem. Indeed we have the following major result that gives a different outlook

on U(gC).

2.4 Theorem([1.], p. 32). The algebra homomorphism ∂ : U(gC) −→ D(G) is an

algebra isomorphism onto. �

The message of these theorems is that the members of U(gC) are mixed derivatives,

so that U(gC) is the algebra of all left-invariant differential operators on G. This allows

us to study U(gC) as the house of all left-invariant differential operators on C∞(G).

Furthermore U(gC) may also be realized as the algebra of right-invariant differential

operators on G via the anti-isomorphism ∂r given as

(∂r(X1 · · ·Xr)f)(x) = (
∂r

∂t1 · · · ∂tr
f(exp t1X1 · · · exp trXr · x))|(t1,··· ,tr)=(0,··· ,0)

.

This second realization of U(gC) suggests that there are some of its members which
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are both left- and right-invariant. i.e., members q ∈ U(gC) in which qX = Xq, for all

X ∈ gC. This set of members that are both left- and right-invariant is the center of

U(gC) and is denoted by Z(gC). Though the algebra Z(gC) is abelian and sufficient in

the harmonic analysis on G, we shall however consider the larger subalgebra Q of U(gC)

defined as the centralizer of K in U(gC). i.e.,

Q = {q ∈ U(gC) : Ad(k)q = q, k ∈ K}.

This is due to the fact that we are ultimately interested in the study of K− biinvariant

functions on G. It is the radial component of members ofQ, viewed as a subalgebra of the

algebra, D(G), of left-invariant differential operators on G, that we set out to compute

in this section. This is reminiscence of the classical method of finding the normal form

of an ordinary differential operator. However we need to have a generalization of the

polar decomposition of matrices to members of G in order to start. We take a cue from

the example of the case G = SL(2,R), where the generalization of polar coordinates and

normal form are easily seen.

Let G = SL(2,R) = {x =

 a b

c d

 ∈ GL(2,R) : ad − bc = 1} with Lie algebra

g = sl(2,R) = {X ∈ GL(2,R) : tr(X) = 0} and complexification gC = sl(2,C) =

{X ∈ GL(2,C) : tr(X) = 0}. The matrices H =

 1 0

0 −1

 , X =

 0 1

0 0

 , and

Y =

 0 0

1 0

 are members of g and are such that the set {X − Y,H,X + Y } form

a basis for g. Now since, for t ∈ R, exp tH =

 et 0

0 e−t

 =: at and, for θ ∈ [0, 2π],

exp θ(X−Y ) =

 cos θ sin θ

− sin θ cos θ

 =: uθ, form the closed subgroups A and K of G, the

basis of g above implies that G = K ·A ·K. More precisely we have G = K · cl(A+) ·K,

where cl(A+) stands for the closure of {at : t > 0}. This is the polar decomposition

which is known to generalize to any noncompact connected semisimple Lie group, with

finite center. Another way to establish the polar decomposition, which easily extends
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to more general semisimple Lie groups, is by considering the map

φ : K × cl(A+)×K −→ G : (kθ1 , at, kθ2) 7−→ φ(kθ1 , at, kθ2) = kθ1atkθ2 .

This map is a diffeomorphism onto, and we can seek its differentials on the basis elements

X−Y,H,X+Y of g. Indeed, since the tangent spaces toK and A at 1 are t = {θ(X−Y ) :

θ ∈ R} =: R(X − Y ) and a = {tH : t ∈ R} =: RH, then we have that

∂

∂x1
=

∂

∂θ1
,

∂

∂x2
=

∂

∂t
,

∂

∂x3
=

∂

∂θ2
,

in the formula

∂φ(
∂

∂xj |m

) =

3∑
k=1

∂(yk ◦ φ)
∂xj |m

· ∂

∂yk |φ(m)

,

where (x1, x2, x3) and (y1, y2, y3) are coordinate systems about m and φ(m), respectively

(cf. [14.], p. 17). Since, in this case, m = 1, we have φ(m) = 1. Thus, as the tangent

space to G at φ(1) = 1 is g, with an orthonormal basis {X −Y,H,X +Y }, we also have

that
∂

∂y1
= (X − Y ),

∂

∂y2
= H,

∂

∂y3
= (X + Y ).

Hence

∂(y1 ◦ φ)
∂x1 |1

=
∂(y1 ◦ φ)

∂θ1 |(θ1,t,θ2)=(0,0,0)

=
∂

∂θ1
(exp θ1(X − Y ) · at · kθ2)|(θ1,t,θ2)=(0,0,0)

=
∂

∂θ1
(atkθ2 exp θ1(X − Y )k(−θ2)

a(−t))|(θ1,t,θ2)=(0,0,0)

(since exp(Z)y = y exp(Zy−1
) for Z ∈ g, y ∈ G.)

= k0a0
d

dθ1
(exp θ1(X − Y )k(−θ2)

a(−t))|θ1=0

= (X − Y )k(−θ2)
a(−t)

= k(−θ2) · a(−t) · (X − Y ) · at · kθ2

= (cosh 2t)(X − Y ) + (sin 2θ2 sinh 2t)H + (− cos 2θ2 sinh 2t)(X + Y )
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In the same manner

∂(y2 ◦ φ)
∂x2 |1

= Hk(−θ2) = 0(X − Y ) + (cos 2θ2)H + (sin 2θ2)(X + Y ),

∂(y3 ◦ φ)
∂x3 |1

= (X − Y ) = 1(X − Y ) + 0H + 0(X + Y ).

We then have the specifications of the differential, dφ, of φ on the basis elements, ∂
∂θ1

,

∂
∂t and ∂

∂θ2
, as

dφ :



∂
∂θ1

7−→ (cosh 2t)(X − Y ) + (sin 2θ2 sinh 2t)H + (− cos 2θ2 sinh 2t)(X + Y )

∂
∂t 7−→ 0(X − Y ) + (cos 2θ2)H + (sin 2θ2)(X + Y )

∂
∂θ2

7−→ 1(X − Y ) + 0H + 0(X + Y )

The Jacobian of this transformation is then sinh 2t, so that the corresponding Haar

measure , dG, of G is also dG = 1
2 sinh 2tdθ1dtdθ2. Its inverse, (dφ)

−1, is then given as

(dφ)−1 :


(X − Y ) 7−→ ∂

∂θ2

H 7−→ cos 2θ2
∂
∂t +

sin 2θ2
sinh 2t (

∂
∂θ1

− cosh 2t ∂
∂θ2

)

(X + Y ) 7−→ sin 2θ2
∂
∂t −

cos 2θ2
sinh 2t (

∂
∂θ1

− cosh 2t ∂
∂θ2

)

by simple substitution of the terms for ∂
∂θ2

, ∂
∂t and ∂

∂θ1
, respectively.

Now, since the above expression for (dφ)−1 imply that dφ is bijective everywhere on

K × A+ ×K it follows that ([13.], p. 190) that any analytic differential operator D on

G+ := KA+K gives rise to a unique differential operator Dφ on K × A+ × K, called

the polar form of D, such that, for any f ∈ C∞(G+), we have

(Df) ◦ φ = Dφ(f ◦ φ).

The composition with φ in this equation means restriction to G+. If we now denote the

restriction of f to A+ by f̃ , then the last equation above becomes

D̃f = D̃f̃

This means that D̃ is the radial component of the differential operator D on G+, whose

existence is proved in [3a.], p. 265, and is called spherical whenever D = D̃. Now since
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D(G) ∼= U(gC) it is sufficient to considerDφ forD = Z ∈ gC = sl(2,C). Indeed, for every

D = Z ∈ gC, we have that, Dφ = (dφ)−1(Z) and since a standard basis {H ′
, X

′
, Y

′} of

gC is given as

H
′
= −i(X − Y ), X

′
=

1

2
(H + i(X + Y )), Y

′
=

1

2
(H − i(X + Y )),

we have that

H
′φ = (dφ)−1(H

′
) = −i

∂

∂θ2
,

X
′φ = (dφ)−1(X

′
) =

ie−2iθ2

sinh 2t

∂

∂θ1
+ e−2iθ2 ∂

∂t
− i

cosh 2t

sinh 2t
e−2iθ2 ∂

∂θ2
,

and

Y
′φ = (dφ)−1(Y

′
) =

−ie2iθ2

sinh 2t

∂

∂θ1
+ e2iθ2

∂

∂t
+ i

cosh 2t

sinh 2t
e2iθ2

∂

∂θ2
.

The Poincaré-Birkhoff-Witt Theorem above then implies that we consider the radial

components of the monomials given as

H
′j1X

′j2Y
′j3 , j1, j2, j3 ≥ 0,

in order to exhaust the members of U(gC). It is sufficient, for a start, however to consider

the center Z(gC) or the centralizer, Q(gC), ofK in U(gC), both of which are commutative

subalgebras. Indeed, Z(gC) is the commutative polynomial algebra in the single variable

ω = (H
′
)2 + 2H

′
+ 4Y

′
X

′
,

the Casimir operator of G. i.e., Z(gC) = C[ω] ([8.], p.195), while Q(gC) is the commu-

tative polynomial algebra in the two variables ω and X − Y. i.e., Q(gC) = C[ω,X − Y ]

([8.], p.196). Clearly Z(gC) ⊂ Q(gC). We however use the normalized casimir operator,

ω
′
, given as

ω
′
= (H

′
)2 + 2H

′
+ 4Y

′
X

′
+ 1,

so that

ω
′φ = (dφ)−1(ω

′
) = [

1

sinh2(2t)
(
∂2

∂θ21
+

∂2

∂θ22
)− 2

cosh 2t

sinh2(2t)

∂2

∂θ1∂θ2
] + [

∂2

∂t2
+ 2

cosh 2t

sinh 2t
+ 1]

is the restriction of ω
′
to G+, and may be referred to as the polar form of ω

′
. This shows

that members of Z(gC) , indeed of U(gC), are essentially partial differential operators on

11



G+. Hence the radial component, δ
′
(ω

′
), of the normalized Casimir operator, ω

′
, which

is the restriction of the above ω
′
to A+, is simply

δ
′
(ω

′
) =

d2

dt2
+ 2

cosh 2t

sinh 2t

d

dt
+ 1,

(see also [7.], p. 73) reducing the mixed derivatives from Z(gC) to the ordinary derivatives

dr

dtr , 0 ≤ r ≤ 2, on spherical functions on G.

The following well-known result of [8.], p. 199, explains that the eigenfunctions of

Z(gC), or of ω
′
, are exactly the spherical functions on G.

2.5 Theorem. A K− biinvariant C∞ function f on G, with f(1) = 1, is a spherical

function iff ω
′
= λ2f for some λ ∈ C. �

A detailed proof of Theorem 2.5 is contained in [9.], p. 88. Now as every element

q ∈ U(sl(2,C)), of degree ≤ r, may be written as

q = γHr +
∑

l+m+n≤r,m≤r−1

βl,m,n(X − Y )lHm(X + Y )n,

with where γ and βl,m,n are constants, we may generalize the above expression for δ
′
(ω

′
)

to all members of U(sl(2,C)) in the following manner. Let R be the complex algebra of

functions on (0,∞) that are generated by (sinh 2t)−1 and cosh 2t · (sinh 2t)−1. We know

that ( d
dt)R ⊂ R, since the derivatives of the generators are all in R. The reduction of

every q ∈ U(sl(2,C)), and not just of Z(sl(2,C), to ordinary derivatives is established

using the above expression for q and the method of using (dφ)−1 in the calculation of

Dφ, for every D = Z ∈ sl(2,C), as enumerated for ω
′
above.

2.6 Proposition([13.], p. 238). If q ∈ U(sl(2,C)) is of degree ≤ r, then there exist

f0, · · · , fr−1 ∈ C · 1⊗R such that, for any φ ∈ C∞(G//K), we have

(q · φ) = (δ
′
(q) · φ)

on A+, where the operator δ
′
(q) is given as

δ
′
(q) = γ

dr

dtr
+

∑
0≤j≤r−1

fj ·
dj

dtj
,

for some constant γ. �

If r = 2 and q = ω
′ ∈ Z(sl(2,C)), the conclusion of Proposition 2.6 implies that

δ
′
(ω

′
) = γ

d2

dt2
+ f1

d

dt
+ f0,

12



which is in conformity with the direct computations above, where we see that γ is 1,

f1(t) is 2 cosh 2t
sinh 2t and f0(t) is 1. The operator δ

′
(q) in Propositon 2.6 above may then

be called the radial component of every q ∈ U(sl(2,C)). It would be a huge step to

generalize this Proposition to every q in the universal enveloping algebra, U(gC), of the

complexification, gC, of a real connected semisimple Lie algebra, g, of G. To this end we

extract the basic features in the above case of G = SL(2,R) as follows:

(i.) Computation of the differential(s) of the Cartan decomposition map, K ×A+ ×

K −→ G+.

(ii.) Use this differential, in (i.), to find the radial component for every member of

Z(gC) or of Q(gC).

Though the programme to solve items (i.) and (ii.) above may not be as straightfor-

ward as we have seen for gC = sl(2,C), the following result sets in motion the process

of dealing with (i.). To this end, let φ : K ×A×K −→ G and G+ = KA+K.

2.7 Proposition([2.], p. 125). The map φ : K×A×K −→ G, given as φ(k1, h, k2) :=

k1hk2, is submersive on K × A+ ×K. In particular, G+ is open in G and φ is an open

map of K ×A+ ×K onto G+.

Proof. We prove that the differential (dφ)(k1,h,k2) =: D maps t × a × t onto g. To

this end, let Z1, Z2 ∈ t, R ∈ a, then

(dφ)(k1,h,k2)(Z1, R, Z2) = D(Z1, R, Z2)

= D(Z1, 0, 0) +D(0, R, 0) +D(0, 0, Z2)

= (dφ)(k1,h,k2)(Z1, 0, 0) + (dφ)(k1,h,k2)(0, R, 0) + (dφ)(k1,h,k2)(0, 0, Z2)

= (
d

dθ1
φ(k1 exp θ1Z1 · h exp 0 · k2 exp 0))|θ1=0

+ (
d

dt
φ(k1 exp 0 · h exp tR · k2 exp 0))|t=0

+ (
d

dθ2
φ(k1 exp 0 · h exp 0 · k2 exp θ2Z2))|θ2=0

= (
d

dθ1
φ(k1 exp θ1Z1 · hk2))|θ1=0

+ (
d

dt
φ(k1 · h exp tR · k2))|t=0

+ (
d

dθ2
φ(k1h · k2 exp θ2Z2))|θ2=0
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= (
d

dθ1
φ(k1k2h · exp θ1Z(hk2)−1

1 ))|θ1=0
+ (

d

dt
φ(k1hk2 · exp tRk−1

2 ))|t=0

+ (
d

dθ2
φ(k1hk2 · exp θ2Z2))|θ2=0

= Z(hk2)−1
+Rk−1

2 + Z2

= Ad(k−1
2 ) · (Zh−1

1 ) +Ad(k−1
2 ) ·R+Ad(k−1

2 ) · (Zk2
2 )

= Ad(k−1
2 ) · (Zh−1

1 +R+ Zk2
2 )

Hence (Ad(k2)◦D)(Z1, R, Z2) = Zh−1

1 +R+Zk2
2 , showing that D is one-to-one. The

surjectivity of D would hold if we show that g = th
−1

+a+ t for every h ∈ A+. Indeed, it

is sufficient to verify that θn is contained in th
−1

+ a+ t, where θ is a Cartan involution

on g, n =
∑

α∈∆+ gα, and ∆+ is a set of positive restricted roots of (g, a). To this end,

let X ∈ gα, α ∈ ∆+, then

(X + θX)h
−1

= e−α(log h)X + eα(log h)(θX),

so that

(X+θX)h
−1−e−α(log h)(X+θX) = e−α(log h)X+eα(log h)(θX)−e−α(log h)X−e−α(log h)(θX)

= (eα(log h) − e−α(log h))(θX).

i.e.,

θX = (eα(log h) − e−α(log h))−1((X + θX)h
−1 − e−α(log h)(X + θX))

= (eα(log h) − e−α(log h))−1(X + θX)h
−1 − (eα(log h) − e−α(log h))−1e−α(log h)(X + θX) · · · (∗)

∈ th
−1

+ t (since (X + θX) ∈ t)

⊂ th
−1

+ a+ t.

This ends the proof as expected. �

We see that (dφ)(1,h,1) = Zh−1

1 + R + Z2, in anticipation of its use on the K−

biinvariant functions on G. The proof of Proposition 2.7 above gives a formula for the
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first differential, (dφ)(k1,h,k2), of φ. However since we are ultimately interested in the

radial component of an arbitrary C∞ spherical differential operator on G, which may

have second, third, and higher derivatives, we compute higher order derivatives of φ to

give the full differential, which we shall denote by (dφ)∞(k1,h,k2). This is mainly because

the property of Z(sl(2,C)), as a polynomial algebra in the variable ω
′
, has not be found

generalizeable to arbitrary semisimple G and g. Indeed we have the following.

2.8 Proposition([2.], p. 127). The full differential, (dφ)∞(k1,h,k2), of the map φ in

Proposition 2.7 is given on U(tC)⊕ U(aC)⊕ U(tC) as

(dφ)∞(k1,h,k2)(ξ1 ⊗ u⊗ ξ2) = ξ
(hk2)−1

1 uk
−1
2 ξ2,

where ξ1, ξ2 ∈ U(tC) and u ∈ U(aC). In particular

(dφ)∞(1,h,1)(ξ1 ⊗ u⊗ ξ2) = ξh
−1

1 uξ2. �

Just as in Proposition 2.7, the map

Dh : U(tC)⊕ U(aC)⊕ U(tC) −→ U(gC)

defined as Dh = (dφ)∞(1,h,1) is surjective. Thus for every q ∈ U(gC) there exists τh ∈

U(tC) ⊕ U(aC) ⊕ U(tC) such that Dh(τh) = q. If we assume that τh depends smoothly

on h, then the map h 7−→ τh leads to a differential operator on K × A+ ×K which, at

the points of (1)×A+ × (1), is simply q expressed in polar coordinates. To the find the

formula for τh we proceed as follows.

Let q 7−→ t(q) be the projection of U(gC) onto U(aC)U(tC), which corresponds to

the direct sum U(gC) = U(aC)U(tC) ⊕ θ(n)U(gC), then deg(t(q)) ≤ deg(q). In view of

the f ′
js in Proposition 2.6, we define fα and gα, α ∈ ∆+, on A+ by fα = (ξα − ξ−α)

−1

and gα = ξ−α(ξα − ξ−α)
−1, respectively, where ξλ = eλ◦log, λ ∈ aC. Also, let R0 be the

algebra with unit generated over, C, by the fα and gα, and, for any integer d ≥ 1, let

R0,d be the linear span of the monomials in these generators of degree d. Now if we put

R+
0 =

∑
d≥1

R0,d,

then for every q ∈ U(gC) of degree m, there exist ξi, ξ
′
i ∈ U(tC), ui ∈ U(aC) and φi ∈

R+
0 , 1 ≤ i ≤ n such that

q = t(q) +
∑

1≤i≤n

φi(h)ξ
h−1

i uiξ
′
i, h ∈ A+,
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and we may take

τh = 1⊗ t(q) +
∑

1≤i≤n

φi(h)ξi ⊗ ui ⊗ ξ
′
i, h ∈ A+, q ∈ U(aC).

This is the appropriate generalization of the expression for q in U(sl(2,C)) of degree

≤ r as given after Theorem 2.5 above. This direct comparison with the case of sl(2,C)

implies that we need to use the general expression for q above to seek the generalization of

Proposition 2.6 to all members of U(gC) for any semisimple Lie algebra g. It is sufficient,

in our present case, to seek this generalization to all members of Q(gC) as we now do

next. First a little preparation.

Take βn : U(gC) −→ U(aC) be the projection corresponding to the direct sum

U(gC) = U(aC)⊕ (tU(gC) + U(gC)n), having Q ∩ (tU(gC) as its kernel ([3(a.)], p. 260)

and define a map γn : Q(gC) −→ U(aC) by the specification

γn(q)(λ) = βn(q)(λ− ρ), λ ∈ a∗C, q ∈ Q(gC), ρ =
1

2

∑
α∈∆+

dim(gα) · α.

γn is a homomorphism ([3(a.)], p. 260), is independent of the choice of n and is called

the Harish-Chandra homomorphism. We denote it simply as γ which, for g = sl(2,R),

is given on ω
′
= (H

′
)2 + 2H

′
+ 4Y

′
X

′
as γ(ω

′
) = H2 7−→ d2

dt2
. (see [7.], p. 51 and use

the isomorphism in Theorem 2.4) We state the major result of this section.

2.9 Theorem([2.], p. 129 and [3(a.)], p. 267). Given any analytic spherical dif-

ferential operator E on G+ there is a unique analytic differential operator Ẽ on A+,

the radial component of E, such that Ẽf = Ẽf̃ , f ∈ C∞(G//K). The map E 7−→ Ẽ

is a homomorphism that does not increase degree. If E = q ∈ Q(gC), then the radial

component, written as δ
′
(q), is given as

δ
′
(q) = e−ρ · γ(q) · eρ +

∑
1≤i≤n

φiui,

where ui ∈ U(gC), φi ∈ R+
0 and deg(ui) < deg(q). �

It is clear that Theorem 2.9 generalizes the assertions of Proposition 2.6, at least

to all members of Q(gC), and it sets the stage for analysis of the differential equations

satisfied by spherical functions on G. Indeed, by Theorem 2.5 we have that ω
′
φ = λ2φ

which, when combined with Proposition 2.9, (see also Lemma 23 of [3(a.)]) implies that
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δ
′
(ω

′
)φ = λ2φ where, according to Theorem 2.9,

δ
′
(ω

′
) = e−ρ · γ(ω′

) · eρ +
∑

1≤i≤n

φiui,

and ω
′
is the normalized Casimir operator of U(gC). Even though the relation Z(sl(2,C)) =

C[ω′
] does not generalize to arbitrary gC the sufficiency of considering the differential

equations

δ
′
(ω

′
)φ = λ2φ (= γn(ω

′
)(λ) · φ)

in our study of spherical functions on G may be justified as follows.

2.10 Theorem([2.], p. 145). If φλ, λ ∈ a∗C is an eigenfunction of δ
′
(ω

′
), then it is

also an eigenfunction of δ
′
(q), q ∈ Q(gC), with the same eigenvalue.

Proof. We first show that the differential operators, δ
′
(q), q ∈ Q(gC), commute with

each other. Indeed, for any q1, q2 ∈ Q(gC), and any f ∈ C∞(G+//K), the commutativity

of Q(gC) implies that q1q2f = q2q1f. Hence

δ
′
(q1q2)f̃ = δ

′
(q2q1)f̃ ,

wheref̃ = f|A+
. Therefore

δ
′
(q1)δ

′
(q2) = δ

′
(q2)δ

′
(q1) · · · (∗)

Now let φλ, λ ∈ a∗C, be an eigenfunction of δ
′
(ω

′
). i.e., for some λ ∈ C, we have

δ
′
(ω

′
)φλ = γ(ω

′
)(λ) · φλ. Thus

δ
′
(ω

′
)(δ

′
(q)φλ) = δ

′
(q)(δ

′
(ω

′
)φλ) = γ(ω

′
)(λ)(δ

′
(q)φλ),

meaning that δ
′
(q)φλ is an eigenfunction of δ

′
(ω

′
). However, by the uniqueness of The-

orem 2.9, we must have that δ
′
(q)φλ is a constant multiple of φλ, as required. �

The above result explains that it is sufficient to consider the operator

δ
′
(ω

′
) = ω̃

′
=

d2

dt2
+ 2

cosh 2t

sinh 2t

d

dt
+ 1

in the study of spherical functions, φλ, on SL(2,R). In this case we have γ(ω
′
)(λ) = λ2

so that the equation

δ
′
(ω

′
)φλ = γn(ω

′
)(λ) · φλ
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becomes
d2φλ

dt2
+ 2

cosh 2t

sinh 2t

dφλ

dt
+ (1− λ2)φλ = 0 · · · (Υ)

i.e.,

sinh2(2t)
d2φλ

dt2
+ 2 sinh 2t cosh 2t

dφλ

dt
+ sinh2(2t)(1− λ2)φλ = 0

Now setting z = cosh 2t, and defining φλ(t) as Φλ(z), we would have dφλ
dt = (2 sinh 2t)dΦλ

dz

and d2φλ

dt2
= 4 sinh2(2t)d

2Φλ
dz2

+ 4 cosh 2tdΦλ
dz so that the last differential equation above

transforms to

sinh4(2t)
d2Φλ

dz2
+ 2 sinh2(2t) cosh(2t)

dΦλ

dz
+

1

4
sinh2(2t)(1− λ2)Φλ = 0.

We finally have, with sinh2(2t) = −(1− z2),

(1− z2)
d2Φλ

dz2
− 2z

dΦλ

dz
+

(λ2 − 1)

4
Φλ = 0.

This is the well-known Legendre equation.

This comfirms that the spherical functions on G = SL(2,R) are essentially

the Legendre functions as enunciated in [4.], pp. 405− 407.

It is a well-known fact in the general theory of ordinary differential equations that

we can now consider the associated confluent Legendre functions on G = SL(2,R) in

this context, and since every spherical function on G = SL(2,R) is a Legendre function,

we may refer to the confluent Legendre functions on G = SL(2,R) as confluent spherical

functions. This is the motivation for the next section where this outlook is generated to

all semisimple Lie groups with real rank 1.

§3. Reduction to the real rank 1 case.

It is appropriate, from Theorem 2.10, to find the general Casimir operator for the

semisimple Lie group G in order to get the generalization of the Legendre equation of

the group G = SL(2,R) as already seen above. To this end let J be the two-sided

proper ideal of U(gC), generated over C by elements of the form X ⊗ Y − Y ⊗X, where

X,Y ∈ gC. The quotient T (gC)/J is the symmetric algebra of gC, denoted as S(gC).
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Clearly if gC is abelian, then U(gC) = S(gC) Even if gC is non abelian, so that we

only have U(gC) ⊃ S(gC) in general, there is a map, λ : S(gC) −→ U(gC), called the

Harish-Chandra symmetrization map given as

λ(X1 · · ·Xr) =
1

r!

∑
σ

Xσ(1) · · ·Xσ(r),

where X1, · · ·Xr ∈ gC and σ runs over the set of all permutations of the set {1, · · · , r}.

This is a linear isomorphism and it may be shown that, for every x ∈ G, we have

λ ◦ Ad(x) = Ad(x) ◦ λ, where Ad(x) is viewed as a map from S(gC) into U(gC) (By an

adaptation of Theorem 2.2 to S(gC))([4.], p. 393). We the have the following.

3.1 Theorem([13.], p. 103). If I(gC) is the subset of members of S(gC) which are

Ad(G)− invariant, then λ : I(gC) −→ Z(gC) is a linear isomorphism.

Proof. This is a direct consequence of the relation λ ◦ Ad(x) = Ad(x) ◦ λ, for

x ∈ G. �

The above result allows us to use a basis of I(gC) in the construction of a basis of

Z(gC). Since it is known that S(gC) is essentially the polynomial algebra on gC, we may

introduce the Casimir polynomial, ξ, on gC given as ξ(Z) = tr(adZ)2. It follows that

ξ ∈ S(gC) and hence we have λ(ξ) ∈ Z(gC). If we define ξ̃ on gC by the requirement

⟨ξ̃, Z⟩ = ξ(Z), Z ∈ gC,

then we shall refer λ(ξ̃) as the Casimir operator and denote it by ω. The situation for

g = sl(2,R) may be used to justify these terms. Indeed, the Casimir polynomial in this

example is H2+4Y X and, hence, λ(H2+4Y X) = λ(HH)+4λ(Y X) = 1
2!(HH+HH)+

4[ 12!(Y X +XY )] = H2 +2Y X +2XY = H2 +2Y X + (2H +2Y X) = H2 +2H +4Y X,

which when normalized gives exactly ω
′
. In the general case we have the following, where

we denote B as the Cartan-Killing form on gC × gC.

3.2 Theorem([12.], p. 217). The Casimir operator ω belongs to the center, Z(gC)

of Y(gC). If {X1, · · · , Xm} is a basis for gC and {X1, · · · , Xm} is the dual basis defined

by B(Xi, X
j) = δij , then

ω =
∑

1≤i≤m

XiX
i.

Proof. The first statement holds from the linear isomorphism in Theorem 3.1. The

dual basis, {X1, · · · , Xm}, exists since B is a non-singular symmetric bilinear form.
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Now for every X ∈ gC we have that X =
∑

1≤j≤mB(X,Xj)Xj so that

(adX)2 =
∑

1≤r,s≤m

B(X,Xr)B(X,Xs)adXradXs.

Therefore

ξ(X) = tr(adX)2 =
∑

1≤r,s≤m

B(X,Xr)B(X,Xs)B(Xr, Xs).

Hence ξ̃ =
∑

1≤r,s≤mB(Xr, Xs)X
rXs. We then have that ω = λ(ξ̃)

=
∑

1≤r,s≤mB(XrXs)X
rXs =

∑
1≤s≤m(

∑
1≤r≤mB(Xr, Xs)X

r)Xs =
∑

1≤s≤mXsX
s,

as expected. �

We need to now compute the expression for the constant coefficient differential op-

erator, γ(ω), for ω as in Theorem 3.2 above, in anticipation of its use in the formula for

δ
′
(ω) contained in Theorem 2.9. This would require using a specific basis of g according

to the decomposition g = m⊕ a⊕
∑

λ∈∆ gλ, as we now proceed next.

Let {Zi}1≤i≤m be a basis of m such that B(Zi, Zj) = −δij , and let {Hi}1≤i≤a be

a basis of a such that B(Hi,Hj) = δij . This is possible since B is negative-definite on

t (hence on m) and positive-definite on p (hence on a). Also since, for any two roots

α, β of (g, a), the root-space gα is orthogonal to gβ whenever α ̸= β, and since B is

non-degenerate when restricted to gα × g−α (see [4.], p. 141) we may select a basis

{Xα,i}1≤i≤dim(gα), of gα, such that B(Xα,i, X−α,i) = δij , where θXα,i = X−α,i for a

Cartan involution, θ, on g, for every root α. It is clear, from the assertion of Theorem

3.2, that ω|m =
∑

1≤i,j≤m ZiZ
j = −(Z2

1+· · ·+Z2
m), ω|a =

∑
1≤i,j≤aHiH

j = H2
1+· · ·+H2

a

and ω|gα =
∑

1≤i,j≤dim(gα)
Xα,iX

α,j =
∑

1≤i,j≤dim(gα)
(Xα,iX−α,i+X−α,iXα,i). Hence the

direct sum g = m⊕ a⊕
∑

λ∈∆ gλ now implies that

ω = −(Z2
1 + · · ·+ Z2

m) + (H2
1 + · · ·+H2

a) +
∑

1≤i≤n(α),α>0

(Xα,iX−α,i +X−α,iXα,i).

The present form of the Casimir operator in theses bases may now be used to compute

the constant coefficient differential operator, γ(ω).

3.3 Lemma([2.], p. 94). In the above form of ω, we have that

γ(ω) =
∑

1≤i≤a

H2
i −B(Hρ,Hρ)
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where Hρ = 1
2

∑
α>0 n(α)Hα and Hα is uniquely defined by the requirement, α(H) =

B(Hα,H) for all H ∈ a.

Proof. We know that Xα,iX−α,i = X−α,iXα,i + [Xα,i, X−α,i]. Now if X ∈ gα

and X
′ ∈ g−α, then [X,X

′
] ∈ gα=0 ⊂ m ⊕ a, and, for every H ∈ a, we always have

B(H, [X,X
′
]) = α(H)B(X,X

′
). These sum up to give [X,X

′
] ≡ B(X,X

′
)Hα(modm),

for every X ∈ gα, X
′ ∈ g−α. In particular

[Xα,i, X−α,i] ≡ B(Xα,i, X−α,i)Hα(modm) = Hα(modm).

It then follows that

ω = −
m∑
k=1

Z2
k +

a∑
i=1

H2
i +

∑
1≤i≤n(α),α>0

(Xα,iX−α,i +X−α,iXα,i)

= −
m∑
k=1

Z2
k +

a∑
i=1

H2
i +

∑
1≤i≤n(α),α>0

(2X−α,iXα,i + [Xα,i, X−α,i])

≡ −
m∑
k=1

Z2
k +

a∑
i=1

H2
i +

∑
1≤i≤n(α),α>0

(2X−α,iXα,i +Hα(modm)).

Now using the fact that Q(gC)∩ (tU(gC)), which contains m, is the kernel of βn, we have

βn = −0 +
a∑

i=1

H2
i +

∑
α>0

n(α)Hα.

Hence

γ(ω)(λ) = βn(ω)(λ− ρ)

= βn(ω)(λ)− βn(ω)(ρ)

= (

a∑
i=1

H2
i +

∑
α>0

n(α)Hα)− (2
∑

1≤i≤a

ρ(Hi)Hi −
∑

1≤i≤a

ρ(Hi)
2 +

∑
α>0

n(α)ρ(Hα)).

i.e.,

γ(ω) =

a∑
i=1

H2
i +

∑
α>0

n(α)Hα − 2
∑

1≤i≤a

ρ(Hi)Hi +
∑

1≤i≤a

ρ(Hi)
2 −

∑
α>0

n(α)ρ(Hα).
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If we now observe, due to the orthonormality of the basis {Hi} of a relative to B,

that
∑

1≤i≤a ρ(Hi)Hi = Hρ = 1
2

∑
α>0 n(α)Hα and

∑
1≤i≤a ρ(Hi)

2 = B(Hρ,Hρ) =

1
2

∑
α>0 n(α)ρ(Hα), we now have

γ(ω) =

a∑
i=1

H2
i +

∑
α>0

n(α)Hα − 2(
1

2

∑
α>0

n(α)Hα) + (
1

2

∑
α>0

n(α)ρ(Hα))−
∑
α>0

n(α)ρ(Hα)

a∑
i=1

H2
i − 1

2

∑
α>0

n(α)ρ(Hα) =

a∑
i=1

H2
i −B(Hρ,Hρ). �

We can therefore get the expression for the radial component, δ
′
(ω), of ω using the

above expression for γ(ω) in Theorem 2.9. This would give the most general form of the

formula

δ
′
(ω

′
) =

d2

dt2
+ 2

cosh 2t

sinh 2t

d

dt
+ 1

of the case of G = SL(2,R) to all connected semisimple Lie group G with finite center.

The result is as follows.

3.4 Proposition([2.], p. 133, and [3(a.)], p.269). The radial component, δ
′
(ω), of

the differential operator ω is given as

δ
′
(ω) =

∑
1≤i≤a

H2
i + 2

∑
α>0

n(α)gαHα +
∑
α>0

n(α)Hα.

Proof. Having known that

ω = −
m∑
k=1

Z2
k +

a∑
i=1

H2
i +

∑
1≤i≤n(α),α>0

(Xα,iX−α,i +X−α,iXα,i)

and that the first sum vanishes under βn, it remains for us to find an expression for the

sum
∑

1≤i≤n(α),α>0(Xα,iX−α,i +X−α,iXα,i) in terms of members, fα and gα, of R+
0 , as

expected in the expression for δ
′
(ω) in Theorem 2.9 and explicitly seen in the case of

G = SL(2,R).

To this end, let Xα,i = Kα,i +Sα,i where Kα,i ∈ t and Sα,i ∈ p. Since [Xα,i, X−α,i] =

[Kα,i+Sα,i,K−α,i+S−α,i] = [Kα,i+Sα,i,−Kα,i+Sα,i] = 2[Kα,i, Sα,i] ∈ p, and [X,X
′
] ≡

B(X,X
′
)Hα(modm), X ∈ gα, X

′ ∈ g−α, we arrive at [Xα,i, X−α,i] = Hα. This then

means that [Kα,i, Xα, i] = [Kα,i, Sα,i] =
1
2 [Xα,i, X−α,i] =

1
2Hα. Now setting X = Xα,i

and g = Xα,i in

θX · g = fα(h)(X + θX)h
−1
g − gα(h)(X + θX)g
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(from the equation (∗) of the proof of Theorem 2.7) gives

2X−α,iXα,i = −2θ(Xα,i)Xα,i

= −2[fα(h)(Xα,i + θXα,i)
h−1

Xα,i − gα(h)(Xα,i + θXα,i)Xα,i]

= −2fα(h)[(Kα,i + Sα,i) + (Kα,i − Sα,i)]
h−1

Xα,i

+ 2gα(h)[(Kα,i + Sα,i) + (Kα,i − Sα,i)]Xα,i

= −4fα(h)K
h−1

α,i Xα,i + 4gα(h)Kα,iXα,i

= −4fα(h)K
h−1

α,i Xα,i + 4gα(h)(Xα,iKα,i + [Kα,i, Xα,i])

= −4fα(h)K
h−1

α,i Xα,i + 4gα(h)Xα,iKα,i + 4gα(h)[Kα,i, Xα,i]

= −4fα(h)K
h−1

α,i Xα,i + 4gα(h)Xα,iKα,i + 4gα(h)(
1

2
Hα)

= −4fα(h)K
h−1

α,i Xα,i + 4gα(h)Xα,iKα,i + 2gα(h)Hα,

so that

Xα,iX−α,i +X−α,iXα,i

= 2X−α,iXα,i +Hα

= −4fα(h)K
h−1

α,i Xα,i + 4gα(h)Xα,iKα,i + 2gα(h)Hα +Hα,

which when substituted into the above expression for ω gives

ω = −
m∑
k=1

Z2
k+

a∑
i=1

H2
i +

∑
1≤i≤n(α)

(−4fα(h)K
h−1

α,i Xα,i+4gα(h)Xα,iKα,i+2gα(h)Hα+Hα).

Using the kernel of βn, and hence of γn, in the expression for δ
′
(ω) we have

δ
′
(ω) = −0 +

a∑
i=1

H2
i − 4(0) + 4(0) + 2

∑
α>0

n(α)gα(h)Hα +
∑
α>0

n(α)Hα

=

a∑
i=1

H2
i + 2

∑
α>0

n(α)gα(h)Hα +
∑
α>0

n(α)Hα. �
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As from now on we may start the discussion on the asymptotic behaviour of the

spherical functions, φ, from the pertubation theory of the system of differential equations

satisfied by it given as

δ
′
(ω) · φλ = γn(λ) · φλ,

with δ
′
(ω) as in Theorem 3.4. This is already contained in [3(a.)], [3(b.)], [11.] and, more

recently [10.] In the present paper however, we shall seek to generalize the outlook that

led, in §2., to the notion of a confluent spherical function to all semisimple Lie groups,

with real rank 1. This would require loading the structure of G and its Lie algebra, g,

into the known expressions for δ
′
(ω) and γn(λ) as we do next.

We now take G to be a connected semisimple Lie group with finite center and real

rank 1. i.e., dim(a) = 1. This implies that there exists exactly one simple root in ∆ that

we denote by α. This also means that 2α is the only other possible element in ∆+ and,

if p and q represents the numbers n(α) and n(2α) of roots in ∆ which coincide on a+

with α and 2α, respectively, then

ρ =
1

2

∑
λ∈∆+

n(λ) · λ =
1

2
(n(α) · α+ n(2α) · (2α)) = 1

2
(p+ 2q) · α

and that p ≥ 1, q ≥ 0.Now chooseH0 ∈ a+ such that α(H0) = 1. Since, for anyH ∈ a, we

always have B(H,H) = 2
∑

λ∈∆+ n(λ)·λ(H)2 = 2(n(α)·(α(H))2+n(2α)·((2α)(H))2) =

2α(H)2(p+ 4q), hence

B(H0,H0) = 2 · α(H0)
2(p+ 4q) = 2(p+ 4q) · · · · · · (i.),

and B(Hα,Hα) = 2 · α(Hα)
2(p + 4q)). i.e., α(Hα) = 2α(Hα)

2(p + 4q). (since λ(H
′
) =

B(Hλ,H
′
), for all H

′ ∈ a.) This implies that α(Hα) = (2(p+ 4q))−1. Therefore

Hα = α(Hα) ·H0 = (2(p+ 4q))−1 ·H0 · · · · · · (ii.)

Equation (ii.) and the relation ρ = 1
2(p + 2q) · α also imply that Hρ = ρ(Hα) · H0 =

1
2(p+ 2q) · α(Hα) ·H0 =

1
2(p+ 2q)(2(p+ 4q))−1 ·H0. i.e.,

Hρ =
1

2
(p+ 2q)(2(p+ 4q))−1 ·H0 · · · · · · (iii.)

We now state the major result of this section as follows. This result generalizes the

situation of SL(2,R) above and motivates the concept of a confluent spherical function.
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§4. Confluent Spherical Functions And Their Algebra.

4.1 Theorem. Let G be a real rank 1 connected semisimple Lie group with finite

center and having the polar decompositionG = K ·cl(A+)·K. Then everyK− biinvariant

function on G is spherical iff it is a hypergeometric function.

Proof. Using the isomorphism t 7−→ exp tH0, t ∈ R between R and A we identify

H0 with d
dt so that

2(p+ 4q)δ
′
(ω)

= 2(p+ 4q)[H2
α + 2(n(α)gαHα + n(2α)g2αH2α) + (n(α)Hα + n(2α)H2α)]

= 2(p+ 4q)[(2(p+ 4q))−1 ·H2
0 + 2(p · ξ−α(ξα − ξ−α)

−1 · (2(p+ 4q))−1H0

+ 2q · ξ−2α(ξ2α − ξ−2α)
−1(2(p+ 4q))−1 ·H0)

+ (p · (2(p+ 4q))−1 ·H0 + 2q · (2(p+ 4q))−1 ·H0)]

(from an adaptation of formula (ii.) above)

= 2(p+ 4q)(2(p+ 4q))−1[
d2

dt2
+ 2(pg1

d

dt
+ 2qg2

d

dt
) + (p

d

dt
+ 2q

d

dt
)]

(where gk(t) = ξ−kα(t)(ξkα(t)− ξ−kα(t))
−1 = e−kt(ekt − e−kt)−1 = e−2kt(1− e−2kt)−1, k = 1, 2)

=
d2

dt2
+ {2(pg1 + 2qg2) + (p+ 2q)} d

dt

=
d2

dt2
+ {(2g1 + 1)p+ 2(2g2 + 1)q} d

dt
=

d2

dt2
+ {p coth t+ 2q coth 2t} d

dt

=
d2

dt2
+ {(p+ q) coth t+ q tanh t} d

dt
· · · · · · (iv)

(using the relation coth 2t = 1
2(coth t+ tanh t))

In the case of γn(ω)(λ), we identify a∗C with C via the map λ 7−→ λ(H0), and for

every H1 ∈ a, we set B(H1,H1) = 1. Now if we substitute H = H1 into the relation

B(H,H) = 2α(H)2(p + 4q), it gives H1 = (2(p + 4q))−
1
2H0, and when used with the
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expression for Hρ in (iii.) above we have (from Lemma 3.3) that

γn(ω)(λ) = λ(H1)
2 −B(Hρ,Hρ)

= λ(H1)
2 − ρ(Hρ)

= (λ((2(p+ 4q))−
1
2H0))

2 − ρ(
1

2
(p+ 2q)(2(p+ 4q))−1H0)

= ((2(p+ 4q))−1λ(H0))
2 − (

1

2
(p+ 2q)(2(p+ 4q))−1)ρ(H0)

= (2(p+ 4q))−1λ2 − (
1

2
(p+ 2q)(2(p+ 4q))−1)(

1

2
(p+ 2q)α(H0))

(from the expression ρ = 1
2(p+ 2q)α)

= (2(p+ 4q))−1(λ2 − (p+ 2q)2

4
) · · · · · · (v.)

We now substitute the expressions for δ
′
(ω) and γn(ω)(λ) in (iv.) and (v.) into the

equation

δ
′
(ω)φλ = γn(ω)(λ) · φλ

and define the function fλ on R, as fλ(t) = φλ(exp tH0), which is possible because of

the above isomorphism between R and A, to have

(
d2

dt2
+ {(p+ q) coth t+ q tanh t} d

dt
)fλ = (λ2 − (

(p+ 2q)2

4
))fλ · · · · · · (ΥΥ).

This is the equation (Υ) at the tail-end of §2. for G = SL(2,R), where p = 2 and

q = 0. We now transform (ΥΥ), as done in §2. for φ′′
λ+2 coth 2tφ

′
λ+(1−λ2)φλ = 0, by

setting z = −(sinh t)2. This implies that dz
dt = −2 sinh t cosh t from which we may deduce

that d
dt = (−2 sinh t cosh t) d

dz and d2

dt2
= (4 sinh2 t cosh2 t) d2

dz2
− 2(sinh2 t + cosh2 t) d

dz .

Defining a function, gλ, on C as gλ(z) = fλ(t) under the transformation z = −(sinh t)2

then converts equation (ΥΥ) to

(z(z − 1)
d2

dz2
+ ((a+ b+ 1)z − c)

d

dz
+ ab)gλ = 0,

where the constants a, b, c are given by a = p+2q+2λ
4 , b = p+2q−2λ

4 , c = p+q+1
2 , respec-

tively.

This is the well-known Gauss’ hypergeometric equation. The point z = 0 which

corresponds to t = 0, is a regular singular point for this equation, and it is known that
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there is exactly one solution of it which is analytic at z = 0 and takes the value 1 there.

This is the hypergeometric functions, F (a, b, c : z), which, for |z| < 1, is given as

F (a, b, c : z) =

∞∑
k=0

(a)k(b)k
(c)k · k!

zk,

where (m)k := m(m + 1) · · · (m + k − 1). Now since gλ(0) = fλ(0) = φλ(1) = 1 and gλ

is analytic in z at z = 0 we conclude that

φλ(exp tH0) = F (a, b, c : −(sinh t)2),

where t ∈ R and a, b, c are as given above.

Conversely, let a function φλ be K− biinvariant and be given as φλ(exp tH0) =

F (a, b, c : −(sinh t)2) for some a, b, c. If we consider the equation

δ
′
(ω)φλ = γn(ω)(λ) · φλ

for some yet-to-be known constant γn(ω)(λ) ∈ C, then a =
p+2q+2

√
γn(ω)(λ)

4 , b =

p+2q−2
√

γn(ω)(λ)

4 , and c = p+q+1
2 . For any known real rank 1 connected semisimple Lie

group G, with finite center, in which p and q are also known, we may solve for γn(ω)(λ)

explicitly from the above relations. With the fact that φλ(1) = F (a, b, c : 0) = 1 we

conclude that φλ is a spherical function on G. �

The above result shows the one-to-one correspondence between the hypergeometric

functions and spherical functions on real rank 1 semisimple Lie groups, G. Now we recall

the well-known notion of the confluent hypergeometric function and use it, via Theorem

4.1 above, to introduce the notion of a confluent spherical function on G, which is then

later generalized using the Stanton-Tomas expansion for spherical functions.

We recall that replacing z(= −(sinh t)2) by z
b (=

−(sinh t)2

b ) the hypergeometric equa-

tion gives

z(z − z

b
)
d2

dz2
gλ(z) + {c− (1 +

a+ 1

b
)z} d

dz
gλ(z)− agλ(z) = 0

becoming, as b −→ ∞,

z
d2

dz2
gλ(z) + (c− z)

d

dz
gλ(z)− agλ(z) = 0

27



whose solution, gλ, is the confluent hypergeometric function, 1F (a, c : z), is clearly given

as

1F (a, c : z) = lim
b−→∞

F (a, b, c :
z

b
) =

∞∑
k=0

(a)k
(c)kk!

zk

where a, c and z are as above. Theorem 4.1 implies that there exists a K− biinvariant

function, say φσ
λ, on G such that φσ

λ = 1F. It would be important to have a concise way

of defining the function φσ
λ. To do this we study more closely the properties of 1F as

follows.

The relationship between z and t, given as z = −(sinh t)2, could be recast as t =

sinh−1(i
√
z). Now the process of deriving the confluent hypergeometric equation above

entails substituting z with z
b , before applying the limit as b −→ ∞. Doing the same for

the expression t = sinh−1(i
√
z), we have t = sinh−1(i

√
z
b ). In applying the limit as

b −→ ∞, it follows that t −→ 0. Now as limb−→∞ F (a, b, c : z
b ) gives 1F (a, c : z), the last

statement above implies that we study limt−→0 φλ(exp tH0). i.e., we study φλ(exp tH0)

for sufficiently small values of t. This observation is explicitly written as

φσ
λ(exp tH0) = lim

b−→∞
φλ(exp tH0)|

t=sinh−1(i
√

z
b
)
.

Since b −→ ∞ results to t being very small, the equality above implies that the

study of the confluent spherical functions, φσ
λ, on semisimple Lie groups is the same as

the study of spherical functions, φλ for sufficiently small values of t. i.e., the study of

the function φσ
λ : G → C in which given ϵ > 0 we can find δ = δ(ϵ) > 0 such that

| φλ(exp tH0)− φσ
λ(exp tH0) |< ϵ whenever t < δ.

This is the idea behind our notion of a confluent spherical function on G, and to

develop this idea further we make use of the Stanton-Tomas expansion for spherical

functions on a real rank 1 connected semisimple Lie group, with finite center (See [11.]).

We however start with a motivation via the case of G = SL(2,R) which proves the fact

that Legendre functions admit a series expansion in terms of Bessel functions.

It has been shown by Harish-Chandra, [3(a.)], that every spherical function, on any

connected semisimple Lie group G, with finite center and arbitrary real rank, has the

integral expansion

φλ(x) =

∫
K
e(λ−ρ)(H(xk))dk,

28



where λ ∈ a∗C, x ∈ G, ρ = 1
2

∑
α∈∆+ dim(gα) · α. When G = SL(2,R), a calculation

contained in [15.], p. 339, shows that

φλ(exp tH0) =
1

2π

∫ 2π

0
(cosh t+ sinh t cos θ)(λ−

1
2
)dθ.

This is the integral formula for the Legendre function, Pλ− 1
2
(cosh t) and is in consonance

with the conclusion in §2. A change of contour in the integral yields

φλ(exp tH0) = c

∫ t

0
cos(λs)(cosh t− cosh s)−

1
2ds.

See [11.] for some details. Now for small values of t, it is known that

(cosh t− cosh s)−
1
2 = (t2 − s2)−

1
2 + error.

So that for sufficiently small values of t, we have

φλ(exp tH0) = c

∫ t

0
cos(λs)(t2 − s2)−

1
2ds = J0(λt),

where Jn(λt) is the Bessel function of order n, giving as the series expansion

Jn(x) =
xn

2n · n!
{1− x2

22 · 1!(n+ 1)
+

x4

24 · 2!(n+ 1)(n+ 2)
− x6

26 · 3!(n+ 1)(n+ 2)(n+ 3)
+· · · },

for any n ∈ Z, with J−n(x) = (−1)nJn(x), and, if n /∈ Z,

Jn(x) =

∞∑
k=0

(−1)k

k!Γ(n+ k + 1)
(
x

2
)n+2k.

We can state our deductions above as follows.

4.2 Theorem. The confluent spherical functions, φσ
λ, on G = SL(2,R) are the

zero-th order Bessel functions, J0, of sufficiently small arguments.

Proof. Exactly as in the above deductions. �

This idea generalizes to all real rank 1 semisimple Lie groups and is the first main

result of Stanton and Tomas, [11.]. To state their result we make some preparations.

Let n = dim(G/K), which is known to be equal to p+ q + 1, define c0 = c0(G) and

the function Jµ, respectively, as

π
1
2 2(q/2)−2Γ(

n−1
2 )

Γ(n2 )
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and

Jµ(z) =


Jµ(z)
zµ Γ(µ+ 1

2)Γ(
1
2)2

µ−1, if z ̸= 0,

0, if z = 0,

where Jµ is the Bessel function of order µ. Let also D be the Jacobian for the polar

decomposition of G, then D > 0 on A+ and is given by

D(t) = D(at) = e−ρ(log at) ·Πα>0(e
2α(log at) − 1)n(α).

(see §2. for its reduction in the case of SL(2,R))

In the case of a real rank 1 group, G, in which there are at most two positive roots, α

and 2α, with multiplicity p and q, the Jacobian reduces to D(t) = e−2ρ0tg1(t)
−pg2(t)

−q

where gk(t) = e−2kt(1 − e−2kt)−1, k = 1, 2, and ρ0 = 1
2(p + 2q). We now state a very

important expansion formula for spherical functions, φλ, as follows.

4.3 Theorem([11.], p. 253) There exist R0 > 1, R1 > 1, such that for any t with,

0 ≤ t ≤ R0, the spherical function, φλ, has the given expansion

φλ(exp tH0) = c0[
tn−1

D(t)
]1/2

∞∑
m=0

t2mam(t)J (n−2)
2

+m
(λt)

where

a0(t) ≡ 1, and | am(t) |≤ cR−m
1 . �

The error on truncating the above series is controlled as in the following.

4.4 Corollary([11.], p. 253) There exist R0 > 1, R1 > 1, such that for any t with

0 ≤ t ≤ R0 and any M ≥ 0, the spherical function, φλ, is given as

φλ(exp tH0) = c0[
tn−1

D(t)
]1/2

M∑
m=0

t2mam(t)J (n−2)
2

+m
(λt) + EM+1(λt)

where

a0(t) ≡ 1, and | am(t) |≤ cR−m
1 ,

and

| EM+1(λt) |≤ cM t2(M+1),

if | λt |≤ 1, and

| EM+1(λt) |≤ cM t2(M+1) · (λt)−(
(n−1)

2
)+(M+1),

if | λt |> 1. �
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We shall refer to the expansion in Theorem 4.3 above as the Stanton-Tomas expan-

sion for spherical functions. We are therefore motivated to give the following general

definition of a confluent spherical function on a real rank 1 semisimple Lie group G.

4.5 Definition. A confluent spherical function is any K− biinvariant function on

G(= K · cl(A+) ·K) which has the Stanton-Tomas expansion on A+.

Explicitly, a function φσ
λ ∈ C(G//K) is a confluent spherical function on G if there

exist R0 > 1, R1 > 1 such that for any t, with 0 ≤ t ≤ R0, and any λ ∈ C,

φσ
λ(exp tH0) = c0[

tn−1

D(t)
]1/2

∞∑
m=0

t2mam(t)J (n−2)
2

+m
(| λ | t)

where a0(t) ≡ 1, and | am(t) |≤ cR−m
1 .

We have φσ
0 (x) = 0 while the introduction of complex λ’s and their moduli guaran-

tee that φσ
−λ(x) = φσ

λ(x). The differential equation satisfied by the confluent spherical

function is contained in the following.

4.6 Theorem. The function, gλ : C → C which coincides with φσ
λ onK×cl(A+)×K,

via the transformation z = −(sinh t)2, for sufficiently small values of t, is a solution of

the differential equation

z
d2y

dz2
+ (c− z)

dy

dz
− ay = 0.

Proof. Since z d2

dz2
+ (c − z) d

dz is a differential operator on C we may take it as

the realization of some q ∈ Q, under the transformation z = −(sinh t)2, for sufficiently

small values of t. As φσ
λ is, in particular, a spherical function on G, with sufficiently

small arguments, it satisfies the relation q ·φσ
λ = γ(q)(λ)φσ

λ , for some γ(q)(λ) ∈ C. The

result follows if we set γ(q)(λ) = a. �

4.7 Remarks.

The confluent spherical functions, φσ
λ(exp tH0), are defined for all t ≥ 0, and all λ ∈

C. Indeed, φσ
λ(1) = φσ

λ(exp(0)H0) = 0, since D > 0 on A+.

We denote the the set of all confluent spherical functions on G by Cσ(G) and define

the following operations on it:

(i.) φσ
λ1

+ φσ
λ1

:= φσ
λ1+λ1

, for every φσ
λ1
, φσ

λ2
∈ Cσ(G).

(ii.) αφσ
λ := φσ

αλ, for every φσ
λ ∈ Cσ(G), α ∈ C.
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(iii.) φσ
λ1

· φσ
λ1

:= φσ
λ1λ2

, for every φσ
λ1
, φσ

λ2
∈ Cσ(G).

One of our major results in this paper is the following. We denote the Schwartz

algebra of spherical functions on G by C(G//K).

4.8 Theorem. The set Cσ(G), endowed with the operations above, is an associative

algebra over C and there exists a non-trivial map C(G//K) −→ Cσ(G).

Proof. We compute, using the operations above, that Cσ(G) admits a C−module

and a ring structures, which are compatible. The non-trivial map is given as φλ → φσ
λ. �

We shall consider the extension of these results to a connected noncompact semisim-

ple Lie group with finite center and of real rank m > 0 in another paper.

References.

[1.] Barchini, L. and Zierau, R., Differential operators on homogeneous spaces, Notes of

Lectures at the ICE-EM Australian Graduate School in Mathematics in Brisbane,

2 nd- 20 th July, (2007). Retrieved from http:// www.math.okstate.edu/zierau/papers.

html on 12 th January, 2011.

[2.] Gangolli, R. and Varadarajan, V. S., Harmonic analysis of spherical functions on

real reductive groups, Ergenbnisse der Mathematik und ihrer Grenzgebiete, 101,

Springer-Verlag, 1988.

[3.] Harish-Chandra, (a.) Spherical functions on a semisimple Lie group I, Amer. J.

Math., 80, (1958), pp. 241 − 310. (b.) Spherical functions on a semisimple Lie

group II, Amer. J. Math., 80, (1958), pp. 553− 613.

[4.] Helgason, S., Differential geometry and symmetric spaces, Academic Press, 1962.

[5.] Hirano, M., Ishii, T., and Oda, T., confluent from Siegel-Whittaker functions to

Whittaker functions on Sp(2,R), (2004), pp. 1-14.

32



[6.] Knapp, A. W., Lie groups beyond an introduction, Progress in Mathematics, 140,
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