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Abstract

This study empirically investigates the nature of exchange rate volatility in the context of West Africa.
The study uses daily data on the exchange rates of the West African CFA franc (XOF) in terms of US
Dollar. The empirical analysis has been carried out for the period from 13-11-2009 to 18-09-2023, for a
total of 5058 observations. We excluded the last 25% of observations in order to evaluate the forecasting
accuracy. The exchange rate volatility of the West African CFA franc against the US Dollar is estimated
using GARCH models based on normal and student’s t-distribution of innovations. Results show that the
ARMA(3,1)-GARCH(1,2) model with student-t distribution is well adequate model to capture the mean and
the volatility process of USD-CFA exchange rate log returns.
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1 Introduction

Exchange rate fluctuation is seen as a general phenomenon around the globe which might have adverse
effect on trade [1]. Economists are still very interested in the operations involved in the exchange rate
especially in developing countries [2]. Trade rate instability is said to likely have a negative impact on
international trade as bilateral trade is threatened by the risks involved [3]. The economic relationship
supporting the negative link is the unwillingness of firms to take on risky activity, namely trade [4].

In this work, we broadly describe the exchange rate of CFA francs against U.S Dollars and investigate
whether GARCH models are accurate in the evaluation of exchange rate volatility on the basis of daily
exchange rates, using mid-market rates data from Friday 13-11-2009 to Monday 18-09-2023. Those data are
collected from the Central Bank of West African States through their website [5]. The CFA franc stands for
African Financial Community ; the coin used by WAEMU (West African Economic and Monetary Union :
Togo, Mali, Guinea-Bissau, Senegal, Burkina Faso, Niger, Ivory Coast and Benin ). This currency is pegged
to the Euro, with a settled trade rate (one Euro likens to 655.957 CFA) and as an inheritance of the ”Africa
French colony’s francs” is convertible only thanks to the French treasury guarantee [6].

An international exchange rate, also known as the foreign exchange (FX) rate, is the rate at which
one currency can be exchanged for another currency [7]. Remote trade rates, in reality, are one of the
foremost important determinants of a country’s relative level of economic health [8]. It includes a solid affect
on the financial improvements, remote coordinate speculation streams, worldwide exchange and capital
versatility. Therefore, measuring volatility, which is the dispersion of exchange rate returns, has useful and
practical applications for risk management, and policy evaluation, academics, policymakers, regulators, and
market practitioners. More practically, understanding and estimating exchange rate volatility is important
for exchange rate pricing, portfolio allocation, and risk management. Traders and regulators must consider
not only the expected return from their trading activity but also risk exposure during volatile periods since
traders’ performance is highly affected by the accuracy of volatility forecasts [9].

In 1982, Robert Engle developed the Autoregressive Conditional Heteroskedasticity (ARCH) model to
model the time-varying volatility often observed in economic time series data [10]. For this contribution,
he won the 2003 Nobel Prize in Economics. ARCH models expect the change of the current error term or
innovation to be a function of the actual sizes of the past time periods’ blunder terms regularly the fluctuation
is related to the squares of the previous innovations. In 1986, his doctoral understudy Tim Bollerslev created
the Generalized ARCH model abbreviated as GARCH [11].

In 1987, Bollerslev suggested that the GARCH model ϵt =
√
htηt with assumed conditionally normal

distribution might not sufficiently cover the leptokurtosis in financial time series. He suggested that sometimes
the model ϵt =

√
htηt has thicker tails and is better described by a student-t distribution. He therefore

introduced the GARCH-t model, which assumes a student-t distribution instead of the normal distribution
[12].

When studying financial time series, most researchers study the return time series rather than the raw
price data. In 1997, MacKinlay, Lo and Campbell gave two primary reasons for this. First, the return of
resource may be a total, scale free outline of that specific speculation opportunity. Secondly, the return series
are much easier to handle than the raw price series since it has more attractive statistical properties [13].
There are several different definitions of returns. In this work, the returns of study will be log returns. The
variables of interest are daily log returns, rt, defined by the interdaily difference of the natural logarithm of
the daily asset prices, pt. The daily returns are thus defined by :

rt = log(pt)− log(pt−1) = log
( pt
pt−1

)
(1)
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2 Methodology

2.1 ARMA(m,n)-GARCH(p,q)

In the real world, the return processes may be stationary, so we combine the ARMA model and the
GARCH model, where we use ARMA to fit the mean and GARCH to fit the variance.
Let Xt be ARMA(m, n) which refers to the model with m autoregressive terms and n moving average terms
and the process ϵt =

√
htηt be a GARCH(p,q) process :

Xt = µ+

m∑
i=1

ϕiXt−i −
n∑

j=1

θjϵt−j + ϵt

ϵt =
√
htηt

ht = α0 +

p∑
k=1

αkϵ
2
t−k +

q∑
l=1

βlht−l

(2)

2.1.1 Time series-ARCH

Let ηt be N (0, 1). The process ϵt is an ARCH(p) process if it is stationary and if it satisfies, for all t and
some strictly positive-valued process

√
ht, the equations

ϵt =
√
htηt

ht = α0 +

p∑
i=1

αiϵ
2
t−i

(3)

with Ft−1 is the information set defined by Ft−1 = {ϵt−j ; j ≥ 1}
i.e. the σ-algebra generated by the past values of the process (ϵt)t along with other information available at
time t− 1.
Note that ηt can be other white noise, no need to be Gaussian.

2.1.2 GARCH (Generalized ARCH)

ARCH models often require relatively long lags in the conditional variance equations. Four years after
the introduction of ARCH, Engle’s graduate student Tim Bollerslev addressed this issue with the generalized
autoregressive conditional heteroscedasticity (GARCH) model [11].

In GARCH(p,q) models, the conditional variance equation is extended to include q lagged values of the
conditional variance.

Let ηt be N (0, 1). The process ϵt is an GARCH(p,q) process if it is stationary and if it satisfies, for all t
and some strictly positive-valued process

√
ht, the equations

ϵt =
√
htηt

ht = α0 +

p∑
i=1

αiϵ
2
t−i +

q∑
j=1

βjht−j

(4)

where α0 > 0, αi ≥ 0, i = 1, . . . , p, and βj ≥ 0, j = 1, . . . , q.

Using the lag or backshift operator B, the GARCH(p,q) model is :

ϵt =
√
htηt

ht = α0 + α(B)ϵ2t + β(B)ht
(5)

with α(B) =
∑p

i=1 αiB
i and β(B) =

∑q
j=1 βjB

j .
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2.1.3 The Advantage of GARCH(p,q) models

This allows the entire history of past shocks to influence the current value of the conditional variance.
Bollerslev showed a GARCH model with a small number of terms may be more efficient than an ARCH
model with many terms.

If all the roots of the polynomial |1− β(B)| = 0 lie outside the unit circle, we have :

ht = α0 + α(B)ϵ2t + β(B)ht ⇒
ht = (1− β(B))−1(α0 + α(B)ϵ2t )

=

∞∑
k=1

β(B)k(α0 + α(B)ϵ2t )

ht = α∗
0 +

∞∑
k=1

ψkϵ
2
t−k

(6)

which may be seen as an ARCH(∞) process since the conditional variance linearly depends on all previous
squared residuals.

2.2 Parameter Estimation

2.2.1 Maximum Likelihood Estimation for GARCH(p,q)

The parameter vector is denoted by θ, that is

θ = (α0, α1, . . . , αp, β1, . . . , βq).

We assume that there is a unique stationary solution to the set of equations (4).
— For normally distributed standardized innovations : likelihood function for a sample of n observations

is given by :

Ln(ϵt | Ft−1; θ) =

n∏
t=1

1√
2πht

exp(−1

2

ϵ2t
ht

). (7)

Log-likelihood function for normally distributed standardized is given by :

log(Ln(ϵt | Ft−1; θ)) = −n
2
log(2π)− 1

2

n∑
t=1

log(ht)−
1

2

n∑
t=1

ϵ2t
ht
. (8)

Note : Cannot minimise the log-likelihood equations analytically. Maximum likelihood estimates of
the parameters are obtained by using numerical methods.

— For standardized t-distributed innovations :
Density function of the standardized t-distribution with v > 2 degrees of freedom is given by

d(ηt; v) =
Γ(v+1

2 )

Γ( v2 )
√
π(v − 2)

(1 +
η2t
v − 2

)−
v+1
2 , (9)

where Γ(v) =
∫∞
0
e−xxv−1dx is the gamma function and v is the degree of freedom.

Log-likelihood function for standardized t-distributed is given by :

log(Ln(ϵt | Ft−1; θ)) = n
[
logΓ(

v + 1

2
)− logΓ(

v

2
)− 1

2
log(π(v − 2))

]
− 1

2

n∑
t=1

[
log(ht) + (1 + v)log(1 +

η2t
v − 2

)
] (10)
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2.3 Building GARCH(p,q) model

In order to build an GARCH(p,q) model it is important to determine the correct number of lags. There
are many ways of determining the order and below there is three different information criteria that we use
in order to determine the best order for the GARCH(p,q) models.

2.3.1 Determining the order for GARCH(p,q) model

To check if the model is correctly specified, we have two forms to detect the right model. One form is
comparing the coefficients of the model. Second form is comparing the value of the log likelihood, the Akaike
Information criteria (AIC), Bayesian Information criteria (BIC) and Hannan-Quinn Information Criteria
(HQIC). Note that these criteria only compare considered models and selects the model that best fit the
given data.
The value of the log likelihood estimates when the model converges, and then is calculated by the following
equation :

l = −n
2
[1 + log(2π) + log(

ϵ′ϵ

n
). (11)

Where ϵ′ϵ is the sum of the squared residuals of the model, and n is the number of observations.
The Akaike Information criteria (AIC), Bayesian Information criteria (BIC) and Hannan-Quinn Informa-

tion Criteria (HQIC) ensures that the model complies with the condition established for an ARMA model
that balances the goodness of fit and parsimonious specification. The formulas to calculate these coefficients
are the following :

AIC = −2l

n
+

2k

n

BIC = −2l

n
+
k log(n)

n

HQIC = −2l

n
+

2k log(log(n))

n

(12)

Where k is the number of estimated parameters, and l is the value of the log likelihood function using the k
estimated parameters. The rule is selecting a particular order k that has the minimum AIC, BIC and HQIC
value [14][15].

2.4 Measuring the forecast accuracy

When we have selected number of lags for the best-fitted model of each of the three criteria we use the
Root Mean Squared Error (RMSE) of the forecasts to determine which model to choose. This result is then
compared with the RMSE result for all models, and the model with the lowest RMSE value will be the best
forecasting model for the given data. The RMSE function can be described as :

RMSE =

√√√√ 1

M

M∑
i=1

(
Xt+i − X̂t(i)

)2
(13)

where M is the size of the out-of-sample forecast period and X̂t(i) is the predicted value of Xt+i.
RMSE is always non negative, and a value of 0 (never achieved in practice) would indicate a perfect fit

to the data. In general, a lower RMSE is better than a higher one [16].

2.5 Method

The steps used on the following models GARCH with normal innovations and GARCH with student-t
innovations to find the best forecast accuracy for the conditional variance are explained below. Remember
that the last 25% observations where excluded in order to evaluate the forecasting accuracy of the models.
All calculations have been done using the rugarch package in R.
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— First we differentiate the time series using the logarithmic returns to turn the series into a stationary
time series.

— The ACF/PACF function and the Lagrange multiplier test were applied to the residuals to examine
if there were any ARCH effect.

— Then the maximum likelihood function was estimated for different lags of the GARCH(p,q) models,
and the logarithmic value of the result was calculated.

— With different log likelihood values, the AIC, HQIC and the BIC function where evaluated to find the
value that minimizes the functions. The selected value then represented the number of lags to choose
for the GARCH(p,q) model.

— Then the coefficients for all models where estimated by maximizing the likelihood function for the
chosen number of lags.

— Then We estimated the conditional variance.
— Then We calculated the log returns for the remaining 25% observations for each data set.
— And last, We evaluated the forecasting accuracy using the RMSE function.

3 Empirical Analysis and Results

3.1 Summary Statistics and Diagnostic Check

As can be seen in FIG. 1, there is a general upward trend in the exchange rates over the sample period.

Fig. 1 – Daily exchange rate of USD to CFA from 13-11-2009 until 18-09-2023. In total there are 5058 obser-
vations. The red line represents the exchange rate during the in-sample period and the blue line represents
the exchange rate during the out-of-sample period.

The main variable of study as mentioned is not the price process but the daily log return defined in
equation (1). The FIG. 2 shows the daily return for the in-sample period. The daily return series seems to be
a stationary process with a mean close to zero and the plot also reveals that the variances change over time
and volatility tends to be cluster, which is a sign of ARCH effect and there are periods with high volatility
and periods with low volatility.
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Fig. 2 – Daily log returns of exchange rate of USD to CFA from 13-11-2009 until 01-03-2020, which is the
in-sample period consisting of 3793 observations.

In this study, the time series data is employed. One key assumption in empirical work based on time
arrangement information is that the basic time arrangement is feebly stationary, which is both the cruel of
rt and the covariance between rt and rt−h are time invariant, where h is an arbitrary integer. In any case,
numerous ponders have found that larger part of time arrangement factors are non-stationary and utilizing
non-stationary time arrangement in a relapse examination may lead to spurious relapse. Consequently some
time recently doing any observational investigation, we ought to check the stationarity suspicion to begin
with. Among a number of unit root tests accessible for stationarity investigation, Increased Dickey-Fuller
(ADF test) and Philip-Perron (PP) test are most prevalent utilized by analysts. In this study, Dickey-Fuller
test (ADFtest) are utilized to test the stationarity of the trade rate arrangement and the log return arran-
gement. Results in Table 1 appear that stationary presence within the to begin with contrast arrangement
(i.e. log return series) at 1% significant level with p-values of 0.01. Table 1 reports the summary statistics
for the daily exchange rate return series. The exchange rate return series are positively skewed, and have
extremely fat tails (kurtorsis > 3). This indicates a departure from normality, which is also confirmed by the
quantile-quantile plot in FIG. 3 and by Jarque- Bera test (JB test). Result of JB test is shown in Table 1 ,
indicating that the null hypothesis of normal distribution for daily exchange rate returns is rejected at 1%
significant level.
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Fig. 3 – QQ plot of log returns exchange rate of the in-sample period.

For model selection, Ljung-Box (LB) test with 15 df is conducted to check whether AR and ARCH
effects exist. For AR effects, the null hypothesis of the test is Ho : p1 = · · · = pm = 0 where p is the direct
relationship between serial every day log returns. For Curve impacts, the invalid speculation is the same,
separated from that p is the direct relationship between serial squared log returns. The significance level
of 5% is used for the two tests. P-values and test statistics of the two tests are summarized in Table 1.
All p-value of LB test for log return series and squared log returns are less than 0.01 indicating the null is
rejected at 1% significant level. Consequently, AR and ARCH effects do exist in these series. This is also
confirmed by the autocorrelation and partial autocorrelation plot of returns and squared returns in Fig 4.
The sample ACF is a tool for estimating the dependence in the data. For example, if the sample ACF is
close to zero we might suggest that it is iid noise [17]. Also, the PACF could be used in order to determine
the order of the ARCH (p) model [18].

The Lagrange multiplier test for the Autoregressive heteroscedasticity (ARCH) effect was done for all
residuals up to lag 30. If the LM test is not rejected, i.e. p-value exceeds 5%, then the null hypothesis that
all coefficients in the ARCH model are zero, cannot be rejected and we say there is no ARCH effect [10]. LM
test for the ARCH effect was carried out and it was found that the null hypothesis is rejected for all lags,
all p-values are less than 0.05, so we have ARCH effect. As a consequence, taking the AR effects and ARCH
effects into consideration, ARMA-GARCH models are used in this study.
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Table 1 – Summary of descriptive statistics and diagnostic check of Exchange rate and returns series of
USD to CFA franc

Statitics USD Vs CFA
pt during the entire study period rt for the in-sample period

Size 5058 3792
MEAN 551.17 0
Std.Dev 50.74 0
MAXIMUM 684.19 0.07
MINIMUM 434.67 −0.05
Skewness −0.13 0.8
Kurtosis −0.96 27.7
J-Bera test 207.01(< 2.2e− 16) ∗ ∗ 121739(< 2.2e− 16) ∗ ∗
ADFtest −3.1751(0.09215) −15.34(0.01)∗
LB-Q(15) test 73250(< 2.2e− 16) ∗ ∗ 55260(4.794e− 07) ∗ ∗
LB-Q(15)2 test 73186(< 2.2e− 16) ∗ ∗ 55294(< 2.2e− 16) ∗ ∗

Note : p-values are in parentheses, ** indicates significant at 1%, * indicates significant at 5%.

TABLE 1 shows some statistical information about the logarithmic return series. The series to be normal
distributed its kurtosis must be three [19] and as we can see the logarithmic return series seems to not be
normally distributed.

3.2 Model Estimation

According to FIG. 4 ; The ACF and PACF correlograms of log returns and squared log returns of exchange
rate show cuts off at lag three. The autocorrelation and partial autocorrelation coefficients are equally likely to
be positive or negative from one lag to another. Since both ACF and PACF for the log returns and squared log
returns of exchange rates die away through different lags, both autoregressive and moving average (ARMA)
model are included.

Fig. 4 – Autocorrelation and partial autocorrelation of log returns and squared log returns.

As shown in FIG 4, significant serial correlations do exist in the first 10 lags of the series. In this study,
ARMA(3,1) specification is chosen to reflect the autocorrelation in the return series as supported by the ACF
and PACF correlograms of log returns and squared log returns of exchange rate, auto.arima and the principle
of parsimony which is the rule that seek simplest model as much as possible. Therefore, an ARMA (3,1)
model is selected to fit the mean of exchange rate returns series. Additionally, as proven above, normality is
rejected in exchange rate return series, therefore Student-t error distribution is employed in this study when
specifying GARCH models. The order of GARCH models are determined based on information criteria AIC,
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HQIC and the BIC. The rule is selecting a particular order k that has the minimum AIC, HQIC and the
BIC value.

ARMA(m,n)-GARCH(p,q) process :

Xt = µ+

m∑
i=1

ϕiXt−i −
n∑

j=1

θjϵt−j + ϵt

ϵt =
√
htηt

ht = α0 +

p∑
k=1

αkϵ
2
t−k +

q∑
l=1

βlht−l

(14)

Where ηt is the white noise which can be normally or Student’s t-distributed.

Table 2 – Parameter estimates of the model with different distributions

ARMA(3,1)–GARCH(1,1) ARMA(3,1)–GARCH(2,1) ARMA(3,1)–GARCH(1,2)
Normal Student Normal Student Normal Student

µ 0.000042 0.000086 0.000047 0.000087 0.000042 0.000083
ϕ1 0.301459 0.495843 0.312132 0.530387 0.335659 0.504143
ϕ2 0.061914 0.034962 0.062191 0.035451 0.061652 0.035893
ϕ3 -0.054890 -0.053062 -0.057356 -0.054503 -0.057879 -0.051461
θ1 -0.287708 -0.451075 -0.298235 -0.487598 -0.318524 -0.461514
α0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
α1 0.052476 0.020316 0.054837 0.018961 0.073239 0.033911
α2 0.000079 0.000000
β1 0.943304 0.978604 0.940406 0.980039 0.589433 0.345806
β2 0.330138 0.619226
shape 3.249188 3.278141 3.193115
LogL.hood 15406.65 15790.34 15406.75 15790.17 15410.09 15792.49
AIC -8.1217 -8.3235 -8.1212 -8.3229 -8.1229 -8.3241
BIC -8.1085 -8.3087 -8.1064 -8.30646 -8.1081 -8.3076
HQIC -8.1170 -8.3182 -8.1159 -8.3170 -8.1177 -8.3192
LB lag[1] (0.4971) (0.2751) (0.4990) (0.3298) (0.6214) (0.3691)
LM lag[8] (0.008976) (1.782e-10) (0.2619) (0.7435) (0.2908) (0.7214)
RMSE 0.003586253 0.003588165 0.003586099 0.003587204 0.003585635 0.003584048

Note : p-values are in parentheses and the colored cell indicates best value.

3.2.1 In-sample estimation accuracy

To check whether the accuracy of volatility forecasting among the different models varied with distri-
bution assumptions, we compared the log-likelihood, Hannan-Quinn Information Criteria (HQIC), Bayesian
information criterion (BIC), and Akaike information criterion (AIC) for all of the models, estimating for
whole-sample observations under normal and Student’s t-distribution. Table 2 shows the results. It is clear
that the performance and goodness of fit of each model improved when Student’s t-distribution was used
for the residuals. Considering the Student’s t-distribution for the residuals and the comparison of indicators
reveals that among all of the models used for in-sample estimation, ARMA(3,1)–GARCH(1,2) is the best
since it has the highest maximum likelihood and the lowest HQIC and AIC.

10



3.2.2 Out-of-sample forecasting accuracy

To check the determining precision of the models, we made a pseudo test utilizing the period from
02-03-2020 to 18-09-2023. All of the models were estimated for the pseudo sample period. The forecas-
ting performance of the models was compared on the basis of one indicator under normal distribution
and Student’s t-distribution : root mean square error (RMSE). Table 2 shows the comparative forecas-
ting accuracy of the different models under normal and Student’s t-distribution for the residuals. For the
ARMA(3,1)–GARCH(1,2), which had the best in-sample estimation accuracy under Student’s t-distribution,
showed also the highest accuracy when such distribution was used for out-of-sample forecasting.

4 Conclusion

This study investigates the nature of volatility of CFA exchange rate in term of US dollar through using
the combination of ARMA(3,1) with GARCH(1,1), GARCH(1,2) and GARCH(2,1) models with assumption
of normal and Student’s t-distribution. Results show that the combination of linear and non-linear model in
this study well capture volatility dynamics of CFA exchange rate in term of US dollar series, whereas the
mean equations are reasonably adequate to capture the mean return series. Moreover, results found that
model specification with Student’s t-distribution is a better choice than Gaussian distribution assumption
as it well captures non-normality of the series.

Further, in-sample estimation accuracy was observed to be improved when such a distribution was
used. For modeling in-sample volatility dynamics, ARMA(3,1)–GARCH(1,2) with assumption of Student’s t-
distribution was found to be the most accurate. In terms of out-of-sample forecasting accuracy, ARMA(3,1)–GARCH(1,2)
with assumption of Student’s t-distribution also is considered as the best model since RSME was observed
to be the lowest for all models.

Overall findings suggest that considering a particular class of GARCH models such as Exponential
GARCH, Integrated GARCH, Fractionally IGARCH, Threshold GARCH, Asymmetric Power ARCH,... Such
an approach can create a more adaptable lesson of forms for the conditional fluctuation that are competent
of clarifying CFA trade rate in term of US dollar instability in a much superior way than institutionalized
GARCH models but it is past the scope of this ponder. Therefore further studies about Modeling and fo-
recasting exchange rate volatility in WAEMU are still necessary to obtain a better understanding of it. In
general, this research gives a recommendation to different researchers to do further studies on Modeling and
forecasting exchange rate volatility in Africa, considering this as a baseline.
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