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Abstract 

This study builds a series of models to predict trading volume in European markets using different statistical methods. 

The analysis considers a number of aspects, such as special events (e.g. MSCI rebalances, futures expiries, or cross-

market holidays), day-of-the-week effects, and the volume-price relation asymmetry, in order to perform contextual one-

step ahead prediction. We investigate the prediction error for each calendar circumstance to infer a cross-stock event-

oriented switching model for volume prediction. The study concludes by proposing a stock-specific out-of-sample 

metamodel that is fit by selecting an initial stock-specific model yielding the best performance for the most recent 

observations. 
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1. Introduction 

Measuring trading performance is a challenging research area, but there are certain factors that have a clear influence 

on the overall trading performance, such as the market impact, which is the effect caused by a market participant who 

buys or sells shares, consisting in the extent to which the price goes upward for a buy order or downward for a sell order. 

The market impact cost is defined as the difference between the actual price and the hypothetical price provided that the 

order was not created (Johnson, 2010). Market impact can move the prices adversely, leading to decreased profits or 

turning profitable strategies into losing strategies. 

The execution style of an order drives the extent of an order’s market impact. An example of a trading strategy to 

decrease the market impact is when an investor needs to break down a large sell order into smaller orders over a longer 

period in order to trade slowly with a low market impact. Therefore, predicting the trading volume as a measure of 

liquidity is of vital importance to forecast the expected market impact. 

The aim of this study is to propose a switching volume prediction model by fitting a variety of models that employ 

different machine learning methods and considering endogenous and exogenous variables that may potentially impact the 

trading volume. This is motivated by the importance of optimally sizing an order for minimising the market impact and 

ultimately improving the trading performance. Market participants who size their orders incorrectly can either over-

participate by producing excessive market impact or under-participate by creating opportunity cost and price uncertainty. 

Therefore, predicting the trading volume helps better determine the degree of participation in the market. 

The primary focus of this study is to fine-tune the models and identify the optimal model given the market context at a 

certain point in time, in order to achieve optimal prediction accuracy and model stability. We are investigating the error 

breakdown by different model types and days that matter (e.g. holidays, expiries, days-of-the-week etc.). 

Each stock exhibits different levels of trends, volatility, and magnitude in their market data. Consequently, we perform 

stock-specific predictive modelling throughout this study by independently training a variety of window-based predictive 

models for seven machine learning techniques: ordinary least squares, stepwise regression (i.e. ordinary least squares 

with sequential feature selection), ridge regression, lasso regression, k-nearest neighbours with arithmetic average, k-

nearest neighbours with inverse distance weighting, and support vector regression. For each statistical method, we iterate 

every stock in our pan-European stock universe consisting of 2,353 stocks, every training window type (i.e. 

moving/sliding vs. growing) and every window size (i.e. 1-month, 3-month, 6-month, 1-year, 2-year windows). We also 

train three models for special events (i.e. cross-market holidays, MSCI rebalances and futures expiries) using the entire 

stock universe, although they are ultimately used to make stock-specific predictions. We fit these models in isolation and 

aim to determine a performance metric for each method and window type. 

Eventually, we shift from a static process to an adaptive process and construct a switching dynamic model, which 

switches between these models based on the current context (e.g. regular trading day, cross-market holiday, futures expiry, 
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MSCI rebalance, certain day-of-the-week etc.). The proposed model is a virtually switching model as it does not switch 

per se. We are post-processing the model performance and investigate the performance metrics by breaking down the 

errors by: day-of-the-week, cross-market holidays, futures expiries, MSCI rebalances etc. This leads to the metamodel, 

which is a stock-specific out-of-sample model that selects the best initial stock-specific model on a 1-month and a 3-

month rolling window basis, depending on the recent performance of the initial stock-specific models that are trained 

independently of each other. 

The rest of the study is structured as follows: section 2 reviews the key findings that led to our model choice in this 

study (e.g. the volume-price relation asymmetry, the day-of-the-week effect, the expiry day effect, and the cross-market 

holidays effect) and outlines the methods employed in this analysis; the market and calendar data sets are introduced in 

section 3; section 4 provides the analysis approach and briefly describes the high performance computing design of this 

computationally expensive analysis, followed by a methodological introduction of the cross-stock models and the stock-

specific models; this is followed by section 5, which presents the main findings of this study, including a performance 

breakdown of the models, and introduces the switching model and the out-of-sample stock-specific metamodel; 

eventually, section 6 provides a conclusion of this analysis and discusses the obtained results. 

2. Background 

Previous studies provided empirical evidence for the volume-price relation and its asymmetry, and the existence of the 

day-of-the-week effect, the expiry day effect and the so-called ‘cross-market holiday’ effect in relation with trading 

volume. These findings are summarised below and are followed by a review of the statistical methods employed in this 

analysis. 

2.1. Volume-Price Relation and Asymmetry 

The price-volume relation is of great importance for this study as most of the behavioural literature focuses on the 

impact of certain anomalies on price returns, while trading volume is the main focus of this study. Price changes represent 

the market response to new information, whereas the trading volume indicates the level of information disagreement 

among investors (Beaver, 1968). Although the literature on a potential relation between price changes and volume is far 

from homogenous, there is a large proportion confirming a positive correlation between trading volume and price changes 

(Harris & Raviv, 1993) (Hong & Stein, 2007). Batrinca et al. (2016) provided empirical evidence that trading volume is 

correlated with historical price indicators (i.e. intraday range and intraday return for the previous day, and overnight return 

for the previous night, which acts as a proxy for the opening auction volume, i.e. more recent information) and that volume 

exhibits autoregression, where we employed lagged time series volume data (i.e. raw past observations) and also 

smoothed lagged time series (i.e. moving average of past observations, which acts as a low-pass filter effect in the data). 
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The formulae for the intraday return, intraday range and overnight return are outlined below, where 𝑡0 is the day for which 

we predict the trading volume and 𝑡−1 is the previous trading day, whose price and volume information is available. 

 
 

𝐼𝑛𝑡𝑟𝑎𝑑𝑎𝑦 𝑟𝑒𝑡𝑢𝑟𝑛 𝑙𝑜𝑔 𝑟𝑎𝑡𝑖𝑜 = 𝑙𝑜𝑔
𝑐𝑙𝑜𝑠𝑒𝑡−1

𝑜𝑝𝑒𝑛𝑡−1

 (2.1)  

 
 

𝐼𝑛𝑡𝑟𝑎𝑑𝑎𝑦 𝑟𝑎𝑛𝑔𝑒 𝑙𝑜𝑔 𝑟𝑎𝑡𝑖𝑜 = 𝑙𝑜𝑔
ℎ𝑖𝑔ℎ𝑡−1

𝑙𝑜𝑤𝑡−1

 (2.2)  

 
 

𝑂𝑣𝑒𝑟𝑛𝑖𝑔ℎ𝑡 𝑟𝑒𝑡𝑢𝑟𝑛 𝑙𝑜𝑔 𝑟𝑎𝑡𝑖𝑜 =

𝑙𝑜𝑔
𝑜𝑝𝑒𝑛𝑡0

𝑐𝑙𝑜𝑠𝑒𝑡−1

# 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑖𝑛𝑔 𝑛𝑖𝑔ℎ𝑡𝑠
 (2.3)  

 

In general, there are two key representations of the volume-price relation, where trading volume is positive correlated 

either with the magnitude (i.e. absolute value) of the price change (Assogbavi & Osagie, 2006), i.e. |Δ𝑝|, or with the price 

change per se (i.e. the raw value of the price change), i.e. Δ𝑝 (Karpoff, 1987) (Ying, 1966). The asymmetric relation in 

the latter representation exhibits a volume/price change ratio that is different in magnitude for upticks than for downticks. 

Equation (2.5) shows the levels of volume based on the sign of the price change, compared to the symmetric model in 

Equation (2.4). 

 
 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦: (𝑣𝑡|∆𝑝𝑡

+) = (𝑣𝑡|∆𝑝𝑡
−) (2.4)  

 
 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦: (𝑣𝑡|∆𝑝𝑡

+) > (𝑣𝑡|∆𝑝𝑡
−) 𝑜𝑟 (𝑣𝑡|∆𝑝𝑡

+) < (𝑣𝑡|∆𝑝𝑡
−) (2.5)  

 

Batrinca et al. (2016) provided empirical evidence for the price-volume relation asymmetry, which was exhibited in 

over 70% of the analysed European stocks; there is a moderate overnight asymmetry, which is almost evenly distributed, 

and a more salient intraday asymmetry (in approximately 60% of the stocks). 

2.2. The Day-of-the-Week Effect 

The day-of-the-week effect consists of certain trends associated with a particular day-of-the-week. The most broadly 

studied day-of-the-week effect is the weekend effect (French, 1980) (Gibbons & Hess, 1981) (Jaffe & Westerfield, 1985) 

(Pettengill, 2003) (Cross, 1973) (Dubois & Louvet, 1996) (Harris, 1986) (Abraham & Ikenberry, 1994), or Monday effect, 

where the closing price on Monday is lower than the closing price of the previous Friday. These results are intriguing as 

they are opposite to the expectation of higher returns on Monday, as its returns reflect three consecutive days. The 

weekend effect has been widely documented in conjunction with price changes. There are very few studies investigating 

the relation between the day-of-the-week effect and trading volume. For example, Berument and Kiymaz (2001) found 

day-of-the-week anomalies in both returns and volatility, with the highest volatility on Friday and the lowest on 

Wednesday, while Lakonishok and Maberly (1990) found a relative increase in the trading activity of individuals on 

Mondays. 
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Batrinca et al. (2016) reported a clear improvement of the trading volume prediction model when adding the day-of-

the-week features. The indicator variable for Monday improves the model in more than 75% of the cases, having 

predominantly negative coefficients, despite the fact that we divide the overnight return by the number of intervening 

nights, which suggests that the negative coefficient for Monday is not a corrective factor and that there is simply less 

activity on Mondays. Fridays improve the volume model in 45% of the stocks and their coefficients are surprisingly 

mostly negative, even if the traditional definition of the weekend effect states that the Friday volume and prices are usually 

higher than those of the following Monday. 

2.3. The Expiry Day Effect 

The expiry day effect exhibits higher trading volume and abnormal volatility around the close on expiry days for futures 

and options (Stoll & Whaley, 1997) (Sukumar & Cimino, 2012) (Chow, et al., 2003) (Sadath & Kamaiah, 2011) (Pope 

& Yadav, 1992) (Vipul, 2005) (Chiang, 2009), and for MSCI quarterly reviews (Chakrabarti, et al., 2005). 

Following these findings, Batrinca et al. (2016) further analysed the effect of periodical events on the trading volume, 

while investigating the stock index futures expiries and MSCI quarterly index reviews in the pan-European markets. The 

stock index futures expiries occur on the third Friday of each expiry month or on the previous trading day in case that 

Friday is a bank holiday. The futures contracts are traded either quarterly (i.e. March, June, September and December) or 

monthly. The indices of Morgan Stanley Capital International (MSCI) are updated quarterly in order to reflect the up-to-

date state of the financial markets. The constituent list of these indices changes close to the last trading day of the four 

rebalancing months: February, May, August and November. We reported the existence of the futures expiry effect and 

the MSCI rebalance effect, both leading to a surge in trading volume for their index constituents. The trading volume 

increases significantly during the four days in the run-up to the expiry, lasts two days after the futures expiry, and then 

returns to normal levels of trading activity starting on the third trading day after the expiry day. The MSCI rebalances 

exhibit a similar trend, causing surges in the trading volume on the day before the the review day and on the effective 

rebalance date. We discriminated between these two instances of the expiry day effect and the Friday and end-of-month 

effects and concluded that the futures expiry effect is essentially causing the so-called Friday effect. However, we could 

not find enough evidence that the MSCI quarterly reviews could drive the anecdotal end-of-month effect; the trading 

volumes on the four months with MSCI quarterly reviews are significantly different from those on the adjacent months, 

but their magnitude is not sufficiently large in order to explain the end-of-month effect throughout the entire year. 

2.4. The Cross-Market Holiday Effect 

In a previous study, Batrinca et al. (2016) coined the term ‘cross-market holiday effect’, which refers to the anecdotal 

evidence of lower volumes in a particular country when one or more external markets are not trading. There are only a 

couple of studies investigating this effect although they focus mainly on the subduing effect of the US holidays on other 
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markets, such as Canada (Cheung & Kwan, 1992) and Europe (Casado, et al., 2013). We documented a salient cross-

market holiday effect when a dominant market is on holiday or when most of the European markets are shut. Since the 

UK is Europe’s largest market, we examined whether it is actually the Monday effect that drives down the volumes, as 

most of the bank holidays fall on a Monday in the UK. However, we reported strong evidence that the Mondays with at 

least one cross-market holiday have significantly lower volumes that the other Mondays. 

Throughout the previous in-sample analyses on the day-of-week, expiry day and cross-market holiday effects, strong 

evidence of volume autoregression is observed (Batrinca, et al., 2016). Given the results of these previous independent 

studies, we aim to integrate their findings in an out-of-sample study. Here, we aim to build a virtually adaptive model, 

which fits a number of models in parallel and switches from one underlying model to another, by taking into account the 

event dates (e.g. futures expiry, MSCI rebalance, certain day-of-the-week etc.) when we expect the markets to behave 

significantly different. We also raise additional questions on the optimal training window and the appropriate 

methodology. We are empirically testing a number of statistical methods in order to understand how the performance of 

each method is affected and to explore the relationship between trading volume and event dates in a predictive framework. 

2.5. Methodology Review 

In this section, we review the basic principles for the supervised learning models that are employed in this study. There 

are seven different statistical methods that are fit simultaneously and independently in order to predict the one-step ahead 

trading volume. We start with the ordinary least squares (OLS); it is the most basic model and estimates the variable 

coefficients of a linear regression model by minimising the sum of the squared distances between the predicted values 

and the observed values. 

Feature selection can be applied after a model is fit using OLS, by performing stepwise regression. This can be achieved 

through forward selection, backward elimination, or bidirectional elimination. We chose forward selection for the second 

method of this study (i.e. stepwise regression), which adds new variables having p-values that are less than a given 

improvement measure. We start from a reduced model consisting of the intercept, the lagged volumes, and the smoothed 

lagged volumes, allowing the model to pick the most informative price log-ratio and day-of-the-week features. The 

rationale for using forward selection is driven by the design of the day-of-the-week categorical variable as five dummy 

variables. Generally, a categorical variable having 𝑛 values is encoded as 𝑛 − 1 dummy variables, although in this study, 

the day-of-the-week dummy variables are mutually exclusive since the aim is to perform feature selection and extract the 

variables with the highest statistical significance for volume prediction and this is conducted in a feature selection 

framework. We preferred forward selection to backward elimination because of the potential collinearity problems; 

adding a collinear variable could make matrix inversion impossible when determining the optimal beta. 
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The next two techniques employ regression shrinkage methods, namely ridge regression and lasso regression. Linear 

regression relies on the independence of the model variables and therefore the matrix (𝑋𝑇𝑋)−1 becomes close to singular 

when the design matrix 𝑋 has columns that exhibit an approximate linear dependence. As a result, the least squares 

estimate shown in Equation (2.6) produces a high variance because of its sensitivity to random errors in the observed 

response variable 𝑦. 

 
 �̂� = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 (2.6)  

 

Ridge regression, or L2 regularisation, addresses the problem of multicollinearity by estimating the regression 

coefficients using Equation (2.7), where 𝜆 is the ridge parameter and 𝐼 is the identity matrix. This method introduces bias, 

but reduces the variance of the coefficient estimates, producing a lower mean squared error (MSE) compared to the least 

squares estimates. We start by identifying the optimal value for 𝜆 (i.e. the ridge parameter) that minimises the cross-

validation error, by using a two-section search consisting of grid search and followed by the bisection method (also known 

as binary search). The grid search traverses 21 consecutive values of 𝜆 in logarithmic space, from -10 to 10 and cross-

validates the data set for each 𝜆. The value with the minimum average MSE across the grid search is then passed to the 

bisection method, whose initial left and right points are calculated as 𝜆 − 1 and 𝜆 + 1, respectively, which are also 

expressed in logarithmic space. The bisection method runs until at least one of the following three tolerance criteria is not 

met anymore: minimum delta (i.e. minimum change in 𝜆) = 0.1%, minimum error change = 10−11%, and maximum 

number of iterations = 20. The ridge coefficient estimates are restored to the original scale of the data. This transformation 

also computes the parameter for the constant term (or intercept) and provides a model that is more useful for making 

predictions, unlike a model with standardised coefficients. 

 
 �̂� = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑦 (2.7)  

 

Lasso (Tibshirani, 1996), or L1 regularisation, is another regularisation method that is similar to ridge regression. The 

main difference is that when the penalty term 𝜆 increases, more coefficients are set to zero, whereas ridge regression sets 

the coefficients close to zero, but not exactly zero. The lasso estimator produces a smaller model with fewer predictors. 

Based on the resulting model, lasso can be regarded as an alternative to the second methodology described above, i.e. 

stepwise regression, and other dimensionality reduction techniques. For a nonnegative regularisation parameter 𝜆, lasso 

solves the regularisation problem in Equation (2.8), where 𝑁 is the number of observations, 𝑦𝑖 represents the response 

variable for observation 𝑖, 𝑥𝑖 is the observed data for observation 𝑖 consisting of a vector of  𝑝 values that correspond to 

each predictor, 𝛽0 is a scalar for the intercept coefficient, and 𝛽 is a 𝑝-vector for the other model terms’ coefficients. 
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𝑚𝑖𝑛
𝛽0,𝛽

(
1

2𝑁
∑(𝑦𝑖 − 𝛽0 − 𝑥𝑖

𝑇𝛽)2 +

𝑁

𝑖=1

𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

) (2.8)  

 

We implemented lasso regression in a similar manner to ridge regression. The optimal 𝜆 is determined through 10-fold 

cross-validation using a two-section search (i.e. grid search in logarithmic space between -10 and 10, followed by binary 

search for the same set of tolerance criteria that we defined for ridge regression). MATLAB’s implementation of lasso 

regression fits the regularised regression without a constant term, although its coefficient is returned in the 

‘FitInfo.Intercept’ variable, and is eventually appended to the coefficient vector corresponding to the model’s predictors. 

The k-nearest neighbours (kNN) technique is a non-parametric method belonging to the instance-based learning family, 

which can be used for both classification and regression problems, where the function is only approximated locally. It is 

memory-based and requires no model to be fit, i.e. it memorises all of the observations and predicts the target variable 

based on the chosen similarity measure, which is typically a distance function. The most common distance metric for 

continuous variables is the Euclidean distance shown in Equation (2.9), whereas the Hamming distance, represented in 

Equation (2.10), is typically used for binary/categorical variables and is calculated as the number of instances where two 

observations are different. 

 
 

𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑘

𝑖=1

 (2.9)  

 
 

𝑑𝐻𝑎𝑚𝑚𝑖𝑛𝑔 = ∑|𝑥𝑖 − 𝑦𝑖|

𝑘

𝑖=1

 (2.10)  

 

The algorithm retrieves the k memorised examples that are the most similar to the one that is used for the current 

prediction using an appropriate distance function. The kNN method does not have any costs associated with the learning 

process as there is no model inferred and, because of this, it is also known as ‘lazy learning’, as the entire cost of this 

technique consists of the prediction computation; there are no assumptions about the characteristics of the data, although 

the lack of any learning costs makes kNN impossible to be interpreted as there is no description of the learnt concepts. 

Moreover, the accuracy of kNN can be significantly impacted by the presence of noisy or irrelevant features. The basic 

version of kNN is the 1-nearest neighbour estimate, whose bias if often low, but the variance is high. An interesting 

property of the nearest-neighbour is that its error rate is never more than twice the minimum achievable error rate of an 

optimal classifier (Hastie, et al., 2011) (Bishop, 2007). 

In order to identify the optimal value of k, we perform 10-fold cross-validation and we pick the value of k that minimises 

the cross-validation average error. A small value of k means that noise will have a higher impact on the results, whereas 

a large value of k is computationally expensive and signals a highly non-linear and noisy structure. The number of 

neighbours can be regarded as a measure of noisiness; for example, 1NN is an indication of clear data. In general, a larger 
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value for k is more precise, although the boundaries within the feature space become blurred. A few authors (Duda, et al., 

2000) (Hassanat, et al., 2014) suggest an empirical rule-of-thumb, and setting k equal to the square root of the number of 

instances, 𝑘 = 𝑛
1

2⁄ , as a starting point. We also attempted to apply PCA on the standardised variables in order to remove 

the correlations before running kNN, but it mainly dealt with the intercept only and did not improve the resulting model. 

We begin by standardising each feature of the data set to have mean zero and variance 1, because the variables have 

different measurement scales and there is also a mixture of continuous and categorical/binary variables (Hastie, et al., 

2011). This allows us to use the Euclidean distance as the nearest neighbours’ similarity measure. 

The following two methods represent slightly different implementations of kNN, which vary in their approach of 

aggregating the contribution of the identified neighbours. The first approach is kNN with arithmetic mean, which treats 

all of a point’s neighbours equally and computes the prediction as the average of the target variable of the k nearest 

neighbours, as shown in Equation (2.11). The second approach is kNN with inverse distance weighting, where the 

neighbours are assigned weights based on their distance from the prediction point, such that the nearer neighbours 

contribute more to the average compared to the further neighbours. This method assigns a weight to each neighbour, 

which is equal to the inverse of its distance to the prediction point; this weighted average is illustrated in Equation (2.12). 

The algorithm finds the k nearest observations using the Euclidean distance metric, then calculates the inverse distance 

weight of each neighbour and normalises the inverse distances such that their sum is equal to one. Finally, the method 

computes the weighted average of the k neighbours using their inverse distance weights. We implemented both methods 

in order to better understand the data structure. Using the inverse distance weighting could potentially lead to a large 

number of neighbours being identified, where most of them could have extremely small weights that would not influence 

the prediction significantly and would simply introduce more noise to the model. If this is the case, a parsimonious model 

could be identified by using the arithmetic mean and implicitly assigning equal weights to the neighbours. 

 
 

�̂� =
1

𝑘
∑ 𝑦𝑖

𝑘

𝑖=1

 (2.11)  

 
 

�̂� = ∑ 𝑑′𝑖
−1 ∙ 𝑦𝑖

𝑘

𝑖=1

 (2.12)  

 

Both techniques begin by identifying the optimal value for k. This is accomplished by performing 10-fold cross-

validation grid search for k ranging between 1 and 49, with a step size of 1, and between 50 and 100, with a step size of 

5. Once the optimal value of k is found, the algorithm retrieves the closest k neighbours by standardising the training data 

set (or computing the z-score, such that each variable has unit variance and zero mean), and then standardising the test 

set using the mean and variance obtained from the training set. Then the predicted value is computed either by the mean 

of the target variable of the k neighbours for the kNN with arithmetic mean method, or by weighing the neighbours taking 

into account their normalised inverse distances. 
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The last method is based on support vector machine (SVM) analysis (Cortes & Vapnik, 1995) (Vapnik, 1999), which 

is a popular method that was traditionally employed for classification; a version of SVM for regression was introduced 

later (Drucker, et al., 1997) and is called support vector regression (SVR). SVM is non-parametric as it relies on kernel 

functions. SVM produces non-linear boundaries by creating a linear boundary in a transformed representation of the 

feature space (Hastie, et al., 2011). SVM maximises the margin around the separating hyperplane and defines the solution 

in terms of a small subset of training samples, which are called the support vectors, i.e. the training data points that are 

closest to the decision hyperplane and that are most difficult to classify. SVR produces a model that depends only on a 

subset of the training data, since the model’s cost function ignores the training data points that are close to the model 

prediction. We implemented the sequential minimal optimisation (SMO) algorithm (Platt, 1998), which does not require 

a numerical optimisation algorithm or matrix computation and storage, because it divides a very large quadratic 

programming (QP) optimisation problem into a series of smallest possible QP problems that are solved analytically; this 

eliminates the need for a time-consuming numerical optimisation as an inner loop. The SMO algorithm is fast, easy to 

implement, and provides better scaling properties. The algorithm also flags the day-of-the-week features as categorical 

predictors. The SVR models in this study use the Gaussian kernel function. Keerthi and Lin (2003) proved that the linear 

kernel is a degenerate version of the Gaussian kernel, also called radial basis function (RBF), and therefore the linear 

kernel would never have a better accuracy than the Gaussian kernel. 

Our SVR method implements the linear epsilon-insensitive SVM (-SVM) regression, which is also called the L1 loss. 

By using the predictor variables and the observed response variables, the goal of -SVM is to identify a function 𝑓(𝑥) 

such that its deviation from 𝑦𝑛 is no greater than  for each training point and is as flat as possible (MathWorks, 2016). 

There are two main formulations for the optimisation problem: the primal formula and the dual formula. The primal 

formula consists of a convex optimisation problem, where it is possible that there is no function that satisfies the 

constraints for all points. This issue is overcome by introducing slack variables, which help deal with infeasible constraints 

and lead to the objective function, also known as the primal formula. The primal formula includes the box constant, which 

acts as a regularisation method in order to prevent overfitting; this imposes a penalty on all of the observations lying 

outside the  margin and determines the trade-off between the flatness of the function 𝑓(𝑥) and its tolerance. The SVR 

loss is calculated based on the distance between the observed target variable 𝑦 and the  boundary. The dual formula 

provides a computationally simpler solution to the primal formula; it employs Lagrange multipliers in order to transform 

the optimisation problem into a form that can be solved analytically. The optimal values of these two problem 

formulations are not necessarily equal and their difference is known as the duality gap. The solution of the dual problem 

is used exclusively when the problem is convex and meets a constraint qualification condition. 
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3. Data Set 

We compile one of the most comprehensive pan-European data sets, ranging from 1st January 2000 to 10th May 2015. 

It consists of over 7 million observations of daily market data for 2,353 stocks, 3,039 bank holidays for 22 countries, 

1,042 stock index futures expiries for 7 indices, and 49 MSCI quarterly review dates, along with a historical log of 1,420 

leavers and joiners for the investigated futures and MSCI indices. A great effort has been put into collecting, cleansing 

and processing the calendar data set due to the lack of a comprehensive database of bank holidays for financial markets. 

3.1. Market Data 

The market data contains daily observations consisting of the opening, closing, low and high prices and the trading 

volume for the constituents of the 31 most important European indices. The data set was retrieved from Thomson Reuters 

and was further processed. We compute the consolidated trading volume for each stock by retrieving the corresponding 

trading volume across the main European multilateral trading facilities (MTFs), i.e. BATS, CHI-X and Turquoise, and 

adding the MTF volume to the trading volume of the primary exchange. The resulting consolidated volume is used across 

this study in order to better reflect the true liquidity of a stock. The analysis discards the stocks with less than 100 trading 

days. South Africa was included in the analysis due to its close ties with the European financial markets. The processed 

market data covers 21 European countries and Table 3.1 outlines the number of stocks and their daily observations for 

each country. 

 
Table 3.1 

Stock universe – Breakdown by country. 

Country Name Country Code Number of Stocks Number of Observations 

Austria AT 32 98,179 

Belgium BE 62 205,414 

Czech Republic CZ 5 14,491 

Denmark DK 43 144,352 

Finland FI 130 390,209 

France FR 346 1,117,220 

Germany DE 176 539,142 

Greece GR 61 209,103 

Hungary HU 4 15,311 

(Republic of) Ireland IE 43 100,910 

Italy IT 111 330,609 

Netherlands NL 46 157,156 

Norway NO 69 172,562 

Poland PL 65 162,509 

Portugal PT 18 53,449 

South Africa ZA 42 139,568 

Spain ES 61 179,410 

Sweden SE 158 462,935 

Switzerland CH 104 339,998 

Turkey TR 130 412,273 

United Kingdom GB 647 1,952,265 

3.2. Calendar Data 

The market data is augmented by a comprehensive list of event dates, which can be classified as bank holidays and 

expiry days (i.e. stock index futures expiries and MSCI rebalances). These special events are expected to impact on the 

normal state of the financial markets and cause non-stationarity in trading volume. 
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Bank Holidays 

The data set for bank holidays is customised specifically for the financial markets and can be different in certain 

instances from the official national public holidays for a given country: when an exchange venue is owned by a company 

which is based in another country (e.g. Euronext) and enforces a different trading calendar, when a trading venue is 

located in a region with additional holidays, or when unforeseeable events occur (e.g. Hurricane Sandy, 11 th September 

Terrorist Attacks etc.). This calendar is an accurate reflection of the trading state of the US and the pan-European 

exchanges, consisting of 22 countries. The United States of America was included in the data set since it is a dominant 

financial market, whose magnitude could potentially influence the European liquidity. The non-trading calendar was 

meticulously compiled from scratch and multiple sources (e.g. the trading calendar on the exchanges’ websites and public 

holidays from www.timeanddate.com) were used to make decisions on the final outcome. These were double-checked 

with the empirical trading calendar resulting from the market data, which truly proved whether an exchange has been 

trading on a particular day. The accuracy of this calendar was vital to perform a cross-market holiday model and had to 

be manually constructed because there was no such trading calendar available; there are very few such calendars, although 

their information is either incomplete or they contain conflicting information. 

There are also country-specific characteristics for generating the public holidays calendar. For example, if a public 

holiday falls on a weekend, different countries substitute it with the previous trading day (e.g. New Year’s Eve in Austria 

and Belgium), with the following day, or do not substitute it at all. Additional ‘bridge’ holidays can be observed in 

particular countries (e.g. Hungary and Poland), when a holiday falls on a Tuesday or on a Thursday, resulting in four-day 

weekends. 

An illustrative example of the difference between the official public holidays and the non-trading calendar is on 1st May 

in the Netherlands, where the financial markets are shut despite the fact that 1st May is not a bank holiday. This is observed 

after the Amsterdam stock exchanged merged with the Brussels and Paris stock exchanges, in order to form the Euronext 

group. Similarly, the Belgian, Portuguese and French trading calendars changed after their main trading exchanges joined 

Euronext and therefore the public holidays between 1st May and Christmas Eve became regular trading days. 

Expiry Days 

The expiry day calendar incorporates periodic trading events which could be positively correlated with the trading 

volume, and consists of the futures expiries for seven liquid indices and the MSCI quarterly review for the MSCI 

International Pan Euro Price Index. By using the most liquid indices in Europe, this expiry calendar is an accurate 

representation of the main expiry dates in the European markets. 

We retrieved the up-to-date constituents for these indices as of 11th May 2015, which represent the ‘current 

constituents’. In order to create an accurate representation of the expiring indices at a given point in our analysis 
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timeframe, we constructed a historical list of additions and eliminations for each index, which allowed the generation of 

a snapshot of a stock’s constituent stocks. Table 3.2 outlines the number of constituents for each index, for both futures 

expiries and MSCI rebalances, where the ‘historical constituents’ column represents the number of previous stocks that 

were part of the constituent list of a given index before 11th May 2015, but which were subsequently eliminated, such that 

they are not a constituent anymore on 11th May 2015.   

 
Table 3.2 
Market data European indices for the futures expiry analysis and MSCI rebalance analysis. 

Analysis Type Index Name Current 

Constituents 

Historical 

Constituents 
Location 

Futures expiry Amsterdam Exchanges Index 25 37 Netherlands 

CAC 40 Index 40 54 France 

FTSE MIB Index 40 51 Italy 

FTSE 100 Index 100 149 United Kingdom 

Deutsche Boerse DAX Index 30 37 Germany 

IBEX 35 Index 35 44 Spain 

OMX Stockholm 30 Index 30 33 Sweden 

MSCI rebalance MSCI International Pan Euro Price Index EUR Real Time 204 338 Europe 

Stock Index Futures Expiries 

There are 32,408 observations of stock index futures expiries for seven indices, whose expiries occur either monthly or 

quarterly (i.e. December, March, June and September) as follows: 

 Monthly: CAC 40 Index Futures, FTSE MIB Index Futures, IBEX 35 Index Futures, Amsterdam Exchanges 

(AEX) Index Futures, and OMX Stockholm 30 (OMXS30); 

 Quarterly: FTSE 100 Index Futures, and DAX 30 Index Futures. 

The expiry occurs on the third Friday of the expiry month, or on the previous trading day when the third Friday is a 

non-trading day. The futures contract specifications were retrieved from Euronext (AEX and CAC 40), Eurex Exchange 

(DAX 30), London Stock Exchange (FTSE 100), Borsa Italiana (FTSE MIB), Bolsas y Mercados Españoles (IBEX 35) 

and NASDAQ OMX (OMXS30), in order to verify the expiry specifications for each index. 

MSCI Quarterly Reviews 

The MSCI rebalances have 10,298 observations across 16 countries: Austria, Belgium, Switzerland, Germany, 

Denmark, Spain, Finland, France, United Kingdom, Greece, (Republic of) Ireland, Italy, Netherlands, Norway, Portugal, 

and Sweden. Each stock’s country represents the country where that stock is trading, e.g. the United Kingdom is defined 

as a Spanish stock’s country if this stock is trading on the London Stock Exchange. 

In general, the MSCI quarterly reviews are implemented on the last trading day of the February, May, August, and 

November quarterly cycle, although there are a few exceptions when the MSCI rebalance falls a few days before the end 

of the month. The MSCI quarterly review dates were double-checked with the quarterly index review documents from 

www.msci.com. 
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4. Predictive Modelling 

We build a 1-step ahead out-of-sample model for predicting the trading volume, while fitting different supervised 

learning methods and examining event dates. 

4.1. Analysis Approach 

The methodological approach for constructing the predictive model is described in this section. For a given stock, these 

models predict the volume of the next day (i.e. the target date) based on past observations, employing a variety of machine 

learning methods and training window types. All of the models are fit with a constant term. 

There are three cross-stock models for event dates (i.e. cross-market holidays, stock index futures expiries, and MSCI 

quarterly reviews), which are fit using normalised data from all of the relevant stocks. In the case of special events, very 

few training observations would be available for an individual stock, hence the necessity of aggregating the training points 

for multiple stocks. However, after learning the model on the normalised data set, the volume for each stock is predicted 

individually, by using the stock-specific benchmark volume that was used for normalising the stock’s past volumes. The 

feature set of these cross-stock models includes 20 lagged volumes for each stock’s observation, which are normalised 

by dividing them by their median, in order to remove any differences in magnitude across our stock universe. 

Besides these three cross-stock models, there are seven stock-specific models, which are fit using different types of 

supervised learning methods: OLS, stepwise regression, ridge regression, lasso regression, kNN with arithmetic mean, 

kNN with inverse distance weighting, and SVR. We define an iteration as a fit model for every combination of stock, 

target date, learning method, and window type. For each iteration, these stock-specific models follow a similar training 

routine, starting by defining the 10-fold stratified cross-validation (CV) partitions from the beginning of the analysis, in 

order to conduct the entire iteration analysis on the same data partitions (e.g. when cross-validating potential values for 

method-specific parameters such as 𝜆 or k). The CV splits the data into 10 equally-sized partitions, while ensuring these 

are stratified by the binary indicator variables (i.e. the day-of-the-week binary features), such that these features are evenly 

distributed across the folds; its aim is to minimise the average mean squared error (MSE) throughout the 10 folds. The 

models can potentially contain 15 raw lagged volumes (i.e. autoregressive past observations) and 14 smoothed lagged 

volumes (i.e. moving average past observations), in order to explain the trading volume using recent time series. The 

iteration analysis identifies the optimal orders for the raw lagged volumes (or ‘volume lags’) and the smoothed lagged 

volumes (or ‘volume windows’). It starts by fitting a linear regression for the lowest orders (i.e. volume lag 1, or volume 

window 2), then it increments the order by one, fits the second model, and compares the CV average MSE for these two 

models. If the higher order model performs better, the process is incrementally repeated for the next pair of orders (up to 

order 15), until the optimal order has been found, either when the higher order model has a larger error (and therefore the 
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current model pair’s lower order becomes the optimal one), or when the order reaches the maximum limit of 15. This 

incremental comparison of nested models is conducted independently for the volume lags and the volume windows. 

When kNN, ridge regression or lasso regression are employed, the model proceeds to parameter calibration and runs 

grid search for k and performs a two-section search (i.e. grid search and binary search) for 𝜆. These searches perform 10-

fold cross-validation for each value. Then, all of the models proceed to feature construction and model training. The 

iteration analysis ends by testing the learnt model, i.e. computing the 1-step ahead prediction for the target date.  

Training Windows 

Each model is trained using two approaches: moving window and growing window. This helps understand whether a 

model relies only on recent data or whether it improves when more and more data points are used for training the model. 

These two approaches differ in the size of past observations when learning a model. When iterating the target dates of a 

stock for which predictions are made, the moving window approach trains the model using a fixed number 𝑛 of past 

observations, starting from the most recent data point (i.e. the observation occurring right before the prediction ‘unseen’ 

data point) and going backward until n points are accumulated. Throughout the next iterations, the moving window 

gradually adds a newer observation and drops the oldest observation, whereas the growing window approach adds a newer 

observation without discarding any other observations. Therefore, the number of observations on the kth iteration of a 

model is 𝑛 for the moving window and 𝑛 + 𝑘 − 1 for the growing window. 

There is a discrete number of sliding window sizes, whose representations are marked in brackets and are used when 

outlining the model results for this study: 1 month (‘MW_1M’), 3 months (‘MW_3M’), 6 months (‘MW_6M’), 1 year  

(‘MW_1Y’), and 2 years (‘MW_2Y’). 

The growing window starts with a training size that is equal to the largest moving window size, i.e. 2 years, and is 

represented by ‘GW’. 

Each stock-specific learning method is trained using the five moving window types and the growing window, whereas 

the cross-stock models are fit using only the two largest moving window sizes (i.e. ‘MW_1Y’ and ‘MW_2Y’) and the 

growing window. The rationale of using only the 1-year and 2-year moving windows is driven by the significantly lower 

number of observations in the case of event dates (i.e. cross-market holidays, futures expiries, and MSCI rebalances). 

For each training window iteration, the models are re-trained based only on the data available in that particular training 

window. The window sizes have been translated into a certain number of trading days, such that a constant number of 

observations are used to train the models throughout the different window iterations and stocks. There are 2,937 holidays 

for 22 countries whose market data is investigated, throughout 15 full years, between 1st January 2000 and 31st December 

2014. This period covers exactly 15 years, or 5,479 days including weekends, or 3,913 days excluding weekends. On 

average, there are 252 trading days per year for each country, which are derived from the difference between the total 
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number of business days and the average number of holidays per country, which is then divided by the number of years: 

(3913 − 2937 22⁄ ) 15⁄ = 251.97. Therefore, the fixed-length moving windows are defined in trading days as follows: 

21 days for 1 month, 63 days for 3 months, 126 days for 6 months, 252 days for 1 year, and 504 days for 2 years. The 

year 2015 was excluded from this averaging because our data set includes observations until 10th May 2015 and therefore 

this year has incomplete data. 

Out of the 2,353 pan-European stocks, there are 163 stocks (or 6.93%) whose number of observations is less than 504 

(corresponding to the 2-year window). As for the remaining 2,190 stocks with available data spreading on over 2 years, 

there are 26 stocks with less than 100 days outside the 2-year period, 150 stocks with more than 100 days and less than 

1,000 days, and 2,014 stocks with over 1,000 days of observations outside the 2-year period. 

Cluster Job Management 

Given the tremendous number of iterations and runtime required by the stock-specific models, we ran these models on 

two distinct computer clusters for high performance computing, which operate on the Sun Grid Engine grid computing 

system. 

The stock-specific total runtime was 11,878 days (or 33 years), excluding the queuing times associated with each job, 

which tended to reach even several days during peak times. The stock-specific models have been split into jobs of 

maximum 1,000 iterations (i.e. 1,000 consecutive target dates for a given stock). For example, a stock with 3,683 

observations running a 2-year moving (or growing) window, needs 3683 − 504 = 3179 iterations to traverse all of the 

target dates for 1-step ahead volume prediction; therefore, there are 4 jobs for this stock (broken down into 3 jobs of 1,000 

iterations and another job of 179 iterations), for a particular learning method. Table 4.1 outlines the total runtime for each 

method (across all of the stocks and window types) and for each window type (across all of the stocks and learning 

methods), along with the corresponding number of jobs and target dates.  

 
Table 4.1  

The distribution of runtime and number of iterations/target dates by method and window type. 

Breakdown Item Item Name Runtime (Days) Jobs Target Dates 

Method OLS 554.64 45,990 39,604,267 

 Stepwise regression 819.76 45,990 39,604,267 

 Ridge regression 767.18 45,990 39,604,267 

 Lasso regression 6,014.76 45,990 39,604,267 

 kNN (arithmetic mean) 1,791.22 45,990 39,604,267 

 kNN (inverse distance) 1,361.45 45,990 39,604,267 

 SVR 569.41 45,990 39,604,267 

Window type Moving window, 1 month 938.53 55,622 49,802,970 

 Moving window, 3 months 993.51 55,391 49,111,188 

 Moving window, 6 months 1,142.35 54,978 48,074,677 

 Moving window, 1 year 1,196.28 53,571 46,029,606 

 Moving window, 2 years 1,494.24 51,184 42,105,714 

 Growing window 6,113.52 51,184 42,105,714 
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Lasso and kNN are computationally expensive, mainly because lasso performs a two-section search (i.e. grid search 

and bisection method) and deals with a large number of features (up to 40 variables) when regularising their coefficients 

and sets some to zero, while kNN is memory-based and requires heavy resources when finding the k nearest neighbours 

for a test point. The runtime for the various window sizes is larger when the window grows in size and is significantly 

larger for the growing window approach. 

4.2. Cross-Stock Models 

We investigated the effect of event dates on trading volume, focusing on cross-market holidays, stock index futures 

expiries, and MSCI quarterly reviews. The sparsity of these observations determined the models to be trained on cross-

stock data. Since stocks exhibit different volume and price magnitudes, we normalised the past observations of trading 

volume and aggregated the data for the entire stock universe. Even after aggregating, the number of observations was 

significantly less than in the case of stock-specific models; there are 2,904 target dates and predicting their volume had a 

runtime of 15 days. Each model corresponds to only one learning method. The cross-market holiday model employs ridge 

regression, whereas the futures expiries and the MSCI rebalances are fit using OLS. 

Unlike the stock-specific models where the target variable consists of the logarithmic consolidated volume, the cross-

stock models employ the ‘relative volume’ as the target variable. Equation (4.1) shows the formula for the relative volume, 

which is determined by the log-ratio between the consolidated volume on the target date (also called ‘event date’ or 

‘special date’) and the stock-specific benchmark volume. This benchmark is computed as the median of the trading 

volumes of the 20 trading days prior to the target date (i.e. the futures expiry, MSCI rebalance, or cross-market holiday). 

The median was selected among other measures of central tendency (e.g. geometric mean or arithmetic mean) because it 

was the most robust to the outliers in our data set. By dividing a stock’s target date volume by the benchmark volume, 

we get a normalised value for the trading volume, which works well across our stock universe. This normalisation, 

consisting in the identification of observations from multiple stocks that have a common target date, was necessary as 

these event dates are periodic, but sparse. 

 
 

𝑉𝑟𝑒𝑙 = �̂� = 𝑙𝑜𝑔
𝑉𝑡0

𝑉𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘

= 𝑙𝑜𝑔
𝑉𝑡0

𝑚𝑒𝑑𝑖𝑎𝑛(𝑉𝑡−𝑙𝑎𝑔−1, 𝑉𝑡−𝑙𝑎𝑔−2, … , 𝑉𝑡−𝑙𝑎𝑔−20)
 (4.1)  

 

When performing 1-step ahead prediction, these models estimate the relative volume. In order to be able to make stock-

specific predictions, the relative volume needs to be converted to a particular stock’s logarithmic volume. Essentially, we 

train the model on the entire stock universe sharing a common event date, but we make stock-specific predictions by 

transforming the target variable from being stock-agnostic to being stock-specific. Equation (4.2) shows how to calculate 

the stock-specific volume estimate 𝑦′̂ based on the relative volume. We add the benchmark volume to the relative volume, 

as this is the stock-specific term that customises the volume prediction for a given stock. 
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 𝑉𝑠𝑡𝑜𝑐𝑘 = 𝑦′̂ = 𝑉𝑟𝑒𝑙 + 𝑙𝑜𝑔 𝑉𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 (4.2)  

Cross-Market Holidays 

The cross-market holiday model implements ridge regression, which performs a two-section search for each iteration. 

Ridge regression was appropriate for the cross-market holidays as it addresses the problem of multicollinearity and 

reduces the coefficient variance. Its predictors consist of the constant term, 20 lagged normalised volumes (i.e. a stock’s 

most recent 20 volumes divided by their median), 21 indicator variables for the trading country, and 22 indicator variables 

for the holiday country, adding the US on top of the 21 trading countries. The regression line is outlined in Equation (4.3), 

where 𝛽0 is the constant term, 𝑇𝑖  is the indicator variable signalling whether the ith country is trading, and 𝐻𝑖  indicates 

whether it is on holiday. 

 
 

�̂� = 𝛽0 + ∑ 𝛽𝑙𝑎𝑔𝑖

𝑉𝑡−𝑖

𝑉𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘
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𝑖=1

+ ∑ 𝛽𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑖
𝑇𝑖

21

𝑖=1

+ ∑ 𝛽𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑖
𝐻𝑖

22

𝑖=1

 (4.3)  

Stock Index Futures Expiries 

The futures expiry model is fit using OLS. Stepwise regression, or more generally feature selection, was not performed 

based on the previous findings (Batrinca, et al., 2016), where the OLS provided a more stable model across the analysis. 

The feature set consists of the constant term, 20 lagged normalised volumes and 7 indicator variables corresponding to 

the futures indices included in this pan-European analysis (i.e. Amsterdam Exchange, CAC 40, FTSE MIB, FTSE, 

Deutsche Boerse DAX, IBEX 35, and OMX Stockholm 30), showing which expiring index a particular observation is a 

member of. The model is summarised in Equation (4.4), where 𝐸𝑖 indicates whether a particular stock is the constituent 

of the ith index. 

 
 

�̂� = 𝛽0 + ∑ 𝛽𝑙𝑎𝑔𝑖

𝑉𝑡−𝑖

𝑉𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘

20

𝑖=1

+ ∑ 𝛽𝑖𝑛𝑑𝑒𝑥𝑖
𝐸𝑖

7

𝑖=1

 (4.4)  

MSCI Quarterly Reviews 

The MSCI rebalance model is similar to the futures expiry model and is fit using OLS due to the same considerations. 

It is modelled for the MSCI International Pan Euro Price Index, which covers 204 stocks from 16 countries: Austria, 

Belgium, Switzerland, Germany, Denmark, Spain, Finland, France, United Kingdom, Greece, (Republic of) Ireland, Italy, 

Netherlands, Norway, Portugal, and Sweden. The model terms include the intercept, 20 lagged normalised volumes and 

16 indicator variables for the trading country of each stock, i.e. the exchange country where the stock is trading; these are 

outlined in (4.5), where 𝐶𝑖 represents the indicator variable for the ith country included on the MSCI pan-European index. 
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�̂� = 𝛽0 + ∑ 𝛽𝑙𝑎𝑔𝑖

𝑉𝑡−𝑖

𝑉𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘

20

𝑖=1

+ ∑ 𝛽𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑖
𝐶𝑖

16

𝑖=1

 (4.5)  

4.3. Stock-Specific Models 

There are seven stock-specific models employing different supervised learning techniques and they all begin from the 

model function in Equation (4.6). The initial feature set includes the constant term, 15 volume (autoregressive) lags, 14 

volume (moving average) windows, 5 price metrics 𝑃𝑖  that are trained using the opening, closing, low and high prices of 

the previous trading day (i.e. 𝑡 − 1) and the opening price of the target day (i.e. 𝑡0) in the case of the overnight return, 

and finally five indicator variables corresponding to each business day, denoted by 𝐷𝑂𝑊𝑖 , where i ranges from 1 to 5 (i.e. 

Monday to Friday). The target variable of these models is a particular stock’s estimated logarithmic volume for the next 

trading day (i.e. 𝑡0). 

 
 

�̂� = 𝛽0 + ∑ 𝛽𝑙𝑎𝑔𝑖
𝑣𝑜𝑙𝐿𝑎𝑔𝑡−𝑖

15

𝑖=1
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𝑣𝑜𝑙𝑊𝑖𝑛𝑡−𝑖
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𝑖=2

+ ∑ 𝛽𝑝𝑟𝑖
𝑃𝑖,𝑡−1

5

𝑖=1

+ ∑ 𝛽𝑑𝑜𝑤𝑖
𝐷𝑂𝑊𝑖

5

𝑖=1

 (4.6)  

 

We use three main price log-ratios: intraday range, asymmetric intraday return, and asymmetric overnight return; their 

formulae are shown in Equation (4.7), Equation (4.8), and Equation (4.9), respectively. The overnight return is divided 

by the number of intervening nights in order to correct for the additional non-trading day observed throughout weekends 

and bank holidays. The previous empirical evidence of Batrinca et al. (2016) found that better performance is achieved 

when splitting the intraday return and overnight return log-ratios at zero, into positive absolute values (denoted by 

‘absPos’, representing the absolute value of positive returns only), and negative absolute values (denoted by ‘absNeg’, 

corresponding to the absolute value of negative returns). Consequently, we include the following 5 price metrics in the 

initial model: intraday range, ‘absPos’ intraday return, ‘absNeg’ intraday return, ‘absPos’ overnight return, and ‘absNeg’ 

overnight return. 

 
 

𝐼𝑛𝑡𝑟𝑎𝑑𝑎𝑦 𝑟𝑒𝑡𝑢𝑟𝑛 𝑙𝑜𝑔 𝑟𝑎𝑡𝑖𝑜 = 𝑙𝑜𝑔
𝑐𝑙𝑜𝑠𝑒𝑡−1

𝑜𝑝𝑒𝑛𝑡−1

 (4.7)  

 
 

𝐼𝑛𝑡𝑟𝑎𝑑𝑎𝑦 𝑟𝑎𝑛𝑔𝑒 𝑙𝑜𝑔 𝑟𝑎𝑡𝑖𝑜 = 𝑙𝑜𝑔
ℎ𝑖𝑔ℎ𝑡−1

𝑙𝑜𝑤𝑡−1

 (4.8)  

 
 

𝑂𝑣𝑒𝑟𝑛𝑖𝑔ℎ𝑡 𝑟𝑒𝑡𝑢𝑟𝑛 𝑙𝑜𝑔 𝑟𝑎𝑡𝑖𝑜 =

𝑙𝑜𝑔
𝑜𝑝𝑒𝑛𝑡0

𝑐𝑙𝑜𝑠𝑒𝑡−1

# 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑖𝑛𝑔 𝑛𝑖𝑔ℎ𝑡𝑠
 (4.9)  

 

Given this initial model, the analysis follows the framework described in the Analysis Approach section for each 

individual iteration (i.e. for each target date, given a particular learning method, a particular stock and a particular window 

type): partitioning the data for the subsequent stratified 10-fold cross-validation applications and determining the optimal 

orders for the volume lags and the volume windows, producing a model with potentially less features than the initial 

model, where 15 volume lags and 14 volume windows were included. Then, if the method is a shrinkage method (i.e. 
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ridge regression or lasso regression) or kNN, the method optimal parameter is identified using cross-validation on that 

iteration’s training set. Eventually, each of the following methods is applied to this model definition, using the 

methodology described in the Methodology Review section: OLS, stepwise regression, ridge regression, lasso regression, 

kNN with arithmetic mean, kNN with inverse distance weighting, and SVR. A particular constraint is applied to stepwise 

regression, where we force the constant term, the volume lags and volume windows to be kept into the reduced model 

when performing sequential feature selection. 

5. Results 

The results of this study are outlined in this section, along with an interpretation of their meaning and implication. We 

start by investigating the distribution of the volume lags and windows, and then explore the method-specific results, such 

as the model parameter distribution and feature selection. Next, we provide a performance benchmark for the various 

models employed in this model, leading to an interpretation of the optimal learning method and training window, and to 

a breakdown of the model performance by event dates. Based on this performance breakdown by special events, we 

propose a switching model that virtually adapts from one underlying model to another, based on the current state of the 

market, which is driven by event dates (e.g. futures expiries, MSCI rebalances, and cross-market holidays) or the current 

day-of-the-week. 

5.1. Contribution of Recent Data: Volume Lags and Windows 

For each unique combination of stock, learning method and window type, a certain optimal order for the volume lag 

and volume window is determined for every target date. Since a stock has different cross-validation partitions across its 

various models consisting of different learning methods and window types, we report very minor fluctuations in the order 

distribution of volume lags and volume windows for the same window type across the seven training methods. Therefore, 

we aggregated the order values across the seven models, grouped by window type. 

Table 5.1 outlines the descriptive statistics for each window for volume lags and volume windows. We observe a 

correlation between the size of the training window and the mean and median of the volume lag/window orders. This 

suggests that the larger the training set, the more relevant past volumes tend to become in fitting an accurate prediction 

model. This confirms that trading volume is autoregressive and that past observations are meaningful if a substantial 

training set is available to learn the model. 
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Table 5.1  

Descriptive statistics for the orders of the volume lag and the volume window, grouped by window type. 

Past Volume Type Window Type Min Max Mean Median Standard Deviation 

Volume lag MW_1M 1 15 1.22 1 0.51 

 MW_3M 1 13 1.33 1 0.63 

 MW_6M 1 11 1.65 1 0.89 

 MW_1Y 1 13 2.35 2 1.23 

 MW_2Y 1 15 3.56 3 1.57 

 GW 1 15 7.67 7 3.22 

Volume window MW_1M 2 15 2.24 2 0.52 

 MW_3M 2 10 2.24 2 0.54 

 MW_6M 2 12 2.34 2 0.67 

 MW_1Y 2 15 2.65 2 0.98 

 MW_2Y 2 15 3.50 3 1.50 

 GW 2 15 7.70 7 3.28 

 

In Figure 5.1, we can visualise how the highly positive skewness from Panel A, which corresponds to the smallest 

training window (i.e. 1-month moving window) gradually transforms into a relatively symmetrical distribution in Panel 

F, where the growing window approach trains the model using a variety of lag orders, including the high orders towards 

15. 

 

 
Figure 5.1: Distribution of the volume lag orders across the six different window types. 

 

The moving average-based volume windows in Figure 5.2 exhibit a similar pattern and the volume window orders are 

positively skewed for the smallest training window (i.e. 1-month moving window in Panel A). The positive skewness 

decreases once the training window is extended, and becomes rather symmetrical for the largest training window in Panel 

F (i.e. the growing window). The growing window starts from an initial window size of 2 years, whose distribution is 

outlined in Panel E. However, the larger the window becomes, the less the order distribution is positively skewed, 

exhibiting a negatively skewed distribution for the largest window sizes of the growing window, which ultimately yields 

the relatively symmetrical distribution in Panel F. 
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The shift in the order distribution from smaller to larger training windows provides evidence that recent volume data 

contributes to the prediction accuracy and that the amount of meaningful recent data (in the form of lag and window 

orders) increases with the number of observations in the training window. 

 

 
Figure 5.2: Distribution of the volume window orders for different window types. 

5.2. Method-Specific Parameters 

We performed grid search between 1 and 50, with a unit-sized step, and between 50 and 100, with a step size of 5, in 

order to identify the optimal value of k for the two kNN models, while conducting a two-section search for identifying 

the optimal value of 𝜆 for the two regularisation methods in this analysis. At each step, 10-fold stratified cross-validation 

was performed to validate the model performance. Below, we outline the distributions and patterns of these two method-

specific parameters, i.e. k and 𝜆. 

k-Nearest Neighbours 

There are two models implementing kNN, one that treats neighbours equally and uses the arithmetic mean to determine 

the target variable, and one that penalises the distance between the test point and its neighbours through inverse distance 

weighting. Table 5.2 includes the descriptive statistics for the values of k for each window type of the two kNN models, 

i.e. kNN with arithmetic mean and kNN with inverse distance weighting, for the entire stock universe. We observe similar 

results for the distribution of k across these two models, although the inverse distance weighting approach tends to have 

slightly higher values of central tendency, having the mean and median with almost 3 neighbours more than the arithmetic 

mean approach. We report that the mean and median increase with the window size, especially when comparing the 2-

year moving window with the growing window, as their initial iteration is identical, confirming that the market data has 

a highly noisy structure. The value of k for the 1-month moving window reaches is less than 18 as it contains 21 trading 

days and similarly the 3-month moving window has less than 56 neighbours as it contains 63 trading days in total. 
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However, k reaches the maximum number of 100 neighbours once the training window is at least 6 months long; we did 

not allow for more than 100 neighbours in order to avoid over-smoothing and eliminating important properties in the data 

distribution. Although we expected the inverse distance weighting approach to have a significantly higher number of 

neighbours on average potentially because it could assign very low weights to a high number of neighbours with a possible 

blurring effect, the difference is not very conspicuous. We conclude that the kNN with arithmetic average approach 

produces a model that is slightly more parsimonious that the one yielded by the inverse distance weighting, although their 

overall parameter distribution is rather similar. Their performance is discussed in a subsequent section. 

 
Table 5.2  

Descriptive statistics for the values of k for the 6 different window types of the two kNN models. 

kNN Approach Window Type Observations Min Max Mean Median Standard Deviation 

Arithmetic Mean MW_1M 7,111,213 1 18 10.82 11 5.25 

 MW_3M 7,012,429 1 55 23.26 20 13.92 

 MW_6M 6,864,419 1 100 32.43 29 22.29 

 MW_1Y 6,572,392 1 100 38.17 32 27.68 

 MW_2Y 6,012,088 2 100 39.42 27 29.51 

 GW 6,012,088 3 100 48.23 41 26.47 

Inverse Distance Weighting MW_1M 7,111,213 1 18 11.74 12 5.23 

 MW_3M 7,012,429 1 55 26.20 24 14.70 

 MW_6M 6,864,419 1 100 36.44 32 24.23 

 MW_1Y 6,572,392 1 100 41.72 37 28.99 

 MW_2Y 6,012,088 1 100 42.37 30 30.13 

 GW 6,012,088 1 100 51.02 44 26.99 

 

The empirical cumulative distribution function (CDF) plot in Figure 5.3 is for the growing window models; Panel A 

represents the kNN with arithmetic mean model, while Panel B represents the kNN with inverse distance weighting. The 

minor difference in central tendency is noticeable, e.g. in Panel A 65% of the values of k are less than or equal to 50, 

whereas the proportion in Panel B is 60%. 

 

 
Figure 5.3: Empirical CDF of k for the growing window model for kNN with arithmetic mean in Panel A and kNN with inverse distance weighting in 
Panel B. 
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Regularisation Methods 

The shrinkage methods in this analysis consist of an initial identification step for 𝜆, employing a two-section search, 

where we first perform grid search to locate the optimal 𝜆 in the (base 10) common logarithm interval [−10,10], using a 

unit-sized step in the log10 space, and then use the spotted value to perform bisection method for determining a more 

precise value for 𝜆. The most extreme values that 𝜆 can take are −11 and 11; this happens when the optimal value for 𝜆 

in the grid search section is either −10 or 10 and this value is then used as the initial midpoint of the bisection method, 

with potential extreme values lying one unit away from this midpoint, allowing for values between the interval [−11,11], 

expressed in base 10 logarithm space. This leads to 24,596 unique values for 𝜆 across the six window types in the ridge 

regression model, and 18,862 unique values in the lasso regression model. Based on the descriptive statistics for 𝜆 in 

Table 5.3, which are reported for the entire stock universe in the base 10 logarithmic space, we observe significant 

differences in the distribution of 𝜆 between ridge regression and lasso regression. The values of 𝜆 are more dispersed 

throughout the interval [−11,11] in the case of ridge regression, whereas lasso regression exhibits a positively skewed 

distribution, with mostly negative values, where the maximum is either 0 or 1. While the median for 𝜆 is around 2 for the 

ridge regression model, it is −2 for lasso regression. 

 
Table 5.3  

Descriptive statistics for the values of 𝜆. 

Shrinkage Model Window Type Observation Min Max Mean Median Standard Deviation 

Ridge Regression MW_1M 7,111,213 -11 11 5.13 2.15 4.59 

 MW_3M 7,012,429 -11 11 3.05 2.00 3.15 

 MW_6M 6,864,419 -11 11 2.26 1.96 1.98 

 MW_1Y 6,572,392 -11 11 1.94 2.00 1.17 

 MW_2Y 6,012,088 -11 11 1.86 2.00 0.87 

 GW 6,012,088 -11 11 2.04 2.00 0.80 

Lasso Regression MW_1M 7,111,213 -11 1 -0.36 0.00 0.87 

 MW_3M 7,012,429 -11 1 -0.93 -1.00 1.08 

 MW_6M 6,864,419 -11 1 -1.42 -1.25 1.22 

 MW_1Y 6,572,392 -11 1 -1.82 -2.00 1.28 

 MW_2Y 6,012,088 -11 0 -2.12 -2.00 1.27 

 GW 6,012,088 -11 0 -2.43 -2.01 1.16 

 

The difference in the distribution of 𝜆 stems from the different ways in which the two penalties work when dealing with 

two variables that are highly correlated: the L1 regulariser (i.e. lasso regression) picks only one of the two correlated 

predictors, whereas the L2 regulariser (i.e. ridge regression) keeps both of them in the model and jointly shrinks their 

coefficients. Therefore, L2 penalties can minimise the prediction error better than L1 penalties, although L1 penalties can 

reduce overfitting and produce a more parsimonious model. In this section, we only examine the patterns observed in the 

distribution of these method-specific parameters. The predictive power of these models is compared in a subsequent 

section of this study. 
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5.3. Feature Selection 

We analyse the results of feature selection, which was conducted by two methods: stepwise regression and lasso 

regression. The stepwise regression models were enforced to keep the intercept and the volume features (i.e. volume lags 

and volume windows), performing feature selection on the price features (i.e. intraday range, intraday return 

absPos/absNeg, and overnight return absPos/absNeg) and the five day-of-the-week features, whereas the lasso models 

could eliminate any feature from the full model. Because of this methodology difference, we start by investigating the 

selection of the volume features in the reduced model produced by lasso regression. Since every model starts by 

identifying the optimal order of the volume lags and volume windows, Table 5.4 outlines the proportion of each volume 

order (ranging from 1 to 15 for the volume lags and from 2 to 15 for the volume windows) in the full models throughout 

all of the window types of lasso regression. We observe that the volume lag and window orders below 7 are initially 

included in over 10% of the samples, out of a total of 39,584,629 model iterations. Once these full models are fit with the 

optimal orders, lasso regression performs variable selection. 

 
Table 5.4 
The proportion of volume lag and volume window orders in the full models of lasso regression, averaged over the six window types. 

 Order 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Volume lags 100 56.52 36.80 24.50 18.69 12.30 9.34 7.26 6.00 4.89 2.98 1.86 1.23 0.81 0.57 

Volume windows - 100.00 42.65 25.27 18.46 12.42 9.34 7.35 6.09 5.01 3.15 1.94 1.30 0.88 0.63 

 

In order to compute the proportion of each volume feature in the reduced lasso model, we take into account that the 

volume lag and window orders are mostly less than the maximum value (i.e. 15) and, for each stock, we count the number 

of occurrences of each feature in the reduced model and also the number of models where a particular volume feature 

could not be possibly part of the reduced model, because the initially identified optimal order of the full model is lower 

than this particular volume order. Lasso regression selected the intercept in 100% of the model iterations. Figure 5.4 

illustrates the selection proportions of the volume features (i.e. both volume lags and volume windows) in the reduced 

models across the six window types of lasso regression. The volume lags up to order 11 are selected in more than half of 

the model iterations, whereas the proportions for the volume window features are significantly lower, ranging from 10% 

to 35%. 
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Figure 5.4: The proportion of volume lag and volume window orders in the reduced model produced by lasso regression. 

 

The distribution of the selection proportions of the volume features for each window type is outlined in Table 5.5, for 

the purpose of spotting potential trends in the volume autoregressive nature. We observe a very high retention of the 

volume lag features for the models that are trained on at least 6 months of data (i.e. MW_6M, MW_1Y, MW_2Y, and 

GW). This trend is not followed by the selection of the volume windows, but we can conclude that past observations of 

the trading volume become more relevant when the learnt model is trained on more than 6 months of observations, and 

that volume becomes more autoregressive in this context. 

 
Table 5.5  

Selection proportion for the volume lag and volume window orders for each window type. 

Order Window type for volume lags Window type for volume windows 

MW_1M MW_3M MW_6M MW_1Y MW_2Y GW MW_1M MW_3M MW_6M MW_1Y MW_2Y GW 

1 17.70 56.56 82.94 95.47 99.28 99.94 0 0 0 0 0 0 

2 23.68 65.29 88.02 95.89 98.12 99.52 5.74 18.10 32.64 43.14 48.83 47.80 

3 29.75 71.37 91.92 97.07 97.83 99.24 7.60 20.23 23.94 16.51 14.25 27.20 

4 30.43 67.71 90.10 96.30 96.47 97.27 11.94 27.23 31.64 19.56 12.71 25.57 

5 36.85 71.30 90.46 96.15 96.27 96.05 15.30 28.71 33.85 20.43 12.09 22.30 

6 40.33 60.84 79.05 91.04 95.13 95.23 19.04 26.46 33.56 22.16 14.42 22.60 

7 41.57 64.21 84.99 94.46 97.57 95.03 19.62 23.95 31.74 24.32 15.86 21.45 

8 34.09 60.38 79.70 92.01 97.63 94.07 20.73 24.49 29.78 25.01 17.96 20.65 

9 5.56 45.45 77.14 92.23 97.66 94.61 20.45 23.91 26.90 23.27 18.61 19.56 

10 0 0 90.32 95.59 97.02 95.08 0 33.33 28.57 39.39 26.99 19.87 

11 0 0 90.91 92.65 93.68 96.84 0 0 41.67 21.57 26.95 19.59 

12 0 0 0 91.30 95.28 96.77 0 0 100.00 27.27 25.22 17.76 

13 0 0 0 75.00 99.29 98.41 0 0 0 33.33 32.28 18.31 

14 0 0 0 0 95.45 97.72 0 0 0 100.00 28.95 19.41 

15 0 0 0 0 100.00 99.80 0 0 0 0 35.71 34.42 

 

Next, we discuss the feature selection of the price variables and the day-of-the-week indicator variables for both 

stepwise regression and lasso regression. Table 5.6 shows the selection percentage for each feature after averaging the 
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results across the six window types. There is a notable difference in the selection proportion of the price features with 

significantly higher values for the stepwise regression implementation, whereas the price features are selected in 

approximately 3% of the lasso regression models. The day-of-the-week variables are similarly selected in both learning 

methods. Mondays have the highest percentage (approximately 42%), proving their great significance, either as a weekend 

effect or as an impact of the Monday bank holidays. Friday is the second most frequent day-of-the-week in the reduced 

model (being selected in approximately 25% of the models), possibly because of the weekend effect or due to the expiry 

day effect (e.g. stock index futures expiries or MSCI quarterly reviews). 

 
Table 5.6  

The features selected by stepwise regression and lasso regression, averaged across the six window types. 

Variable % in model 

Stepwise regression Lasso regression 

Intraday range 27.62 3.71 

Asymmetric intraday return (absPos) 26.44 3.34 

Asymmetric intraday return (absNeg) 26.91 3.03 

Asymmetric overnight return (absPos) 42.32 3.31 

Asymmetric overnight return (absNeg) 38.60 3.19 

Day-of-week: 1 41.81 42.84 

Day-of-week: 2 20.60 26.18 

Day-of-week: 3 18.88 25.36 

Day-of-week: 4 17.63 21.43 

Day-of-week: 5 23.52 26.99 

5.4. Methodology Performance 

For the comparison of the various methods, we need to bear in mind that different stocks have different error 

magnitudes. Employing the commonly used residual-based evaluation (i.e. including the cross-stock MSE of each 

method) would not be informative as we are looking to obtain stock-specific model stability. We need to look at some 

type of error normalisation and a simple way of doing this is to rank the different methods/models for each stock, and 

then look at the overall (average) ranks when comparing across stocks. Here, we ask the question “What proportion of 

the time was one method better than the other” and look at the relative performance for each stock. We perform the 

rankings for each stock and then answer how often each method was the best. 

This error-based ranking approach is common in statistics (Rosset, et al., 2007), and can be used overall, as well as on 

the specific event days. Ranking-based evaluation measures for regression models are interpretable and they are robust 

against extreme outliers. We used the prediction data, containing the predicted and the observed trading volume for each 

trading day. Then, we computed the MSE for every stock and then ranked the methods based on the MSE. We used dense 

ranking (or "1223" ranking), where the models with equal predictions get the same ranking number and the next model 

receives the following ranking number. 

The rank averages for each method and window type in Table 5.7 show that ridge regression trained on a 2-year moving 

window is the best method for all of the trading dates, including special events. The optimal length of the sliding window 

approach is 2 years, both for the cross-stock models (i.e. futures expiries, MSCI rebalances, and cross-market holidays) 
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and the stock-specific models (i.e. OLS, stepwise regression, ridge regression, lasso regression, and kNN), with the 

exception of SVR, whose best error is achieved by the 6-month moving window. The 2-year moving window and the 

growing window tend to have the best performance across all methods. The 2-year moving window is better in 5 models 

(i.e. futures expiries, stepwise regression, ridge regression, lasso regression, and SVR), whereas the growing window is 

better in the other 5 models (i.e. MSCI rebalances, cross-market holidays, OLS, kNN with arithmetic average, and kNN 

with inverse distance weighting). The average rank for the stock-specific models are: 37.85 for MW_1M, 28.99 for 

MW_3M, 23.21 for MW_6M, 18.80 (18.61 including the special event models) for MW_1Y, 17.30 (16.55 including the 

special event models) for MW_2Y, and 17.52 (16.61 including the special event models) for GW. For the moving 

windows, the rank improves once the window length increases. However, the growing window has a slightly worse rank 

than MW_2Y, suggesting that recent data might be more relevant as there could be structural breaks across the years. 

This pattern is not applicable to the OLS method, where the lowest rank across all the models is achieved by OLS GW. 

 
Table 5.7  

The mean of the rank of each method and window type for all of the target dates. 

Window 

size 

Futures 

expiries 

MSCI 

rebalances 

Cross-market 

holidays 

OLS Stepwise 

regression 

Ridge 

regression 

Lasso 

regression 

kNN 

(Arithmetic 

mean) 

kNN 

(Inverse 

distance) 

SVR 

MW_1M - - - 45.82 44.32 38.93 29.93 34.79 33.50 37.65 

MW_3M - - - 36.33 29.81 19.56 21.01 30.07 28.37 37.74 

MW_6M - - - 22.54 18.73 13.71 15.63 28.43 26.57 36.88 

MW_1Y 13.93 16.85 23.74 13.01 11.12 8.78 11.16 26.10 24.52 36.92 

MW_2Y 12.11 11.76 20.55 8.27 7.78 6.96 9.85 25.22 23.87 39.14 

GW 13.93 10.57 19.03 7.94 8.20 8.16 10.09 23.62 22.27 42.33 

 

The performance of the two kNN methods improves when the window size is larger, as more similar data points are 

found among the past observations. Throughout the stock-specific learning methods, ridge regression is the best one for 

4 window types (MW_3M, MW_6M, MW_1Y, and MW_2Y). OLS has the best average rank for the growing window 

approach, although the rank of ridge regression growing window is the second best. When using fewer points to train the 

model, lasso regression achieves the best error. SVR with Gaussian kernel has the poorest performance; this could be 

further improved by implementing SVR with feature selection. 

The standard deviations in Table 5.8 show the performance volatility of the three cross-stock models compared to the 

stock-specific models. 
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Table 5.8  

The standard deviation of each method and window type for all of the target dates. 

Window 

size 

Futures 

expiries 

MSCI 

rebalances 

Cross-
market 

holidays 

OLS Stepwise 

regression 

Ridge 

regression 

Lasso 

regression 

kNN 

(Arithmetic 

mean) 

kNN 

(Inverse 

distance) 

SVR 

MW_1M - - - 2.06 2.55 5.37 8.03 5.68 5.48 5.51 

MW_3M - - - 6.93 7.12 5.38 6.58 6.43 6.33 3.79 

MW_6M - - - 7.32 5.88 4.84 4.97 6.61 6.59 3.95 

MW_1Y 15.39 17.75 14.49 6.34 5.09 4.55 4.67 5.94 6.21 4.77 

MW_2Y 14.99 16.13 13.88 5.72 4.66 4.92 4.88 5.62 6.05 4.74 

GW 16.91 15.73 13.91 6.39 6.02 6.68 6.27 8.39 8.37 4.45 

5.5. The Switching Model 

From the methodology performance ranks, we infer an adaptive switching model. This is a cross-stock in-sample 

analysis that aims to better understand the performance of the various models on specific dates of interest. The 6,012,088 

samples are drilled down to the lowest possible granularity by various temporal characteristics, such as: non-event dates 

(i.e. dates without any special event such as cross-market holidays, futures expiries, or MSCI rebalances), futures expiry 

index, MSCI rebalances, cross-market holidays, and day-of-the-week. This breakdown incorporates all combinations of 

these temporal aspects in order to find the best local model. Table 5.9 provides a dissection of the switching model for all 

the temporal combinations (i.e. every combination of event dates) and outlines each of the 42 sub-models, along with 

their best models, window sizes and average ranks. For a given trading day, the switching model chooses between these 

sub-models and picks the locally optimal model. Non-event dates and (special) event dates are mutually exclusive. 

Moreover, futures expiries and MSCI rebalances also have no overlapping days. The switching model is fit based on the 

42 time intervals and their associated best models. 

We make a specific comparison of errors on the various event days. The performance comparison between two methods 

for a given temporal circumstance is computed by getting the intersection of the trading dates that match the current 

temporal circumstance (e.g. non-event date, special event, certain day-of-the-week etc.) and comparing their ranks. In the 

situation of a clash between two special events, we choose the model preference by investigating the performance of these 

models using the intersection of the trading days for these special events, and then computing the MSE per stock and 

ranking each method for this reduced data set. 
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Table 5.9  

Switching model drilldown based on granular temporal circumstances. 

Event type Samples Method Window Rank 

Average 

Rank 
Standard 

Deviation 

Non-event Mondays 813,433 Ridge regression MW_2Y 7.45 5.80 

Non-event Tuesdays 1,063,098 Ridge regression MW_2Y 7.45 5.63 

Non-event Wednesdays 1,075,948 Ridge regression MW_2Y 7.23 5.33 

Non-event Thursdays 986,720 Ridge regression MW_2Y 7.41 5.49 

Non-event Fridays 930,276 Ridge regression MW_2Y 7.25 5.22 

FTSE MIB Futures expiry (Thursdays) 94 OLS MW_2Y 16.73 10.92 

IBEX 35 Futures expiry (Thursdays) 25 Lasso regression MW_6M 18.32 12.41 

OMX Stockholm 30 Futures expiry (Thursdays) 105 OLS MW_2Y 13.30 9.90 

Amsterdam Exchanges Futures expiry (Fridays) 2,410 Futures expiry GW 3.06 3.90 

CAC 40 Futures expiry (Fridays) 4,380 Futures expiry GW 4.53 5.56 

FTSE MIB Futures expiry (Fridays) 3,571 Futures expiry GW 5.96 7.19 

FTSE 100 Futures expiry (Fridays) 3,035 Futures expiry GW 3.72 6.90 

DAX Futures expiry (Fridays) 1,037 Futures expiry MW_1Y 3.76 8.13 

IBEX 35 Futures expiry (Fridays) 3,432 Futures expiry GW 5.55 8.58 

OMX Stockholm 30 Futures expiry (Fridays) 3,220 Ridge regression MW_1Y 8.22 6.15 

MSCI rebalance Mondays 417 Lasso regression MW_3M 17.96 11.51 

MSCI rebalance Tuesdays 2,091 MSCI rebalances GW 11.95 12.90 

MSCI rebalance Wednesdays 1,556 MSCI rebalances MW_2Y 9.20 9.40 

MSCI rebalance Thursdays 1,152 MSCI rebalances GW 16.61 13.90 

MSCI rebalance Fridays 3,268 MSCI rebalances GW 15.04 14.57 

Cross-market holiday Mondays 358,289 Cross-market holidays GW 7.96 9.37 

Cross-market holiday Tuesdays 153,291 Cross-market holidays GW 10.54 9.82 

Cross-market holiday Wednesdays 141,087 Cross-market holidays GW 8.91 10.15 

Cross-market holiday Thursdays 221,034 Cross-market holidays GW 8.57 9.58 

Cross-market holiday Fridays 230,755 Cross-market holidays GW 8.31 8.63 

Cross-market holiday and Amsterdam Exchanges Futures expiry 

(Thursdays) 

59 OLS GW 17.31 12.42 

Cross-market holiday and Amsterdam Exchanges Futures expiry 

(Fridays) 

733 Futures expiry GW 8.94 11.58 

Cross-market holiday and CAC 40 Futures expiry (Thursdays) 108 OLS MW_3M 20.23 16.55 

Cross-market holiday and CAC 40 Futures expiry (Fridays) 1,342 Futures expiry MW_2Y 6.47 9.86 

Cross-market holiday and FTSE MIB Futures expiry (Thursdays) 70 Stepwise regression MW_1Y 12.14 9.63 

Cross-market holiday and FTSE MIB Futures expiry (Fridays) 955 Futures expiry MW_2Y 9.69 11.07 

Cross-market holiday and FTSE 100 Futures expiry (Thursdays) 86 Futures expiry GW 13.67 12.41 

Cross-market holiday and FTSE 100 Futures expiry (Fridays) 1,326 Futures expiry GW 7.19 10.91 

Cross-market holiday and DAX Futures expiry (Thursdays) 29 Futures expiry MW_2Y 14.03 17.95 

Cross-market holiday and DAX Futures expiry (Fridays) 457 Futures expiry MW_1Y 2.62 3.18 

Cross-market holiday and IBEX 35 Futures expiry (Thursdays) 84 Stepwise regression MW_2Y 15.12 10.86 

Cross-market holiday and IBEX 35 Futures expiry (Fridays) 1,026 Futures expiry MW_2Y 7.35 10.78 

Cross-market holiday and OMX Stockholm 30 Futures expiry 

(Thursdays) 

133 Cross-market holidays GW 6.80 7.79 

Cross-market holiday and OMX Stockholm 30 Futures expiry 

(Fridays) 

831 Futures expiry GW 11.91 7.10 

Cross-market holiday and MSCI rebalance Mondays 342 Cross-market holidays GW 15.51 12.88 

Cross-market holiday and MSCI rebalance Wednesdays 199 Cross-market holidays GW 14.53 11.80 

Cross-market holiday and MSCI rebalance Fridays 584 MSCI rebalances GW 14.67 14.42 

 

Next, we compare the switching and the non-switching models, using the average ranks of these methods. The switching 

model does not have a certain window size enforced as it adapts to the right window size depending on the temporal 

circumstance. The average ranks in Table 5.10, along with the standard deviations in Table 5.11, show the impressive 

performance of the switching model, which strongly suggests that markets switch to different states on special events. 

The switching model has the lowest average rank (5.64); the next best rank is achieved by ridge regression MW_2Y 

(7.73) and the worst by OLS MW_1M (46.82). The switching model was ranked first in 26.32% of the 2,181 stocks, 

whereas ridge regression MW_2Y is the best in only 1.65% of the cases. Throughout 76.98% of the stocks, the switching 
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model outperforms the second best model, i.e. ridge regression MW_2Y. Moreover, the switching model is better than 

the least performing model for every stock in our universe. 

 
Table 5.10  
The average rank for every method and window type, along with the switching model, for all of the target dates. 

Window 

size 

Futures 

expiries 

MSCI 

rebalances 

Cross-

market 

holidays 

OLS Stepwise 

regression 

Ridge 

regression 

Lasso 

regression 

kNN 

(Arithmetic 

mean) 

kNN 

(Inverse 

distance) 

SVR Switching 

model 

MW_1M - - - 46.82 45.32 39.92 30.91 35.78 34.49 38.64 - 

MW_3M - - - 37.33 30.81 20.52 21.96 31.05 29.34 38.74 - 

MW_6M - - - 23.52 19.70 14.62 16.55 29.40 27.54 37.87 - 

MW_1Y 14.41 17.36 24.53 13.90 11.98 9.59 12.01 27.07 25.50 37.92 - 

MW_2Y 12.56 12.12 21.31 9.07 8.58 7.73 10.71 26.21 24.86 40.14 - 

GW 14.39 10.90 19.77 8.57 8.84 8.79 10.80 24.58 23.23 43.33 - 

- - - - - - - - - - - 5.64 

 
Table 5.11  
The standard deviation of the rank of each method and window type, along with the switching model, for all of the target dates. 

Window 

size 

Futures 

expiries 

MSCI 

rebalances 

Cross-market 

holidays 

OLS Stepwise 

regression 

Ridge 

regression 

Lasso 

regression 

kNN 

(Arithmetic 

mean) 

kNN 

(Inverse 

distance) 

SVR Switching 

model 

MW_1M - - - 2.06 2.56 5.40 8.08 5.71 5.50 5.54 - 

MW_3M - - - 6.95 7.14 5.48 6.69 6.48 6.38 3.82 - 

MW_6M - - - 7.35 5.93 4.97 5.11 6.68 6.66 3.97 - 

MW_1Y 15.77 18.14 14.79 6.44 5.21 4.65 4.82 5.99 6.26 4.79 - 

MW_2Y 15.34 16.52 14.20 5.81 4.73 4.98 4.96 5.65 6.07 4.75 - 

GW 17.29 16.11 14.22 6.62 6.27 6.93 6.50 8.45 8.43 4.46 - 

- - - - - - - - - - - 4.82 

 

Figure 5.5 illustrates one of the best switching models (i.e. the lowest MSE for a particular stock) for Telefonica SA 

(TEF.MC), whose MSE for the entire period is 0.078. The plot shows the observed volume and the predicted volume of 

the switching model for a cropped period of 1 year, due to clarity considerations, between 02/01/2009 and 30/12/2009, 

where the 1-year MSE is 0.063 for 254 observations. 

 

 
Figure 5.5: Volume prediction using the switching model over one year for Telefonica SA. 
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The best performance improvement achieved by the switching model, compared to the best initial stock-specific 

models, is 17.41% for Total SA (TOTF.PA). This is computed using the relative change in MSE from the best initial 

stock-specific model to the switching model. For clarity purposes, we cropped its timeline in Figure 5.6 to 1 year, between 

02/01/2013 and 31/12/2013. For these 255 observations, the improvement percentage is 33.40%, the MSE of the best 

initial model (i.e. ridge regression MW_2Y) is 0.095884, while the MSE of the switching model is 0.063856. 

 

 
Figure 5.6: The performance improvement of Total SA from the best initial stock-specific model to the switching model. 

 

The largest performance improvement of the switching model when compared to the worst performing initial model is 

99.99% improvement and is achieved for 5 stocks. As an illustrative example, Avenir Finance SA (AVEF.PA) has 3,220 

observations and the MSE of the worst initial model (i.e. OLS MW_1M) is 4640865.802, whereas the switching model 

MSE is 4.448. Across all stocks, the performance of the worst initial models is improved by the switching model by 

74.595% on average. 

5.6. Stock-Specific Metamodel 

Since the switching model provides an in-sample analysis suggesting the various states markets shift between, we 

further pose the question whether we can improve the switching model better and provide an out-of-sample model for a 

given stock. Therefore, we use the ranking-based evaluation measures in order to build an out-of-sample stock-specific 

metamodel (or surrogate model). For a given stock, we employ a fixed size window of past observations, where the 

various methods are ranked and the best method is picked to make the next one-step ahead volume forecast. We train two 

metamodels, using a 1-month and a 3-month moving window. At each step, we evaluate the previous month 
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(corresponding to 21 trading days) or 3 months (corresponding to 63 trading days) and we pick the current best performing 

method at a given time to make the next day volume prediction. We must note that these metamodel moving windows 

are different from the concept of moving windows applied to the stock-specific initial models. Here, we still train the 

initial models using the various training windows (ranging from the one-month moving window to the growing window), 

and then we investigate the prediction error over the past month or 3 months in order to select the best model throughout 

the recent time series. 

We compute the squared errors for all of the stocks. Then, for each stock, we perform a moving average over one month 

(21 days) and three months (63 days). We discard 20 stocks having less than 100 test dates as these would not provide 

enough data for this out-of-sample analysis. This results in 6,011,125 samples, which are further processed by discarding 

the initial n days for each stock, where n is the lag number (i.e. 21 trading days or 63 trading days), yielding 5,965,744 

samples for the 1-month metamodel and 5,874,982 samples for the 3-month metamodel. 

One-Month Metamodel 

The one-month metamodel is the 27th best model based on the average rank (23.42) in Table 5.12, having a standard 

deviation of 6.40. Throughout the initial models, there are 8 cross-stock models and 19 stock-specific models that 

outperform the one-month metamodel. The best rank is achieved by ridge regression MW_2Y and the worst one by OLS 

MW_1M. The one-month metamodel was the best model for 2 stocks (0.09%), whereas ridge regression MW_2Y was 

the best in 8.33% of the stocks. The metamodel is better than ridge regression MW_2Y for 43 stocks (1.99%) and it is 

better than the least performing model, i.e. OLS MW_1M, for all of the 2,161 analysed stocks. 

 
Table 5.12  

The mean of each method and window type, along with the one-month metamodel, for all of the target dates. 

Window 

size 

Futures 

expiries 

MSCI 

rebalances 

Cross-market 

holidays 

OLS Stepwise 

regression 

Ridge 

regression 

Lasso 

regression 

kNN 

(Arithmetic 

mean) 

kNN 

(Inverse 

distance) 

SVR 1-month 

meta 

model 

MW_1M - - - 46.84 45.37 40.06 30.79 35.80 34.48 38.68 - 

MW_3M - - - 37.34 30.77 19.93 21.55 30.83 29.06 38.78 - 

MW_6M - - - 22.94 18.92 13.76 15.79 29.23 27.32 37.85 - 

MW_1Y 14.28 17.31 24.40 12.98 11.10 8.73 11.15 26.82 25.19 37.90 - 

MW_2Y 12.36 12.05 21.09 8.22 7.71 6.91 9.82 25.85 24.47 40.13 - 

GW 14.27 10.86 19.58 7.87 8.18 8.13 10.05 24.11 22.72 43.37 - 

- - - - - - - - - - - 23.42 

 

The largest improvement from the best initial stock-specific model to the one-month metamodel is 3.88% and it is 

achieved for DBV Technologies SA (DBV.PA). Figure 5.7 illustrates the predictions of the one-month metamodel 

compared to the best initial model (i.e. stepwise regression) for 247 observations of DBV Technologies SA, between 

14/05/2014 and 30/04/2015, where the metamodel performance improvement is 4.5458%. The best initial model MSE is 

0.51099, whereas the metamodel MSE is 0.48776. 
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Figure 5.7: The volume prediction of the best initial model and the one-month metamodel for DBV Technologies SA. 

Three-Month Metamodel 

The three-month metamodel model is the 19th best model based on the average rank (14.93) outlined in Table 5.13, 

having a standard deviation of 5.31. There are 13 cross-stock models and 5 initial stock-specific models that are better 

than the three-month metamodel. Again, the best rank is achieved by ridge regression MW_2Y and the worst by OLS 

MW_1M. The three-month metamodel was the best model in only 0.42% of the stocks, i.e. 9 out of 2,161 stocks, whereas 

ridge regression MW_2Y is the top ranked model in 8.28% of the stocks. The metamodel is better than the ridge regression 

MW 2Y model in 9.58% of the stock universe (i.e. 207 stocks) and it outperforms the least performing initial model 

across all of the stocks. 

 
Table 5.13  
The mean of each method and window type, including the three-month metamodel, for all of the target dates. 

Window 

size 

Futures 

expiries 

MSCI 

rebalances 

Cross-market 

holidays 

OLS Stepwise 

regression 

Ridge 

regression 

Lasso 

regression 

kNN 

(Arithmetic 

mean) 

kNN 

(Inverse 

distance) 

SVR 3-month 

meta 

model 

MW_1M - - - 46.83 45.35 40.06 30.97 35.83 34.52 38.75 - 

MW_3M - - - 37.25 30.77 20.39 21.89 31.07 29.27 38.79 - 

MW_6M - - - 23.41 19.55 14.18 16.39 29.42 27.53 37.83 - 

MW_1Y 14.44 17.57 24.61 13.28 11.31 8.87 11.44 27.09 25.40 37.82 - 

MW_2Y 12.53 12.18 21.42 8.32 7.78 6.96 10.01 26.11 24.75 40.03 - 

GW 14.36 11.11 19.87 7.99 8.34 8.28 10.31 24.43 23.04 43.36 - 

- - - - - - - - - - - 14.93 

 

The largest improvement from the best initial model is achieved by the three-month metamodel in the case of Sponda 

Oyj (SDA1V.HE), with a performance improvement of 3.24%. Figure 5.8 illustrates the volume predictions made by the 

best initial stock-specific model and the three-month metamodel for Sponda Oyj. There are 253 observations in the one-
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year cropped timeline, between 03/01/2005 and 30/12/2005. The metamodel, whose MSE is 0.8728, improves the 

performance of the best initial model (i.e. lasso MW_1Y), whose MSE is 1.0219, by 14.5936%. 

 

 
Figure 5.8: The best initial model vs. the 3-month metamodel volume prediction for Sponda Oyj. 

 

The three-month metamodel has a significantly better performance than the one-month metamodel and provides 

improved model stability, by exhibiting a lower standard deviation. 

6. Discussion 

Volume prediction is critically important for optimal order allocation in order to minimise the market impact. Traders 

and portfolio managers aim to model the market liquidity by predicting the trading volume such that they do not over-

participate, by incurring excessive market impact, or under-participate, by incurring opportunity cost. The study employs 

an enormous data set, comprising the daily market data for 2,353 European stocks from 21 countries, along with a 

precisely constructed trading calendar covering more than 15 years for these 21 European countries and the United States. 

The aim of this study is to train a variety of learning methods and window types in order to better understand how they 

perform in certain circumstances, by specifically investigating event dates, such as cross-market holidays, futures expiries, 

or MSCI quarterly reviews, along with other aspects, e.g. day-of-the-week effect, price-volume relation asymmetry etc. 

Considering the difference in the volume and price magnitudes among our European stock universe, we independently 

train 42 stock-specific models, by fitting seven learning methods (i.e. OLS, stepwise regression, ridge regression, lasso 

regression, kNN with arithmetic mean, kNN with inverse distance weighting, and SVR) for each window type (i.e. the 1-

month, 3-month, 6-month, 1-year, and 2-year moving windows, and the growing window). These independently fit stock-
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specific models had a remarkable runtime of 33 years on the high performance computing clusters. Three additional 

models are trained using cross-stock normalised observations for the special events (i.e. cross-market holidays, futures 

expiries, and MSCI rebalances), which are eventually used to make stock-specific predictions. These cross-stock models 

are learnt using the 1-year and 2-year moving windows and the growing window, producing 9 cross-stock models in total. 

Our results corroborate previous findings and provide empirical evidence that the trading volume is autoregressive and 

this property becomes stronger (i.e. the autoregressive order increases) once the size of the training set is large enough 

(i.e. in excess of 6 months of training data). For example, the median order of the volume lags and volume windows for 

the growing window approach is 7. The volume observations from the previous one and a half weeks provide relevant 

trends, given that the model is trained on a substantial number of data points. The number of neighbours selected by kNN 

increases gradually once the window length becomes larger. Both kNN with arithmetic mean and kNN with inverse 

distance weighting reach the maximum number of 100 neighbours that we imposed in our analysis only when the size of 

the training window is at least 6 months long. 

While investigating the effects on volume of the days of the week, we provide consistent results with previous findings 

(Batrinca, et al., 2016). Mondays are retained by the feature selection methods in 42% of the models, followed by Fridays, 

whose indicator variable is kept in almost 25% of the models. 

Using a ranking-based evaluation, we report that the best model is trained using ridge regression on a two-year moving 

window. The results indicate that OLS, i.e. the study’s most rudimentary method, trained on a growing window has a 

marginally worse performance than ridge regression, which deals with the multicollinearity problems. The rank of the 

moving windows improves once the window length increases and the optimal size of the moving window approach is 2 

years, whose performance is similar to that of the growing window, although the 2-year moving window has a better rank 

average across all of the seven learning methods. This could be explained by possible structural breaks across the 15 years 

analysed by this study, potentially worsening the performance of the growing window when the window reaches a very 

large size. 

Based on a thorough dissection of the temporal circumstances for all of the stocks, we infer a cross-stock switching 

model that employs the best initial stock-specific model for a given date characteristic. There are 42 disjoint temporal 

circumstances that are described by different models, which best apply to a particular state of the financial markets. This 

cross-stock in-sample analysis drills down the 6 million samples into high granularity circumstances identified based on 

a variety of temporal factors, such as non-event dates, futures expiries, MSCI rebalances, cross-market holidays, day-of-

the-week etc. The excellent performance achieved by the switching model confirms our hypothesis that markets are event-

driven and shift to different states based on special events. 

Ultimately, the goal of this research is to improve model stability and we propose an out-of-sample stock-specific 

metamodel that evaluates the initial independent stock-specific models on a time window of one month or three months, 
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and picks the model whose performance rank is the best throughout the chosen time window, in order to predict the 

following day’s trading volume. The average performance rank of the one-month metamodel is 23rd, whereas the three-

month metamodel performs significantly better and its rank decreases to the 15th position. These metamodels provide an 

out-of-sample dynamic framework, which aims to improve error stability and forecasts the expected volume to mitigate 

market impact. 
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