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Abstract

In this Paper we formulate a mathematical model of dengue virus transmission in
the human body to monitor the effects of migratory population and some control
strategies at aquatic and adult stages of vector (mosquito). The model has a locally
asymptotically stable disease-free equilibrium (DFE) whenever a certain epidemiolog-
ical threshold, known as the basic reproduction number (Ry), is less than unity. It is
also shown, using a Lyapunov function and Lasalle Invariance Principle that the DFE
of the dengue model is globally-asymptotically stable (GAS) whenever the reproduc-
tion number (Ry) is less than unity. The model has a locally-asymptotically stable
endemic equilibrium point (EEP) whenever Ry > 1. With the help of Lyapunov func-
tion and Lasalle Principle (Goh-Volterra type), by considering special case, the EEP of
the model is shown to be GAS whenever Ry > 1. The model simulations reveals that
the migratory infected individuals increases the burden of the dengue disease and also
precautionary measures at the aquatic and adult stages decrease the number of new
cases of dengue virus. Numerical simulation indicates that if we take the precautionary
measures effectively then it would be more effective then even giving the treatment to

the infected individuals.

Keywords: Epidemiology; Aedes aegyptic; Dengue Fever; Mathematical modeling;
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Introduction: Dengue is endemic in more than 110 countries [7,26}37,139]. It infects
50 to 390 million people worldwide a year, leading to half a million hospitalizations
[35-38], and approximately 25,000 deaths [34},39], For the decade of the 2000s, 12
countries in Southeast Asia were estimated to have about 3,000,000 infections and
6,000 deaths annually [34]. In the United States the rate of dengue infection among
those who return from an endemic are with a fever is 3-8% [37,,39].

Dengue fever, is an infectious tropical disease caused by the dengue virus. Dengue is
transmitted by several species of mosquito within the genus Aedes, principally Aedes
aegypti. The virus has four different types [7,9,/16,[23], but only short-term immunity
to the others. Subsequent infection with a different type increases the risk of sever
complications. The incidence of dengue fever has increased dramatically since the
1960s, Dengue has become a global problem since second World War.

The incubation period (time between exposure and onset of symptoms) ranges from
3-14 days, but most often it is 4-7 days [211[37,39]. Therefore, travellers returning from
endemic area are unlikely to have dengue if fever or other symptoms start more than
14 days after arriving home [2,139]. According to the World Tourism Organization, in
2004, 125.4 million international tourists visited countries where they might be at risk
for acquiring infection 7%-45% travellers [40]. With approximately two billion people
living in tropical and subtropical regions of the world, and an additional roughly 120
million people each year [40] travelling to these region, a large share of the world’s
population is at risk of contracting dengue.

The burden of dengue in Africa remains poorly understood. Travellers and military
personnel visiting or stationed in Africa have been identified as having laboratory-
confirmed dengue infections, indicating that the virus is circulating [37,39]. One billion
people(15% of the world’s populations) reside in India. India’s population is twice that
of south-east Asia, the region that currently reports the most dengue related deaths [39].
According to the WHO, South-East Asia Region, the majore public health problem in
Bangladesh is dengue. In Indonesia dengue is hyperendemicity with all four serotypes

circulating in urban areas |2}39).



Several mathematical models have been developed in the literature to gain-insights into
the transmission dynamics of dengue in a community [4-7,/14}|15,20-25,41]. In this
paper we extended some of the earlier models by considering the effects of migrated
individuals and some other control effects of the vectors. To control the dengue virus
effectively and to find the effects of migratory population , we should understand the
dynamics of the disease transmission and take into account all of the relevant details,
such as the dynamics of the human population and vector. For a realistic model, we
consider some special classes like migratory class, treatment class and vector aquatic
class. We also present and analyze some control rate parameters, that will help to find
the effective control strategies of the diseases. We present and analyze a non-linear
ODE model that incorporates ten mutually-exclusive classes. Numerical simulations
results are presented to support the analytical conclusion followed by conclusion of the

present work.

Model Formulation: The dengue virus follows two main modes of transmission:
human to mosquito and mosquito to human [8,9,135]. The model assumes a homoge-
nous mixing of the human and vector (mosquito) populations, so that each mosquito
bite has equal chance of transmitting the virus to susceptible human in the population
(or acquiring infection from an infected human). The total number of individuals at
time t, denoted by Ng(t), is sub-divided into six mutually-exclusive sub-populations
of susceptible humans Sg(t), exposed humans Epy(t), infectious humans Iy(t), mi-
grated population My (t), treatment class T (t) and recovered humans Ry (t), so that
Ny = Ny(t) =Sy(t)+ Exg(t) + Ig(t) + My(t) + Ty (t) + Ry (t).

Similarly, the total vector population at time t, denoted by Ny (t), is subdivided into
aquatic class Ay (t), susceptible mosquitoes Sy (t), exposed mosquitoes Ey (t), infec-
tious mosquitoes Iy (t), so that Ny = Ny (t) = Ay (t) + Sv(t) + Ev(t) + Iy (t). The
susceptible human population is generated via recruitment of humans (by birth ) into
the community (at a constant rate, 7). This population is decreased following infec-

tion, which can be acquired via effective contact with an exposed or infectious vector
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at a rate Ay the force of infection of humans given by

_ Cuv(nvEy + 1y)

A
H Ny

0<ny <1 (1)

where the modification parameter 0 < 7y < 1 accounts for the assumed reduction in
transmissibility of exposed mosquitoes relative to infectious mosquitoes [7].

The functional forms of the incidence functions associated with the transmission dy-
namics of dengue disease will be derived. The derivation is based on the basic fact
that for mosquito-borne diseases (such as dengue), the total number of bites made
by mosquitoes must equal the total number of bites received by humans [1]. Since
mosquitoes bite both susceptible and infected humans, it is assumed that the average
number of mosquito bites received by humans depends on the total sizes of the popula-
tions of mosquitoes and humans in the community. It is assumed that each susceptible
mosquito bites an infected human at an average biting rate, bg, and the human hosts
are always sufficient in abundance, so that it is reasonable to assume that the biting

rate, bg, is constant. Let,
Cuv = puvbs, (2)

be the rate at which mosquitoes acquire infection from infected humans (exposed or
infectious), where pgy is the transmission probability from an infected human to a
susceptible mosquito and bg is the biting rate per susceptible mosquito, so that Cyy

is a constant. Similarly, let
Cvu = pvrbr (3)

be the rate at which humans acquire infection from infected mosquitoes (exposed or
infectious), where pyy is the transmission probability from an infected mosquito to a
susceptible human and b; is the average biting rate per infected mosquito. Thus, for

the number of bites to be conserved, the following equation must hold,
Cuv Ny = Cyy Ny (4)

so that,
_ Cvu(Nu, Nv)Ng

N
v Chv
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therefore,

_ Cuv(nvEy + 1Iy)

A
H N

0<ny <1 (6)

Similarly, it can be shown that the force of infection of mosquitoes (denoted by Ay) is

given by,
_ Cav(nuEwn + Ig)

A
v N

0<ny <1 (7)

where the modification parameter 0 < ng < 1 accounts for the relative infectiousness
of exposed humans in relation to infectious humans.

Let 7y is the recruitment of humans into the population (assumed susceptible), Ay is
the infection rate of susceptible humans (which results following effective contact with
exposed or infectious mosquitoes) and ugy is the natural death rate of humans. Ex-
posed humans develop clinical symptoms of dengue disease, and move to the infectious
class, at a rate oy. We also consider that 7 is the migratory humans come into the
population from which gy is the rate at which this added to the exposed class and ps
is the rate at which this added to the infectious class. Infectious humans recover and
move into the Ry class at a rate v; and suffer disease-induced death at a rate dg. It
is assumed that recovered individuals acquire lifelong immunity against re-infection.
The vector population is generated by birth at a rate m, and 7, is the mean aquatic
transition rate. The aquatic state will move into the susceptible class at a rate ~,, and
Ay is the infection rate of the susceptible vector at which they move in to the exposed
class. Exposed vectors develop symptoms of disease and move to the infectious class
at a rate oy and 6. is the extrinsic incubation rate of the vector population. Since
vector (Aedes aegypt) populations can be controlled in two stages (aquatic stage and
adult stage); here C, is considered as the controlling parameter in aquatic stage and
C,, is considered as controlling parameter in adult stage. Infections vectors die due to

disease at a rate dy .



The model for the transmission dynamics of dengue in a population is given by the

following system of non-linear differential equation:

dSy
dt
dEy
dt
Ly
dt
dMpy
dt
ATy
dt
dRy
dt
dAy

dt
s

dt
dEy

dt
dly

dt

T — AgSy — puSH,

AaSu + My — (pig + on)En,

onEy + peMp — (tn + pg + 0u)lu,

w1 — (g1 + po + porr) M,

Taly — (g +7)Th,

N u — pu B, (8)
v = (Ym + pv + Co) Ay,

YmAv — (Av + pv + Cp) Sy,

AvSy = (ov + 0.+ py + Cp) By,

(ov +0.)Ey — (uy + 0y + Cp) Iy

In summary, the model is an extension of some earlier standard models for vector-

borne diseases transmission, such as those in [3H7},/13-15,(17,[20-23}25]31,41], by

(i) introducing the migrated class My () to monitor the impact of the migratory hu-

stage (Cy,), respectively.

man population in dengue transmission dynamics (where the exposed migratory
population is added to the exposed class Ey(t) at a rate p;, and the infected

migratory population is added to the infective class Iy (t) at a rate po;
incorporating the treatment class T (t) in dengue transmission dynamics;

considering the vector-aquatic class Ay (¢) to find the effects of the control strate-

gies at the aquatic stage;

additionally incorporating the controlling rate parameters C, and C,, which will

monitor the effects of precautionary measures at the aquatic stage (C,) and adult



The variables of the models are described in Table 1 and the parameters value
of the model are given in the table 2. Schematically the model can be shown as

follows:

Figure 1: The diagram of the model



Properties of the Model Here the basic dynamical feature of the model will

be explored. We claim the following

Positivity and boundedness of solutions

Lemma 1. The closed set Q = {(Su, En, Iy, My, Ty, Ry, Av, Sv, Ev,Iy) € Ri% .
Su+Eg+Ig+My+Ty+ Ry < %,AV+SV+EV+IV < %} 18 positively-invariant
and attracting with respect to the basic model (@

Proof. Adding the first six equations and the last four equations in the model, respec-

tively, gives:

dN
d—:ZWH—MHNH—fSHIH—i—?ﬁ 9)
and,
dNV
dt —7Tv—C Av— (Sv—i-fv—i-Ev)C /Lva—(Sva (10)
Since d— < myg — pugNyg + m and v < 7, — wy Ny, it follows that dd% > 0 and

4V > 0 if Ng(t) < ”’L:” and Ny (¢ ) < o¥, respectively.

Thus, a standard comparison theorem [33] can be used to show that Ny (t) < Ny (0)
expHu ) 4 %[1 —exp ##®] and Ny (t) < Ny (0)exp v ® +oc[l - exp v ®]. In
particular, Ny (t) < ™LE5 and Ny (t) < 7% if Ny (0) < #2275 and Ny (0) < 7, respec-
tively. Thus, Q is p051tlvely invariant. Further, if Ny (t) < ’”’u—;’” and Ny (t) < 7v, then
either the solution enter 2 in finite time, or Ny(t) approaches “Z—T and Ny (t) ap-
proaches , and the infected variable Ey, Iy, My, Ty, Ev, I, approaches zero. Hence,
is attractlng (i.e., all solution in Rio eventually enter €2 ) Thus, in €2, the basic model

is well-posed epidemiologically and mathematically [11]. Hence, it is sufficient to
study the dynamics of the basic model in €.



Stability Analysis of the Model

Disease-free equilibrium (DFE): The basic model (8) has a DFE given by

Ey = (S;{> E?I? [;17 M;Ia TIZ? R}kﬁla AT/: S‘*h E;k/a [\*/)

TH Ty YmTv
= _70707070707 ) 7070
0% (v + Ca +Ym) (Vm + v + Co) (v + Ciy) )

The linear stability of Fj is studied using the next generation operator technique in [32].
The associated non-negative matrix, F', for the new infection terms, and the non-

singular M — matrix, for the remaining transfer terms, are given, respectively, by

[ CruvivSy  CuvSy |

0 0 0 0 N7, N7
0 0 0 0 0 0
0 0 0 0 0 0

F =

0 0 0 0 0 0
0 0 0 0 0 0

and -~ .
k1 0 —mwm O 0 0

—0g ]{32 — 2 0 0 0

0 0 ks 0 0 0

V=

0 —TH 0 k4 0 0

0 0 0 0 ks 0

0 0 0 0 —(crv + 96) ke

where, k1 = pyg + oy, ko =7+ pu +0u, ks =1+ pe+pn, ka=pa+mn
ks = oy + 0.+ py + Cry kg = piv + 0y + Cipp.
The associated basic reproduction number, denoted by Ry, is then given by

Ro = p(FV 1), where p is the spectral radius of FV 1. Tt follows that

(kok1 kskeC1 ST CoSyAnuny koke + nukaoy + nukeb. + ounyke + ovon + UHGC}]%

R pu—
° kakr ksl N,
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where, C; = Cyy and Cy = Cyp.

Lemma 2. The DFE, Ey, of the system (8), is locally-asymptotically stable (LAS) if
Ro < 1, and unstable if Rg > 1.

The threshold quantity, Ry, measures the average number of secondary cases generated
by a single infected individual (or vector) in a completely susceptible human (vector)
population |11,)27]. The above result implies that a small influx of infected individuals
(or vector) would not generate large outbreaks if Ry < 1, and the disease will persist
(be endemic) in the population if Ry > 1. However, in order for disease elimination to
be independent of the initial sizes of the sub-populations of the model when Ry < 1,
a global stability property must be established for the DFE when Ry < 1. This is

explored below.

Global Stability of the DFE of Model : We claim the following:

Theorem 1. The DFE, E,, of the model (§), is globally-asymptotically stable (GAS)
in Qif Ry < 1.

Proof.Consider the Lyapunov function

F = fiBu + folg + fsMy + faBy + fsly,
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where,

= CoSv (ks + o) (nvks + ov + 0.)ke
Ro(kikokske Nir) ’

_ CQSV(nvk(; + oy -+ Hc)klkﬁ

f2 Ro(kikokskgNy)

_ CoSv (nu ks + poky + oppn) (nvks + oy + 0.) ke
Ro(k1kaokskeNir) ’
f4 - 07
_ nvke tov+0,
— . :
f6 = 17

fs

fs

with Lyapunov derivative given by (where a dot represents differentiation with respect

to t)

F = flEH + fzfﬁ + f3MH + f4TH + fsEV + f6fv7
= fi[AuSu + My — kiEg] + folog By + paMyg — kolg] + f3[m1 — ksMpy]

+ fs[A\v Sy — ksEv] + felov Ev + 0.Ey — kely],

SyC By + 1
= fi [ u I(UXIHV v) + My — klEH} + fa [UHEH + poMpy — ]{72IH:| + f3 [71 - kSMH}
CsS E I
+ f5 [ 2 V("?VHH 1) _ ksEv] + fo {JVEV +0.Ey — kﬁlv] ,
CQSV(HH]{TQ + CTH)(ka’G + gy + Qc)kﬁ
= E I MygNyg — kiEgN
R (er okl Non) CiSu(ny By + Iy) + MgNy 1Ny
(77{/]66 + oy +(90)

+ovEy +0.Ey — kely + |:k55EVNH + CoSy(nuEn + IH):|

k5NH
CQSV<ka6 + oy + 96)k1k6
E My — kol
Ro(krkakskioNp) oglg + poMpy ol g
CoSv(Mu ks + poky + o) (nvke + ov + 6.)ks
— ks M
" Ro(kikaksksNp) e Rad

11



= ke(nyEv + Iv)Ro + ov Ev + 0.Ey — kelv — Evnuks — ovEy — 60.Ey

CoSv(nvke + oy +6.)
Ro(k1k2k3k5k6)NHNH

kgkﬁ(?]sz =+ O'H)(/“MHNH — ]ﬁEHNH> + Roklkgkgkf;NHEHT]H
+ Rokikoksks Ny ly + k1kske Ny Egoyg + kikske Ng Mo — kikskeko Ny Ly

+ Nu(nupake + poky + op ) ke(m — k3MH)1

By considering only the exposed and infectious migrated populations, we get the fol-

lowing algebraic manipulation:

CySv(nvks + oy + 6,)
Ro(l{ill{fgk3k5k’6)NHNH

F= ke(nvEv + Iv)(Ro — 1) + [ROkaQkSkﬁNHEHnH + Rokikoksks Nply

+ kokske My N — kikekske En Npng + kske Mg Npopp — kikske Eg Ny
+ kikske Eg Npon + kikske Ng Mppo — kikokske N Ly — kokske Mg N pnnm

— kikske My Nppo — k3k6MHNHO'HN1}

CsS ke + oy + 0,
= ks(nvEv + Iv)[Ro — 1] + = VO% Z N - )T)HEH [Ro - 1}
oks Ny
CQSV(nvkﬁ + oy + 90)
I -1
RoksNy H | Ro

Thus, F < 0if Ry < 1 with F = Oifand only if By = Iy = My = Ty = Ey = I, = 0.
It follows, from the Lasalle Invariance Principle [18], that Fy — 0,1y — 0, My —
0,7y —» 0,Ey — 0 andly — 0 ast — oo (i.e., the disease dies out). Thus,

(EH, [H, MHaTH; Ev,[\/) = (0,0,0,0,0,0) as t — oo.

Now, for any € > 0 sufficiently small, there exists a t; > 0 such that if ¢ > ¢, then
Fyg<e, Ig<e, Mg<e Typ<e Fy<e Iy<e (11)

Now it follows from the equations for Sy and Ay in that for ¢ > ¢; (and noting

(1))

ds C +1)e
_dtH =Ty — AgSu — PHSH ZWH——HV(X;; )
dAy

dt

— e SH
=7y — (Ym + v + Co) Ay

12



Thus, by a standard comparison theorem [30]

T — CH\/(T]V + 1)6

o S
hggf Su(t) > e (12)
lim inf Ay () > ¥ (13)
t—o00 /’LV
Since € > 0 is arbitrarily small, letting ¢ — 0 in gives
o TH
liminf Sy (t) > — (14)
t—o00 ,LLH
Similarly, it can be shown that
. TH
limsup Sy (t) < — (15)
t—o00 HH
and
limsup Ay (t) < v (16)
t—00 jave

Hence, it follows from , , and that

lim Sy (t) = i and lim Ay (t) = v

t—o0 J75z4 t—o0 My

Thus,

Lim (Sy(t), B (t), In(t), My (), Tu(t), Ru (1), Av (1), Sv (1), By (t), Iy (1))~ (17)

= (Z2.0,0,0,0,0, v TV
120:4

; ,0,0) = E
(v + Co 4+ Ym) " (Y + v + Co) (v + Cry) )= Eo

The epidemiological implication of theorem (1) is that the classical epidemiological
requirement at Ry < 1 is necessary and sufficient for the elimination of dengue virus

in the community.

Existence of Endemic Equilibria of the Model : To find the conditions for
the existence of the endemic equilibria of the model (that is, equilibria of the model
for which the disease is endemic in the population), denoted by

kk k% kk *k k% kk k% k% kk *k
Ey = (SH7EH7IH’MH=TH7RH7AV7SV7EV’Iv)

13



the equations in the model are solved in terms of the associated forces of infection

at steady-state, namely

Cuv(nv By + 1)
Ny

Cuv(mu By + If)

Kk
/\H - N
H

and A} =

(18)

Setting the right-hand sides of the equations in (8)) to zero gives (in terms of S} > 0)

the following expressions for the state variables of the model:

TH
S** — S —
" Ay + pn
YS!
M** _ 1
H k3’
B — AES}‘fkg + M1
A ki k ’
1K3
= O'H)\*H*Sﬁkg—f—O'HﬂﬂTl +M27Tl]{31
n k1koks ’
T oA TES T k3 + THO T + k1T poTH 19
1R2R3Kq
R Yoy THSH ks + TH 0T + pom ki TN
H )
kikokskapirr
v
A** _ _
v Y+ pv + Ca
G YAV
v = K5k ’
)\**S**
E** — Vv~V 7
\%4 k’5
Kk (JV + 60))\35{'}*
o= ksk ’
56

Thus using (19)), from Aj* in (18) we get:

Cruv(Nif St ks + i) (ks + om) + Cry pemiky

AV = 20
v k1koks N7 (20)
Now, substituting the value of A" of in A3 of (18), we get:
- G
i = 2 (21)

kske | (N5 Sifks + pumi) B + kikokskspum Sif + D

14



where,

B = kykypg + kaprgr + peouTH + OHTHY,

D = mikikapp (koks 4 po) + Takikopom (g 4+ 71),

G = |:CHV>‘EFS?]€2]§37]H + Cuvnmiog + Cuv Ay St kson + Cavpnmingks + Cry pomiks

{OHVs;*nva + CH\/S{’}* (UV + 90) .

It follows that the endemic equilibria of the model satisfy the following polynomial

(using (18), and (21), then simplifying, we get:)

(N5 )> (S ks)*kske {((’@ + Dkapr)? + (on7a (pm + ) + 2kapnTron (kopia + ko) + par + 71}
+(\5)? {2k5kﬁk35gumb32 + 2(S37 ks)? Bk kokykskepm -+ ZDBS}‘j‘kgkg,k(;] + X [/%kamB?
+hiske(kikoks)? + (ko Sip)? + D* + 2k kakskakskepnmi Bug Sy + 2D Buymiksks — (Crv)* Sty Stk

(konm + o) (nvke + ov + 90)} — (Cuv)?Sy (kanu + ow)(vke + ov + 0.) (pam + pamiki) =0

ie.,
X5+ YN+ 2N —P =0 (22)
where,

X = (S37ks)?kske | (kg + Dkapr)? + (cata(pmg + 7)) + 2kapmmaom (kapm + ko) + g + 71|,

Y = 2]@5]66]{535?#17T1b32 + 2(5}?]{33)23]{1]62/{54/{55/{?6/LH + QDBS?kgkg)k?ﬁ,
Z = kskepimi B? + kske(k1kaoks)® + (kap Sii)? + D? + 2kikokskakskepmi Bun Sy
+ 2D B miksks — (Crv)* S5 Sy ks(kanu + o) (vks + ov + 6e),

P = (Cuv)*Sy*(kanm + on)(nvke + ov + 0c) (um + pomiky),

15



Now according to Routh-Hurwitz criterion if we look at the equation , then there is
only one sign change, thus there is only one real root exists for the equation. Therefore

the system has a unique EEP, of the form
Ey = (51?7 E}kjv 11?7 MI*{*’ TIS*7 RE? A*{/ik’ S‘*/*7 E;K/*7 IX*/*)’
We claim the following:

Lemma 3. The model (8) has one positive (endemic) equilibrium whenever Ro > 1,

and no positive equilibrium otherwise.

Hence, the above mathematical analysis show that the basic dengue model has a
globally-asymptotically stable disease-free equilibrium whenever Ry < 1, and a unique

endemic equilibrium if Ry > 1.

Local Stability of Endemic Equilibria: The local stability of EEP, E;, of the
model is consider for the special case where we use Ny = N}/, disease-induced
mortality is zero(dy = dy = 0) and the definition Sy = Njf —Eg—Iy—My—Ty— Ry
and Sy = Ny — Ey — Iy in , gives the following reduced basic model:

dE Ci(nyEy + T
H o _ (v Ey +1y) Nijf —Ey—1Ig—My—Ty — Ry | +mMy — (ty +ou)En,

dt Ny

dly
dM
TH = m — (1 + p2 + pm) M,

dT:

d_tH = Tuly — (pu +7)1Th, )
dRpy

- Ty — pgR

It Yl — B,

dE ConuEw + 1

v GBI e g | < oy 04y + G B,
dt Ny

dl

W~ (o + 0B — (v + Gl

16



Now we can rewrite the model as

dE C FE I
dH _ 1<77V 1/*+ V) N;;*—EH_IH_MH_TH_RH + My — ki1 Ey,
t Ny
dl
d_tH = ogFEy+ PJ2MH - k2[H7
dM
drl’
—= = Taly — kalw, (24)
dt
dRy
ik Ty — ugR
7t YilH — pHIVH,
dEy Co(nyEy + Iy)
dt N I
dl
dt
where,

ki =pg +oug, ke=71ag+pg, ks=p+ po+ pu,

ky=pug +vm, ks=ov+0.4+py +Cn, ks =pv +Cuy.

It is easy to show that the system has a unique EEP, of the form £, = (B}, 5, M}y, T, R, B, I¥),

v T

wheneverRo = Rols,=s,—0 > 1. We claim the following theorem:

Theorem 2. The unique endemic equilibrium, Ey, of the reduced basic model is
LAS whenever Ror = Rolsy=s,—0 > 1.

Proof. The proof of theorem is based on using a Krasnoselskii sub-linearity trick
(see [10,|12,28] and also [19,/22]). Linearizing the system around the endemic

equilibrium, E, gives

17



dEy

dt
dly

dt

dM

ﬁfzzm—@Mm

dT:

d—H = Tyly — k4Ty, (25)

t

dRy

L Ty — ugR
i Tidlg — BaiH,

dE

d_tv = amuBy + ady + (—az — ks) By — axly,
dIl

d_;/ = (UV + QC)EV — kgly .

= asnvEv +asly + (—a1 — k1) Eg —a1(Ig + My + Ty + Ry) + iy My,

= ogBu + poMpy — koly,

where,

_ CilpwBy +1Iyv)  Co(nuBy + In)
a1 = , o = )

N Ny
iy CySy

a3 = —opp s Q4 = :
N** N**
H H

It follows that the Jacobian of the system , evaluated at £, is given by

—a1— k1 —ay p—a; —ay —a asny as
oHg —ks L2 0 0 0 0
0 0 —ks 0 0 0 0
J(Ey) = 0 w0 —ky 0 0 0
0 0 0 Y1 —UH 0 0
asny a4 0 0 0 —ay — ks —as
0 0 0 0 0 oy +0. —kg

Assume that the system has solution of the form

Z(t) = Zoe”, (26)

with Zo = (Z1, Za, Z3, Zs, Zs, Zs, Z7), 0,7Z; € C(i = 1,2,...7). Substituting a solution
of the form into the system (25)) gives
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07y = asnvZe+ asZs+ (—ay — k1) Z1 — ay(Zo + Zs + Zy + Zs) + 1 Za,

07y = ongZi+ pels — koZs,

075 = m — ksZs

0Zy = TuZs— kiZy, (27)
025 = mZs— pnZs,

026 = awmupZy + asZy + (—ag — ks)Zs — axZy,

0Z; = (ov+0.)Zs — keZr.

System ([27)) is simplified as follows. Firstly, all the negative terms in the 2nd, 3rd, 4th,
5th and 7th equations of are moved to the respective left-hand sides.

o T s
2= 911;2 * (0+kZ§(91+k2)’ % = Wlkg

7, = onZiTH H2THT ,

(04 ko)(0 + ka) (04 k3)(0+ Ek2) (0 + ky)
7 = oHZ1THY 1 H2THT1V1 ’
(04 k) (0 + ka)(0 + ) (0 + k3)(0 + k2)(0 + ka)(0 + pmr)

oy + 0.
T 9V+ P

Secondly, the (resulting) equations are then re-written in terms of Z; and Zz and
substituted into the remaining equations of , and all its negative terms are moved

to the right-hand side. Doing all these lead to the following equations:
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0 + aq a10g oga\ Ty OHATHY1

+ Z+T1 =
B k(04 ko) (04 k) 0+ kkr (04 ko) (0 + ka) (0 + pm)kr )

1+

asny Ze + azZy + p1 43
ky ’

0
{1 + k_} Zy = J—HZl + &ZS,
2

0 T
A
{+k3]3 Ty’

0

TH
14— |2, = —Z
[—1-]{;4}4 ka 2,

0
{1 n —} 7=z,
12274 12971

0 —+ aq (IQ(O'U —+ 901 CL4T]H21 -+ CL4ZQ
1+ + Zg = :
{ ks ks(0+ke) | T° ks

0 (o, +6.)
Yy —loutb,
[er,] 7 he 00

Now we can rewrite the equations as:

(MZ)
(MZ)
(MZ)
Z1+ Fy(0)] = (MZ2),, (28)
(MZ)
(MZ)
(MZ)

where,

o 0+ a a0y OHOTH THMTHY
! k1 ki(0+ks) (04 k)0 +ka)kr (0 +ko)(0+ ka)(0+ prr)ka |’

_|_



F5:0+a2+a2(av+66) F7:£

ks ks(0+ke) ks’
with,

N

e ) 2 0 0 0 0

0 0 0 00 0 0

M=| o 2 0 00 0 0|,
0 0 0 X0 0 0
BH
amoe 00 0 0 0
0 0 0 0 & g
6

The notation M(Z); (with i = 1,2,3,4,5,6,7) denotes the ith coordinate of the vec-
tor M(Z). Tt should be noted that the matrix M has non-negative entries, and the
equilibrium F; satisfies By = M Ej.

Furthermore, since the coordinates of E; are all positive, it follows then that if Z is a
solution of equation , then it is possible to find a minimal positive real number, s,

such that [19}22]

| Z |< sk, (29)

where, | Z |= (| Z1 |,| Zo |,| Zs |,| Za |,| Z5 |,| Zs |,| Z+ |) with the lexicographic order

and | - | is a norm in C.

The goal is to show that Ref) < 0. Assume the contrary (i.e., Ref > 0). We consider
two cases: §# = 0 and 6 # 0.

Assume the first case § = 0. Then, equation (27)) is a homogeneous linear system in
the variables Z; (i = 1,2,3,4,5,6,7). The determinant of this system corresponds to
that of the Jacobian of system evaluated at £, which is given by
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A = —kokskskearaopy — kokskskskear iy — kokskyarazoy
— kokskyaraopipO. — kikokskikaopm — kikokskakskepin
— kikoksksasoy g — kikaksksaspgte — ksksksasapigon
— kskskskearoppipg — ksksarasogoy gy — ksksarazogOepip
— kskgarastogpy — kskskea1Trop iy — ksaiaxTHo oy
— kzayasTrogpEl. — ksksarasTrory — ksKskea1THopm
— kzayaargogyi0y — kzkaiaaTropyi0. + ksksazasonpgoy
+ ksksazasonpnfe + kskaksasasonpnny + kakskiazasoupinnu
+ koksksazasOcpanm + kokskakeazaspanany .
= —koksksksaraoppg — kokskskskearpg — koksksarasoy
- k‘2k53k4a1a2#H0c - k?1k32k53k‘4k6a2uH - k1k2k3k4]€5l€6MH
— kikoksksasoy pg — kikoksksaspgt. — kskskeasarpigon
— kskskskearoppg — ksksarasogoy iy — kskyarasogOcpin
— kskearasToypn — ksksksarTaoppin — ksa1aaTaogpinoy
— kzayasTgogpEl. — ksksarasTrory — ksKskea1THon 1

— ksayastopyioy — kskaiastpopyi0.
+ ksksasaapig |opoy + ogble + ouny + keowng + kobenmg + kakenany |

= —kokskskearaopiy — kokskikskear iy — kokskiaiazoy

— koksksaraopip 0. — kikokskskeaspig — kikokskyasoy g

— kikgksksaopip0c — ksksksasarpgon — kskskskeaiopgpn

- k3k4a1a20HUv,uH - k3k4a1a20H0cMH - k3]€6a1a27HUHMH
— ksksksarThonpn — ksa1aaTyoupnoy — ksa1aaTuonpin b,

— k3k6a1a27'H0H’yl — k3K5k6CL17'HO'H"}/1 — kgalagTHUH’le'V

— kskaiastgopy10. — kikokskakske [1 - (RO>2}
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Since the model parameters are non-negative, and by algebraic manipulation, we finally

get:

=N = —kokskskearazpy — kokskskskeaypig — koksksayazoy
- k2k3k4a1a2MH90 - k1k2k3k4k6a2MH - k31k32k53k’4a20VMH
— kikokskyaopip 0. — kskikeasar oy — kskikskeai1om iy
— ksksayazogoypn — ksksayaaoulepir — kskearasTronpn (30)
— kskskea1Trogpg — ksa1aaTronpnoyv — ksaraaTronpml.

— ]{?3]{/’6&1(127’]{0’]{’71 — k;3K5k6a17'HJH71 — k?gala,QTHO'H’le'V

- k3ka1a27HUH’Y19c — kikokskykske [1 - (R0)2] 7é 0

Therefore the system has a trivial solution Z = 0 (which corresponds to the DFE,
Ey.)

Now we consider the case 8 # 0. In this case, by assumption, Re § > 0. Thus,
| 1+ Fy(0) |> 1 fori = 1,2,3,4,5,6,7. Now, define F(f) = min | 1+ F;(0) |, ¢ =
1,2,3,4,5,6,7. Then, F(0) > 1. Therefore, % < 8. Since s is a minimal positive real
number such that | Z |< sEj, then

|Z |> %El. (31)

Taking norms on both sides of the third equation of , and using the fact that [ is

non-negative, gives

F(0)| Z2 |< (| Z )2 < s(I| By |)2 < sIjy. (32)

Then, it follows from the above inequality that | Z, |< Ty L5 which contradicts the
equation (31)). Hence, Re 6 < 0, which implies that E; is LAS, if Rg; > 1.
The epidemiological implication of Theorem (8) is that the disease would persists in

the community if the basic reproduction threshold Ry > 1.
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Global Stability of EEP of the Model The global stability of EEP of the
model is consider for the special case where the dengue induce mortality is very
negligible (so that, 0y = dy = 0) and at the endemic stage Sj; > Sy, Ejf > En,

Sit > Sy, B > Ey.

Theorem 3. The unique FEP, Ey, of the model (@, 15 globally asymptotically stable

i ) whenever Rg > 1.

Proof. Consider the non-linear Lyapunov function

S E
F =Sy — S5 —5"In i}Jr{EH—E}“;‘—EE“ln H]
SH EH

[ I M
_ I M7

i T R
toas|Ty — T = Tjin H} +ay [RH — R — Riln H] (33)
L Ty Ry
[ A S
toas| Ay — A — A?ln—v] + [SV - S{}*ln—v}
_ A7 S7
E I
+ lEv — B — Ein V} + ag {IV — I = IFIn V}
By I
with Lyapunov derivative of given by
F=|1-=2]8 1-21E 1-H20r
{ SH} H+[ EH] H+a1{ Iy |
+ asg 1— H MH+a3 1— A TH+G,4 1— H RH
IM TH RH
1-=Y1A 1-2X1s 1- L |E
+a5_ Av} V—i—{ SV} V—i-[ By v
B [** .
1- |1
+ Qg i ]V :| Vs
where,
H
a1 =0, ay= , a3 =20,
' ’ (pa + p2 + pirr) ’
a4 = O, a5 = em ag = O,

(Ym + pov + Cy)’
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Substituting these value in to the equation , we get

. C E I Sy C B+ I
F ey — 1(nv By + V)SH—,MHSH—WH Ho 1 (v ‘i*+ V>S}*j
C By +1 C Ey + Iy Ey
+ puSy + 1(77va v) Sy — (g +om)Ey — 1(77sz* )SH i)
H H H
M1 M — Mgy E (,UH UH) H (Ml ¥ i+ ,UH) |:7Tl T My
Tm
+ (p1 + pia + o) M7 + o + pog) M, ] [77
(Nl M2 MH) (Ml 1 25) MH) H Wm ¥+ Ca) 1%4 (35)
— Ty A‘V/ — (Ym + v + Co)Ay + (Y + v + Ca)A*;*} + YmAv — (v + Cp) Sy
SF C Eg+1 C B+ I
1% H H
C. Eg+1 C Ey +137) EY
;. el B H)Sv—(dv+gc+ﬂv+cm)Ev— 21 By ) Vg
Ny Ni Ey

+ (ov + 0.+ pv + Cn) EVF,

In the above equation (35]), we will use the following relations:

(s + o) By — S0t g
M1 = ok )
My
T
M** — ,
" (1 + pio + pemr)
*k ,-)/m
=

(Ym + pv + Ca)7

Ey 4137
meA** 77VN** )S**

* ok )
SV

(NV + Cm)

Caln By +17) g
1%4

5
NV

ok
EV

(ov + 0.+ py + Cp) =
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Now from equation , we get
Ey Eyr

Sg CilwEy + 1)
M** 2 A** 2
oMy — i S A o Ay gAY — AV)
14

My
SV Co(nuEn + In) n Cotnu By + If)

mAv — YAy —— S

+ (Fy |4 9 4 SV ) NH |4 N}k[*

ConuEn + In)
Nu

— My

F<rmy—my

Sy (36)

SV — (O’V + 90 + py + Cm>EV

+ (pv + C) Sy + (ov + 0 + pv + Cp) B — 2<77HNZ* i) EV SV
H 1

— (py + C) Sy +

Finally,

Ci(ovEV + 1) o B By

SH) N HE, + M ( EH)

bty [2- = ] vanai |2 - 25 - 5
H v

*k
SH

F <mu(l—

(37)

mA 1 — |4 H H S** 1— 14
+ Y V( SV ) + Nz{* \% EV )

Since the arithmetic mean exceeds the geometric mean, it follows then that

My My
Ar T Ay

Also since, Su, Eg, My, Ay, Sv, Ev, approaches St , By, M, Ay, SV, By asymptoti-
cally, or Sy, Ey, M;; Ay, Sy, Eyv becomes, and remains, less than Sy}, 5, M, AV, S, BV

in finite time, then from equation , we get

Sy — S5 <0, Ey—E<0,

Sy — S <0, Ey—E7 <0,
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ie.,

Sy > Sy, Ef > Eg,
Sy > Sy, EV > Dy,

Therefore from equation , we can finally say that

F <0 forRy>1

Thus, by the Laypunov function F, and the LaSalle Invariance Principal [1§], every

solution to the equations in the model approaches E; as t — oo for Ry > 1.

At the end of the discussion, we can say that, the model (&) has a globally-asymptotically
stable DFE whenever Ry < 1 and a unique EEP for Ry > 1. It is shown that the unique
EEP of the model is globally-asymptotically stable, for the special case whenever
disease-induce mortality is very negligible and the threshold quantity that is the basic

reproduction number greater than the unity (Ro > 1).

Numerical Simulations and Discussions The model is simulated, using the

parameter values given in Table-(2) and Table-(3) (unless otherwise stated).

Figure (2) presents the simulations of the dengue transmission model , showing a
contour plot of the reproduction threshold Ry which depicts that if the rate Cy = Cy gy
at which human acquire infection from infected mosquitoes (exposed or infectious) and
the rate C; = Cyy at which mosquitoes acquires infection from infected humans (ex-
posed or infectious) decreases then the burden of the dengue disease decreases (in line
with theorem 1). However if the rates C; and Cy increases then the burden of the

disease increases (in line with theorem 3).

Figure (3) presents the simulations of the dengue transmission model , showing
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a contour plot of the reproduction threshold R, which indicates that if the rate oy
at which the vector individuals transfer from exposed class to infected class increases
and at the same time if we have the effective precautionary measures the we would be
able to control the disease spread and no endemic will occur (in line with theorem 1),

otherwise the disease burden will increases.

Figure (4) depicts that if the rate oy at which the exposed human population de-
veloped clinical symptoms of dengue disease move to infectious class decreases and the
rate oy, at which the exposed vectors developed clinical symptoms of dengue disease
move to infectious class decreases, then the total number of infected human population

also decreases, otherwise burden of the disease increases.

Figure (5), (6), (7), (8), and (9) monitor the effect of the effective vector control
rate C,, and C,. If we do not have any necessary precautionary measures, then the
total number of vector population increases rapidly (Figure (5)) and persist in the
community ultimately. If we take the precautionary measures in the aquatic stage
(i.e., if the control rate C, increases), the number of total infected vector Iy, decreases
rapidly as like figure (7). However if we take the necessary precautionary measures in
the adult stage (i.e., if the control rate C,, increases), the total infected vector Iy also
decreases, (Figure (6)). Additionally if we take the precautionary step in the aquatic
and adult both stage, then the total number of infected vector decreases drastically
(Figure (8)). To see the total changes in the vector population after some necessary
precautionary measures, we have, from figure (8), that the total vector population Ny
decreases rapidly. Figure (5) and (18), present the comparative situation before and

after the precautionary measures have taken.

Figure (10) and (11) present the effect of the migratory infected individuals. From
figure (11) we see that if the rate p; at which the migratory population added to the
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exposed class Ey and the rate py at which the migratory individuals added to the
infected class Iy varies, then the number of new infectious cases varies as well. From
figure (10), we see that, small rate of increase in p; and in py can increases the total
number of infection and can create an endemic. From figure (10), we can also see a
comparative presentation of the model simulation where, if 11 = ps = 0, then the
number of new infected population decreases. If p; = uo # 0, then the number of new

infected individuals increases rapidly and converges to the endemic situation.

Conclusion: A deterministic model for dengue transmission dynamics presented and
rigorously analysed. The disease-free equilibrium, Ey, is shown to be locally asymptot-
ically stable when the associated epidemic threshold known as the basic reproduction
number, Ry, for the model is less than unity. This equilibrium (DFE) is shown to be
globally-asymptotically stable whenever Ry is less than unity (Theorem 7). The model
has a unique endemic equilibrium (EEP), Ej, is shown to be locally asymptotically
stable whenever R is greater than unity (Theorem 8). By considering special cases
EEP is shown to be globally-asymptotically stable whenever Ry > 1 (Theorem 9).
Numerical simulation reveals that if the rate at which human acquire infection from
infected mosquitoes (Cy ) and the rate at which mosquitoes acquires infection from
infected humans (Cyy ) increases then the burden of the dengue disease increases. Nu-
merical simulations indicates that if the rate of migratory exposed (u1) or migratory
infected (p9) individuals increases then the rate of cumulative number of new cases
increases. Numerical simulations suggest that proper treatment decreases the rate of
infectiousness. Numerical simulation depicts that if we take the precautionary mea-
sures more seriously then it would be more effective then even giving the treatment
to the infected individuals. Numerical simulations reveals that the spread of dengue
virus can be controlled more effectively, if we take the precautionary measures at the

aquatic and adult stages.

Table 3.1: Description of variables of the dengue model :
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Variables Description

Su(t) Susceptible humans

Eg(t) Exposed humans

Ik (t) Infected humans

My (t) Migrated class of individuals comes from different parts of the

world to the host country and contains the virus of dengue

Ty (t) Treated humans

Ry (t) Recovered individuals
Ay (t) Aquatic class

Sy (t) Susceptible mosquitoes
Ey(t) Exposed mosquitoes
Iy (t) Infected mosquitoes
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Table 3.2: The value of the parameters of the dengue model :

Parameter Description Baseline values
TH Recruitment rate of humans 20day " [7]
Ty Recruitment rate of vectors 5000day ! [20]
;%H Natural death rate of humans 67years [20]
M% Natural death rate of vectors [4, 14]days [20L}41]
Cuv Contact rate from host to vector 0.75day ! [24]
Cvu Contact rate from vector to host 0.375day ! [24]
o Exposed individuals with develop clinical symptoms

of dengue disease move to infectious class at that rate (0, 1)day~! [29]
oy Exposed vectors develop symptom of disease and

move to infections class at this rate (0,1) assumed
TH Rate of treatment Variable
e Disease induced death 10~ 3day~! [5]
D) Migrated population Variable
L1, (42 Transition rates between Ey and Iy classes Variable
Y1 Transfer rate from treatment class to recovery class 0.1428day =" [5,24]
oy Disease induced death rate for infectious negligible
Ym The mean aquatic transition rate Variable
c, Control effect rate Variable
N, NV Modification parameters (0,1] [7]
Ch Control effect rate Variable
0. Extrinsic incubation rate of vector Variable

Table 3.3: The values for variables for the figure (3.2-3.16)
Su | By | Iy | My | Ty | Ru | Av Sy By | 1Iv
6000 | 500 | 300 | 50 | 290 | 280 | 1000000 | 10000 | 5000 | 3000
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03 04 05 06 07 08 08 1
Contact rate from vector to host( C,)

Figure 2: Simulations of the model showing a contour plot of Ry as a function
of contact rate from vector to host (Cy = Cy ) and contact rate from host to vector
(Cy = Cyv). Parameter values used are as given in table (3.2), (3.3), with II5; = 20,
oy = 0.0130, g = 0.0001, oy = 0.01, oy = 0.0230, v, = 0.0428, ~,, = 0.00575,
C, = 0.850, C),, = 0.650, my = 7, 7y = 0.190, nyg = .03902, ny = 0.0129, 6. = .075,
w1 = 0.0, po = 0.0, my = 5000, py = 0.01492537, py = 0.363
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Figure 3: Simulations of the model showing a contour plot of Ry as a function of
control rate at the adult stage (C),,) and transfer rate from exposed to infected class
(ov). Parameter values used are as given in table (3.2), (3.3), with Iy = 2, C; = 0.75,
Cy = 0.375, 6y = 0.0001, oy = 0.01, 13 = 0.001428, -+, = 0.003575, C, = 0.450,
m = 7, Ty = 0.190, ny = .02902, ny = 0.0129, 6. = .075, p; = 0.0, p2 = 0.0,
my = 5000, pgy = 0.01492537, py = 0.363

Figure 4: Simulations of the model showing the total number of infected human
population (Ey + Iy + My + Tx) as a function of time (for reducing values of oy and
oy ), using the parameter values in table (3.2) and (3.3) with Iy = 20, C; = 0.035,
Cy = 0.0375, oy = 0.0130, oy = 0.01250, 6 = 0.0001, 6y = 0.01, 3 = 0.01428, ~,, =
0.013575, C, = 0.0, C,, = 0.0, 7y =7, 7y = 0.0, ng = .12902, ny = 0.073, 6. = .075,
i1 = 0.0, po = 0.0, my = 5000, pg = 0.01492537, py = 0.363333, Ry = 0.5337.
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Figure 5: Simulations of the model (without precautionary measures C, = C,, = 0)
showing the total number of vector population (Ay + Sy + Ey + Iy) as a function of
time, using the parameter values in table (3.2) and (3.3) with Iy = 20, C, = 0.75,
Cy =0.375, 0y = 0.135, oy = 0.125, 6y = 0.0001, 6y = 0.01, 7y = 0.1428, ~,, = 0.035,
C,=00,Cp,=00m=7 1 =0.0,ng =.02902, ny = 0.037103, 6. = 0.75, 111, = 0.0,
po = 0.0, my = 5000, pg = 0.01492537, uy = 0.363333, Ry = 2.1326.

Figure 6: Simulations of the model (with precautionary measures at the adult
stage Cy,, # 0 and aquatic stage C, = 0) showing the total number of infected vector
individuals (Ey + Iy/) as a function of time, using the parameter values in table (3.2)
and (3.3) with I1y = 20, C, = 0.75, Cy = 0.375, oy = 0.135, o = 0.125, 5 = 0.0001,
oy = 0.01, vy = 0.01428, ~,, = 0.03575, C, = 0.0, C,, = 0.89, m = 7, 7w = 0.0,
ng = .129, ny = 0.171, 6. = .0075, py; = 0.0, pe = 0.0, Ty = 5000, py = 0.01492537,
py = 0.363333, Ry = 0.7455.
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Figure 7: Simulations of the model (with precautionary measures at the aquatic
stage C, # 0 and C,, = 0) showing the total number of infected vector individuals
(Ey + Iy) as a function of time, using the parameter values in table (3.2) and (3.3)
with Iy = 20, ¢} = 0.75, Cy = 0.375, oy = 0.135, oy = 0.125, 6y = 0.0001,
oy = 0.01, vy = 0.01428, ~,, = 0.03575, C, = 0.89, C,,, = 0.0, m; = 7, 7y = 0.0,
Ny = .12902, ny = 0.17, 6. = .01175, py = 0.0, pe = 0.0, 7y = 5000, py = 0.01492537,
wy = 0.363333, Ry = 0.6637.

= a0
£ 4

5 ool

Figure 8: Simulations of the model (with precautionary measures at the aquatic
stage C, # 0 and both adult stage C,, # 0) showing the total number of infected
vector individuals (Ey + Iy) as a function of time, using the parameter values in table
(3.2) and (3.3) with Iy = 20, C; = 0.75, Cy = 0.375, oy = 0.0135, oy = 0.125,
o = 0.0001, oy = 0.01, v = 0.01428, ~,, = 0.013575, C, = 0.89, C,, = 0.89, m =7,
T = 042, ng = 0.129, ny = 0.173, 6. = 01175, p; = 0.0, ps = 0.0, 7y = 5000,
wr = 0.01492537, py = 0.363333, Ry = 0.6304.
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©,=0889, ¢, =0.89,
7002802, RO=0.3093

on (N,=A S #E y#l,)

Total vector populati

2 25 3
Time t (days)

Figure 9: Simulations of the model (with precautionary measures at the aquatic
stage C, # 0 and both adult stage C,, # 0) showing the total number of vector
individuals (Ay +Sy+Ey+1y) as a function of time, using the parameter values in table
(3.2) and (3.3) with IIy = 20, C; = 0.75, Cy = 0.375, oy = 0.01130, oy = 0.01125,
o = 0.0001, oy = 0.01, 93 = 0.01428, ~,, = 0.013575, C, = 0.889, C,,, = 0.89, m; =7,
T = 0.42, ny = .02902, ny = 0.01137103, 6. = .01175, 3 = 0.0, ps = 0.0, my = 5000,
g = 0.01492537, puy = 0.363333, Ry = 0.3093.

Figure 10: Simulations of the model (with p; = ps # 0) showing the total number
of infected human population (Ey + Iy + My + Ty) as a function of time, using the
parameter values in table (3.2) and (3.3) Iy = 20, C, = 0.75, Cy = 0.375, oy = .130,
og = 0.1250, 6y = 0.0001, oy = 0.01, 73 = 0.01428, ~,, = 0.03575, C, = .450,
Cpn = 650, m = 20, 7y = 0.19000, ng = .012902, n, = 0.0137103, 6. = .075,
w1 = 0.050000, po = 0.69000, my = 5000, puy = 0.01492537, puy = 0.363333.
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Figure 11: Simulations of the model by considering different values of p; and s,
where [Iy = 20, C; = 0.75, Cy = 0.375, 6y = 0.0001, 6y = 0.01, 73 = 0.01428,
Ym = 0.03575, m = 20, 6. = .075, my = 5000, puy = 0.01492537, uy = 0.363333, and

other parameters are as in table (3.2) and (3.3).
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