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Abstract

In this Paper we formulate a mathematical model of dengue virus transmission in

the human body to monitor the effects of migratory population and some control

strategies at aquatic and adult stages of vector (mosquito). The model has a locally

asymptotically stable disease-free equilibrium (DFE) whenever a certain epidemiolog-

ical threshold, known as the basic reproduction number (R0), is less than unity. It is

also shown, using a Lyapunov function and Lasalle Invariance Principle that the DFE

of the dengue model is globally-asymptotically stable (GAS) whenever the reproduc-

tion number (R0) is less than unity. The model has a locally-asymptotically stable

endemic equilibrium point (EEP) whenever R0 ≥ 1. With the help of Lyapunov func-

tion and Lasalle Principle (Goh-Volterra type), by considering special case, the EEP of

the model is shown to be GAS whenever R0 ≥ 1. The model simulations reveals that

the migratory infected individuals increases the burden of the dengue disease and also

precautionary measures at the aquatic and adult stages decrease the number of new

cases of dengue virus. Numerical simulation indicates that if we take the precautionary

measures effectively then it would be more effective then even giving the treatment to

the infected individuals.

Keywords: Epidemiology; Aedes aegyptic; Dengue Fever; Mathematical modeling;

Equilibria; Local and Global Stability; Reproduction number; Migratory population;

Control strategy.
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Introduction: Dengue is endemic in more than 110 countries [7,26,37,39]. It infects

50 to 390 million people worldwide a year, leading to half a million hospitalizations

[35–38], and approximately 25,000 deaths [34, 39], For the decade of the 2000s, 12

countries in Southeast Asia were estimated to have about 3,000,000 infections and

6,000 deaths annually [34]. In the United States the rate of dengue infection among

those who return from an endemic are with a fever is 3-8% [37,39].

Dengue fever, is an infectious tropical disease caused by the dengue virus. Dengue is

transmitted by several species of mosquito within the genus Aedes, principally Aedes

aegypti. The virus has four different types [7, 9, 16, 23], but only short-term immunity

to the others. Subsequent infection with a different type increases the risk of sever

complications. The incidence of dengue fever has increased dramatically since the

1960s, Dengue has become a global problem since second World War.

The incubation period (time between exposure and onset of symptoms) ranges from

3-14 days, but most often it is 4-7 days [21,37,39]. Therefore, travellers returning from

endemic area are unlikely to have dengue if fever or other symptoms start more than

14 days after arriving home [2, 39]. According to the World Tourism Organization, in

2004, 125.4 million international tourists visited countries where they might be at risk

for acquiring infection 7%-45% travellers [40]. With approximately two billion people

living in tropical and subtropical regions of the world, and an additional roughly 120

million people each year [40] travelling to these region, a large share of the world’s

population is at risk of contracting dengue.

The burden of dengue in Africa remains poorly understood. Travellers and military

personnel visiting or stationed in Africa have been identified as having laboratory-

confirmed dengue infections, indicating that the virus is circulating [37,39]. One billion

people(15% of the world’s populations) reside in India. India’s population is twice that

of south-east Asia, the region that currently reports the most dengue related deaths [39].

According to the WHO, South-East Asia Region, the majore public health problem in

Bangladesh is dengue. In Indonesia dengue is hyperendemicity with all four serotypes

circulating in urban areas [2, 39].
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Several mathematical models have been developed in the literature to gain-insights into

the transmission dynamics of dengue in a community [4–7, 14, 15, 20–25, 41]. In this

paper we extended some of the earlier models by considering the effects of migrated

individuals and some other control effects of the vectors. To control the dengue virus

effectively and to find the effects of migratory population , we should understand the

dynamics of the disease transmission and take into account all of the relevant details,

such as the dynamics of the human population and vector. For a realistic model, we

consider some special classes like migratory class, treatment class and vector aquatic

class. We also present and analyze some control rate parameters, that will help to find

the effective control strategies of the diseases. We present and analyze a non-linear

ODE model that incorporates ten mutually-exclusive classes. Numerical simulations

results are presented to support the analytical conclusion followed by conclusion of the

present work.

Model Formulation: The dengue virus follows two main modes of transmission:

human to mosquito and mosquito to human [8, 9, 35]. The model assumes a homoge-

nous mixing of the human and vector (mosquito) populations, so that each mosquito

bite has equal chance of transmitting the virus to susceptible human in the population

(or acquiring infection from an infected human). The total number of individuals at

time t, denoted by NH(t), is sub-divided into six mutually-exclusive sub-populations

of susceptible humans SH(t), exposed humans EH(t), infectious humans IH(t), mi-

grated population MH(t), treatment class TH(t) and recovered humans RH(t), so that

NH = NH(t) = SH(t) + EH(t) + IH(t) +MH(t) + TH(t) +RH(t).

Similarly, the total vector population at time t, denoted by NV (t), is subdivided into

aquatic class AV (t), susceptible mosquitoes SV (t), exposed mosquitoes EV (t), infec-

tious mosquitoes IV (t), so that NV = NV (t) = AV (t) + SV (t) + EV (t) + IV (t). The

susceptible human population is generated via recruitment of humans (by birth ) into

the community (at a constant rate, πH). This population is decreased following infec-

tion, which can be acquired via effective contact with an exposed or infectious vector
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at a rate λH the force of infection of humans given by

λH =
CHV (ηVEV + IV )

NH

; 0 < ηV < 1 (1)

where the modification parameter 0 < ηV < 1 accounts for the assumed reduction in

transmissibility of exposed mosquitoes relative to infectious mosquitoes [7].

The functional forms of the incidence functions associated with the transmission dy-

namics of dengue disease will be derived. The derivation is based on the basic fact

that for mosquito-borne diseases (such as dengue), the total number of bites made

by mosquitoes must equal the total number of bites received by humans [1]. Since

mosquitoes bite both susceptible and infected humans, it is assumed that the average

number of mosquito bites received by humans depends on the total sizes of the popula-

tions of mosquitoes and humans in the community. It is assumed that each susceptible

mosquito bites an infected human at an average biting rate, bS, and the human hosts

are always sufficient in abundance, so that it is reasonable to assume that the biting

rate, bS, is constant. Let,

CHV = ρHV bS, (2)

be the rate at which mosquitoes acquire infection from infected humans (exposed or

infectious), where ρHV is the transmission probability from an infected human to a

susceptible mosquito and bS is the biting rate per susceptible mosquito, so that CHV

is a constant. Similarly, let

CV H = ρV HbI (3)

be the rate at which humans acquire infection from infected mosquitoes (exposed or

infectious), where ρHV is the transmission probability from an infected mosquito to a

susceptible human and bI is the average biting rate per infected mosquito. Thus, for

the number of bites to be conserved, the following equation must hold,

CHVNV = CHVNH (4)

so that,

NV =
CV H(NH , NV )NH

CHV
(5)
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therefore,

λH =
CHV (ηVEV + IV )

NH

, 0 < ηV < 1 (6)

Similarly, it can be shown that the force of infection of mosquitoes (denoted by λV ) is

given by,

λV =
CHV (ηHEH + IH)

NH

; 0 < ηH < 1 (7)

where the modification parameter 0 < ηH < 1 accounts for the relative infectiousness

of exposed humans in relation to infectious humans.

Let πH is the recruitment of humans into the population (assumed susceptible), λH is

the infection rate of susceptible humans (which results following effective contact with

exposed or infectious mosquitoes) and µH is the natural death rate of humans. Ex-

posed humans develop clinical symptoms of dengue disease, and move to the infectious

class, at a rate σH . We also consider that π1 is the migratory humans come into the

population from which µ1 is the rate at which this added to the exposed class and µ2

is the rate at which this added to the infectious class. Infectious humans recover and

move into the RH class at a rate γ1 and suffer disease-induced death at a rate δH . It

is assumed that recovered individuals acquire lifelong immunity against re-infection.

The vector population is generated by birth at a rate πV and γm is the mean aquatic

transition rate. The aquatic state will move into the susceptible class at a rate γm and

λV is the infection rate of the susceptible vector at which they move in to the exposed

class. Exposed vectors develop symptoms of disease and move to the infectious class

at a rate σV and θc is the extrinsic incubation rate of the vector population. Since

vector (Aedes aegypt) populations can be controlled in two stages (aquatic stage and

adult stage); here Ca is considered as the controlling parameter in aquatic stage and

Cm is considered as controlling parameter in adult stage. Infections vectors die due to

disease at a rate δV .
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The model for the transmission dynamics of dengue in a population is given by the

following system of non-linear differential equation:

dSH
dt

= πH − λHSH − µHSH ,

dEH
dt

= λHSH + µ1MH − (µH + σH)EH ,

dIH
dt

= σHEH + µ2MH − (τH + µH + δH)IH ,

dMH

dt
= π1 − (µ1 + µ2 + µH)MH ,

dTH
dt

= τHIH − (µH + γ1)TH ,

dRH

dt
= γ1TH − µHRH , (8)

dAV
dt

= πV − (γm + µV + Ca)AV ,

dSV
dt

= γmAV − (λV + µV + Cm)SV ,

dEV
dt

= λV SV − (σV + θc + µV + Cm)EV ,

dIV
dt

= (σV + θc)EV − (µV + δV + Cm)IV .

In summary, the model (8) is an extension of some earlier standard models for vector-

borne diseases transmission, such as those in [3–7,13–15,17,20–23,25,31,41], by

(i) introducing the migrated class MH(t) to monitor the impact of the migratory hu-

man population in dengue transmission dynamics (where the exposed migratory

population is added to the exposed class EH(t) at a rate µ1, and the infected

migratory population is added to the infective class IH(t) at a rate µ2;

(ii) incorporating the treatment class TH(t) in dengue transmission dynamics;

(iii) considering the vector-aquatic class AV (t) to find the effects of the control strate-

gies at the aquatic stage;

(iv) additionally incorporating the controlling rate parameters Ca and Cm which will

monitor the effects of precautionary measures at the aquatic stage (Ca) and adult

stage (Cm), respectively.
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The variables of the models (8) are described in Table 1 and the parameters value

of the model are given in the table 2. Schematically the model (8) can be shown as

follows:

Figure 1: The diagram of the model(8)
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Properties of the Model Here the basic dynamical feature of the model (8) will

be explored. We claim the following

Positivity and boundedness of solutions

Lemma 1. The closed set Ω = {(SH , EH , IH ,MH , TH , RH , AV , SV , EV , IV ) ∈ R10
+ :

SH +EH + IH +MH +TH +RH ≤ πH
µH
, AV +SV +EV + IV ≤ πV

µV
} is positively-invariant

and attracting with respect to the basic model (8)

Proof. Adding the first six equations and the last four equations in the model, respec-

tively, gives:
dNH

dt
= πH − µHNH − δHIH + π1 (9)

and,
dNV

dt
= πV − CaAV − (SV + IV + EV )Cm − µVNV − δV IV (10)

Since dNH

dt
≤ πH − µHNH + π1 and dNV

dt
≤ πV − µVNV , it follows that dNH

dt
> 0 and

dNV

dt
> 0 if NH(t) < πH+π1

µH
and NV (t) < πV

µV
, respectively.

Thus, a standard comparison theorem [33] can be used to show that NH(t) ≤ NH(0)

exp−µH(t) + πH+π1
µH

[1 − exp−µH(t)] and NV (t) ≤ NV (0) exp−µV (t) +πV
µV

[1 − exp−µV (t)]. In

particular, NH(t) ≤ πH+π1
πH

and NV (t) ≤ πV
µV

if NH(0) ≤ πH+π1
µH

and NV (0) ≤ πV
µV

, respec-

tively. Thus, Ω is positively invariant. Further, if NH(t) < πH+π1
µH

and NV (t) < πV
µV

, then

either the solution enter Ω in finite time, or NH(t) approaches πH+π1
µH

and NV (t) ap-

proaches πV
µV

, and the infected variable EH , IH ,MH , TH , EV , IV approaches zero. Hence,

Ω is attracting (i.e., all solution in R10
+ eventually enter Ω ) Thus, in Ω, the basic model

(8) is well-posed epidemiologically and mathematically [11]. Hence, it is sufficient to

study the dynamics of the basic model in Ω.
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Stability Analysis of the Model

Disease-free equilibrium (DFE): The basic model (8) has a DFE given by

E0 = (S∗H , E
∗
H , I

∗
H ,M

∗
H , T

∗
H , R

∗
H , A

∗
V , S

∗
V , E

∗
V , I

∗
V )

=

[
πH
µH

, 0, 0, 0, 0, 0,
πV

(µV + Ca + γm)
,

γmπV
(γm + µV + Ca)(µV + Cm)

, 0, 0)

]

The linear stability of E0 is studied using the next generation operator technique in [32].

The associated non-negative matrix, F , for the new infection terms, and the non-

singular M −matrix, for the remaining transfer terms, are given, respectively, by

F =



0 0 0 0
CHV ηV S

∗
H

N∗
H

CHV S
∗
H

N∗
H

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

CV HηHS
∗
V

N∗
H

CV HS
∗
V

N∗
H

0 0 0 0

0 0 0 0 0 0


and

V =



k1 0 −µ1 0 0 0

−σH k2 −µ2 0 0 0

0 0 k3 0 0 0

0 −τH 0 k4 0 0

0 0 0 0 k5 0

0 0 0 0 −(σV + θc) k6


where, k1 = µH + σH , k2 = τH + µH + δH , k3 = µ1 + µ2 + µH , k4 = µH + γ1

k5 = σV + θc + µV + Cm, k6 = µV + δV + Cm.

The associated basic reproduction number, denoted by R0, is then given by

R0 = ρ(FV −1), where ρ is the spectral radius of FV −1. It follows that

R0 =
[k2k1k5k6C1S

∗
HC2S

∗
V {ηHηV k2k6 + ηHk2σV + ηHk2θc + σHηV k6 + σV σH + σHθc}]

1
2

k2k1k5k6N∗H
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where, C1 = CHV and C2 = CV H .

Lemma 2. The DFE, E0, of the system (8), is locally-asymptotically stable (LAS) if

R0 < 1, and unstable if R0 > 1.

The threshold quantity, R0, measures the average number of secondary cases generated

by a single infected individual (or vector) in a completely susceptible human (vector)

population [11,27]. The above result implies that a small influx of infected individuals

(or vector) would not generate large outbreaks if R0 < 1, and the disease will persist

(be endemic) in the population if R0 > 1. However, in order for disease elimination to

be independent of the initial sizes of the sub-populations of the model when R0 < 1,

a global stability property must be established for the DFE when R0 < 1. This is

explored below.

Global Stability of the DFE of Model (8): We claim the following:

Theorem 1. The DFE, E0, of the model (8), is globally-asymptotically stable (GAS)

in Ω if R0 < 1.

Proof.Consider the Lyapunov function

F = f1EH + f2IH + f3MH + f4EV + f5IV ,
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where,

f1 =
C2SV (ηHk2 + σH)(ηV k6 + σV + θc)k6

R0(k1k2k5k6NH)
,

f2 =
C2SV (ηV k6 + σV + θc)k1k6

R0(k1k2k5k6NH)
,

f3 =
C2SV (ηHµ1k2 + µ2k1 + σHµ1)(ηV k6 + σV + θc)k6

R0(k1k2k5k6NH)
,

f4 = 0,

f5 =
ηV k6 + σV + θc

k5
,

f6 = 1,

with Lyapunov derivative given by (where a dot represents differentiation with respect

to t)

Ḟ = f1ĖH + f2 ˙IH + f3ṀH + f4 ˙TH + f5ĖV + f6 ˙IV ,

= f1[λHSH + µ1MH − k1EH ] + f2[σHEH + µ2MH − k2IH ] + f3[π1 − k3MH ]

+ f5[λV SV − k5EV ] + f6[σVEV + θcEV − k6IV ],

= f1

[
SHC1(ηVEV + IV )

NH

+ µ1MH − k1EH
]

+ f2

[
σHEH + µ2MH − k2IH

]
+ f3

[
π1 − k3MH

]
+ f5

[
C2SV (ηHEH + IH)

NH

− k5EV
]

+ f6

[
σVEV + θcEV − k6IV

]
,

=
C2SV (ηHk2 + σH)(ηV k6 + σV + θc)k6

R0(k1k2k5k6NH)

[
C1SH(ηVEV + IV ) +MHNH − k1EHNH

]
+ σVEV + θcEV − k6IV +

(ηV k6 + σV + θc)

k5NH

[
k5EVNH + C2SV (ηHEH + IH)

]
+
C2SV (ηV k6 + σV + θc)k1k6

R0(k1k2k5k6NH)

[
σHEH + µ2MH − k2IH

]
+
C2SV (ηHµ1k2 + µ2k1 + σHµ1)(ηV k6 + σV + θc)k6

R0(k1k2k5k6NH)

[
π1 − k3MH

]
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= k6(ηVEV + IV )R0 + σVEV + θcEV − k6IV − EV ηHk6 − σVEV − θcEV

+
C2SV (ηV k6 + σV + θc)

R0(k1k2k3k5k6)NHNH

[
k3k6(ηHk2 + σH)(µ1MHNH − k1EHNH) +R0k1k2k3k6NHEHηH

+R0k1k2k3k6NHIH + k1k3k6NHEHσH + k1k3k6NHMHµ2 − k1k3k6k2NHIH

+NH(ηHµ1k2 + µ2k1 + σHµ1)k6(π1 − k3MH)

]
By considering only the exposed and infectious migrated populations, we get the fol-

lowing algebraic manipulation:

Ḟ = k6(ηVEV + IV )(R0 − 1) +
C2SV (ηV k6 + σV + θc)

R0(k1k2k3k5k6)NHNH

[
R0k1k2k3k6NHEHηH +R0k1k2k3k6NHIH

+ k2k3k6MHNHηHµ1 − k1k2k3k6EHNHηH + k3k6MHNHσHµ1 − k1k3k6EHNH

+ k1k3k6EHNHσH + k1k3k6NHMHµ2 − k1k2k3k6NHIH − k2k3k6MHNHµ1ηH

− k1k3k6MHNHµ2 − k3k6MHNHσHµ1

]
= k6(ηVEV + IV )[R0 − 1] +

C2SV (ηV k6 + σV + θc)

R0k5NH

ηHEH

[
R0 − 1

]
+
C2SV (ηV k6 + σV + θc)

R0k5NH

IH

[
R0 − 1

]

Thus, Ḟ < 0 if R0 < 1 with Ḟ = 0 if and only if EH = IH = MH = TH = EV = IV = 0.

It follows, from the Lasalle Invariance Principle [18], that EH → 0, IH → 0,MH →

0, TH → 0, EV → 0 and IV → 0 as t → ∞ (i.e., the disease dies out). Thus,

(EH , IH ,MH , TH , EV , IV ) = (0, 0, 0, 0, 0, 0) as t→∞.

Now, for any ε > 0 sufficiently small, there exists a t1 > 0 such that if t > t1, then

EH < ε, IH < ε, MH < ε, TH < ε, EV < ε, IV < ε (11)

Now it follows from the equations for SH and AV in (8) that for t > t1 (and noting

(11))
dSH
dt

= πH − λHSH − µHSH ≥ πH −
CHV (ηV + 1)ε

NH

− µHSH

dAV
dt

= πV − (γm + µV + Ca)AV
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Thus, by a standard comparison theorem [30]

lim inf
t→∞

SH(t) ≥ πH − CHV (ηV + 1)ε

µH
(12)

lim inf
t→∞

AV (t) ≥ πV
µV

(13)

Since ε > 0 is arbitrarily small, letting ε→ 0 in (12) gives

lim inf
t→∞

SH(t) ≥ πH
µH

(14)

Similarly, it can be shown that

lim sup
t→∞

SH(t) ≤ πH
µH

(15)

and

lim sup
t→∞

AV (t) ≤ πV
µV

(16)

Hence, it follows from (13), (14), (15) and (16) that

lim
t→∞

SH(t) =
πH
µH

and lim
t→∞

AV (t) =
πV
µV

Thus,

lim
t→∞

(SH(t), EH(t), IH(t),MH(t), TH(t), RH(t), AV (t), SV (t), EV (t), IV (t)) (17)

= (
πH
µH

, 0, 0, 0, 0, 0,
πV

(µV + Ca + γm)
,

γmπV
(γm + µV + Ca)(µV + Cm)

, 0, 0) = E0

The epidemiological implication of theorem (1) is that the classical epidemiological

requirement at R0 < 1 is necessary and sufficient for the elimination of dengue virus

in the community.

Existence of Endemic Equilibria of the Model (8): To find the conditions for

the existence of the endemic equilibria of the model (8) (that is, equilibria of the model

(8) for which the disease is endemic in the population), denoted by

E1 = (S∗∗H , E
∗∗
H , I

∗∗
H ,M

∗∗
H , T

∗∗
H , R

∗∗
H , A

∗∗
V , S

∗∗
V , E

∗∗
V , I

∗∗
V )
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the equations in the model (8) are solved in terms of the associated forces of infection

at steady-state, namely

λ∗∗H =
CHV (ηVE

∗∗
V + I∗∗V )

N∗∗H
and λ∗∗V =

CHV (ηHE
∗∗
H + I∗∗H )

N∗∗H
(18)

Setting the right-hand sides of the equations in (8) to zero gives (in terms of S∗∗H > 0)

the following expressions for the state variables of the model:

S∗∗H =
πH

λ∗∗H + µH
,

M∗∗
H =

π1
k3
,

E∗∗H =
λ∗∗HS

∗∗
H k3 + µ1π1
k1k3

,

I∗∗H =
σHλ

∗∗
HS
∗∗
H k3 + σHµ1π1 + µ2π1k1

k1k2k3
,

T ∗∗H =
σHλ

∗∗
H τHS

∗∗
H k3 + τHσHµ1π1 + k1π1µ2τH

k1k2k3k4
, (19)

R∗∗H =
γ1σHλ

∗∗
H τHS

∗∗
H k3 + τHγ1σHµ1π1 + µ2π1k1τHγ1

k1k2k3k4µH
,

A∗∗V =
πV

γm + µV + Ca
,

S∗∗V =
γmA

∗∗
V

λ∗∗V + µV + Cm
,

E∗∗V =
λ∗∗V S

∗∗
V

k5
,

I∗∗V =
(σV + θc)λ

∗∗
V S
∗∗
V

k5k6
,

Thus using (19), from λ∗∗V in (18) we get:

λ∗∗V =
CHV (λ∗∗HS

∗∗
H k3 + µ1π1)(ηHk2 + σH) + CHV µ2π1k1

k1k2k3N∗∗H
(20)

Now, substituting the value of λ∗∗V of (20) in λ∗∗H of (18), we get:

λ∗∗H =
G

k5k6

[
(λ∗∗HS

∗∗
H k3 + µ1π1)B + k1k2k3k4µHS∗∗H +D

]2 (21)
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where,

B = k2k4µH + k4µH + µHσHτH + σHτHγ1,

D = π1k1k4µH(k2k3 + µ2) + τHk1k2µ2π1(µH + γ1),

G =

[
CHV λ

∗∗
HS
∗∗
H k2k3ηH + CHV µ1π1σH + CHV λ

∗∗
HS
∗∗
H k3σH + CHV µ1π1ηHk2 + CHV µ2π1k1

]
[
CHV S

∗∗
V ηV k6 + CHV S

∗∗
V (σV + θc)

]
.

It follows that the endemic equilibria of the model (8) satisfy the following polynomial

(using (18), (20) and (21), then simplifying, we get:)

(λ∗∗H )3(S∗∗H k3)
2k5k6

[
((k2 + 1)k4µH)2 + (σHτH(µH + γ1))

2 + 2k4µHτHσH(k2µH + k2) + µH + γ1

]
+(λ∗∗H )2

[
2k5k6k3S

∗∗
H µ1π1bB

2 + 2(S∗∗H k3)
2Bk1k2k4k5k6µH + 2DBS∗∗H k3k5k6

]
+ λ∗∗H

[
k5k6µ1π1B

2

+k5k6(k1k2k3)
2 + (k4µHS

∗∗
H )2 +D2 + 2k1k2k3k4k5k6µ1π1BµHS

∗∗
H + 2DBµ1π1k5k6 − (CHV )2S∗∗H S

∗∗
V k3

(k2ηH + σH)(ηV k6 + σV + θc)

]
− (CHV )2S∗∗V (k2ηH + σH)(ηV k6 + σV + θc)(µ1π1 + µ2π1k1) = 0

i.e.,

X(λ∗∗H )3 + Y (λ∗∗H )2 + Zλ∗∗H − P = 0 (22)

where,

X = (S∗∗H k3)
2k5k6

[
((k2 + 1)k4µH)2 + (σHτH(µH + γ1))

2 + 2k4µHτHσH(k2µH + k2) + µH + γ1

]
,

Y = 2k5k6k3S
∗∗
H µ1π1bB

2 + 2(S∗∗H k3)
2Bk1k2k4k5k6µH + 2DBS∗∗H k3k5k6,

Z = k5k6µ1π1B
2 + k5k6(k1k2k3)

2 + (k4µHS
∗∗
H )2 +D2 + 2k1k2k3k4k5k6µ1π1BµHS

∗∗
H

+ 2DBµ1π1k5k6 − (CHV )2S∗∗H S
∗∗
V k3(k2ηH + σH)(ηV k6 + σV + θc),

P = (CHV )2S∗∗V (k2ηH + σH)(ηV k6 + σV + θc)(µ1π1 + µ2π1k1),
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Now according to Routh-Hurwitz criterion if we look at the equation (22), then there is

only one sign change, thus there is only one real root exists for the equation. Therefore

the system (8) has a unique EEP, of the form

E1 = (S∗∗H , E
∗∗
H , I

∗∗
H ,M

∗∗
H , T

∗∗
H , R

∗∗
H , A

∗∗
V , S

∗∗
V , E

∗∗
V , I

∗∗
V ),

We claim the following:

Lemma 3. The model (8) has one positive (endemic) equilibrium whenever R0 > 1,

and no positive equilibrium otherwise.

Hence, the above mathematical analysis show that the basic dengue model (8) has a

globally-asymptotically stable disease-free equilibrium whenever R0 < 1, and a unique

endemic equilibrium if R0 > 1.

Local Stability of Endemic Equilibria: The local stability of EEP, E1, of the

model (8) is consider for the special case where we use NH = N∗∗H , disease-induced

mortality is zero(δH = δV = 0) and the definition SH = N∗∗H −EH−IH−MH−TH−RH

and SV = N∗∗V − EV − IV in (8), gives the following reduced basic model:

dEH
dt

=
C1(ηVEV + IV )

N∗∗H

[
N∗∗H − EH − IH −MH − TH −RH

]
+ µ1MH − (µH + σH)EH ,

dIH
dt

= σHEH + µ2MH − (τH + µH)IH ,

dMH

dt
= π1 − (µ1 + µ2 + µH)MH ,

dTH
dt

= τHIH − (µH + γ1)TH , (23)

dRH

dt
= γ1TH − µHRH ,

dEV
dt

=
C2(ηHEH + IH)

N∗∗H

[
N∗∗V − EV − IV

]
− (σV + θc + µV + Cm)EV ,

dIV
dt

= (σV + θc)EV − (µV + Cm)IV .

16



Now we can rewrite the model (23) as

dEH
dt

=
C1(ηVEV + IV )

N∗∗H

[
N∗∗H − EH − IH −MH − TH −RH

]
+ µ1MH − k1EH ,

dIH
dt

= σHEH + µ2MH − k2IH ,

dMH

dt
= π1 − k3MH ,

dTH
dt

= τHIH − k4TH , (24)

dRH

dt
= γ1TH − µHRH ,

dEV
dt

=
C2(ηHEH + IH)

N∗∗H

[
N∗∗V − EV − IV

]
− k5EV ,

dIV
dt

= (σV + θc)EV − k6IV .

where,

k1 = µH + σH , k2 = τH + µH , k3 = µ1 + µ2 + µH ,

k4 = µH + γH , k5 = σV + θc + µV + Cm, k6 = µV + CM .

It is easy to show that the system (23) has a unique EEP, of the form Ē1 = (E∗∗H , I
∗∗
H ,M

∗∗
H , T

∗∗
H , R

∗∗
H , E

∗∗
v , I

∗∗
v ),

wheneverR01 = R0|δH=δV =0 > 1. We claim the following theorem:

Theorem 2. The unique endemic equilibrium, Ē1, of the reduced basic model (23) is

LAS whenever R01 = R0|δH=δV =0 > 1.

Proof. The proof of theorem is based on using a Krasnoselskii sub-linearity trick

(see [10, 12, 28] and also [19, 22]). Linearizing the system (23) around the endemic

equilibrium, Ē1, gives
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dEH
dt

= a3ηVEV + a3IV + (−a1 − k1)EH − a1(IH +MH + TH +RH) + µ1MH ,

dIH
dt

= σHEH + µ2MH − k2IH ,

dMH

dt
= π1 − k3MH ,

dTH
dt

= τHIH − k4TH , (25)

dRH

dt
= γ1TH − µHRH ,

dEV
dt

= a4ηHEH + a4IH + (−a2 − k5)EV − a2IV ,

dIV
dt

= (σV + θc)EV − k6IV .

where,

a1 =
C1(ηVEV + IV )

N∗∗H
, a2 =

C2(ηHEH + IH)

N∗∗H
,

a3 =
C1SH
N∗∗H

, a4 =
C2SV
N∗∗H

.

It follows that the Jacobian of the system (25), evaluated at Ē1, is given by

J(Ē1) =



−a1 − k1 −a1 µ1 − a1 −a1 −a1 a3ηV a3

σH −k2 µ2 0 0 0 0

0 0 −k3 0 0 0 0

0 τH 0 −k4 0 0 0

0 0 0 γ1 −µH 0 0

a4ηH a4 0 0 0 −a2 − k5 −a2
0 0 0 0 0 σV + θc −k6


.

Assume that the system (25) has solution of the form

Z̄(t) = Z̄0e
θt, (26)

with Z̄0 = (Z1, Z2, Z3, Z4, Z5, Z6, Z7), θ, Zi ∈ C(i = 1, 2, ...7). Substituting a solution

of the form (26) into the system (25) gives
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θZ1 = a3ηVZ6 + a3Z7 + (−a1 − k1)Z1 − a1(Z2 + Z3 + Z4 + Z5) + µ1Z4,

θZ2 = σHZ1 + µ2Z3 − k2Z2,

θZ3 = π1 − k3Z3,

θZ4 = τHZ2 − k4Z4, (27)

θZ5 = γ1Z4 − µHZ5,

θZ6 = a4ηHZ1 + a4Z2 + (−a2 − k5)Z6 − a2Z7,

θZ7 = (σV + θc)Z6 − k6Z7.

System (27) is simplified as follows. Firstly, all the negative terms in the 2nd, 3rd, 4th,

5th and 7th equations of (27) are moved to the respective left-hand sides.

Z2 =
σHZ1

θ + k2
+

µ2π1
(θ + k3)(θ + k2)

, Z3 =
π1

θ + k3
,

Z4 =
σHZ1τH

(θ + k2)(θ + k4)
+

µ2τHπ1
(θ + k3)(θ + k2)(θ + k4)

,

Z5 =
σHZ1τHγ1

(θ + k2)(θ + k4)(θ + µH)
+

µ2τHπ1γ1
(θ + k3)(θ + k2)(θ + k4)(θ + µH)

,

Z7 =
σV + θc
θ + k6

Z6

.

Secondly, the (resulting) equations are then re-written in terms of Z1 and Z6 and

substituted into the remaining equations of (27), and all its negative terms are moved

to the right-hand side. Doing all these lead to the following equations:
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[
1 +

θ + a1
k1

+
a1σH

k1(θ + k2)
+

σHa1τH
(θ + k2)(θ + k4)k1

+
σHa1τHγ1

(θ + k2)(θ + k4)(θ + µH)k1

]
Z1 + Γ =

a3ηVZ6 + a3Z7 + µ1Z3

k1
,[

1 +
θ

k2

]
Z2 =

σH
k2
Z1 +

µ1

k2
Z3,[

1 +
θ

k3

]
Z3 =

π1
k3
,[

1 +
θ

k4

]
Z4 =

τH
k4
Z2,[

1 +
θ

µH

]
Z5 =

γ1
µH

Z4,[
1 +

θ + a2
k5

+
a2(σv + θc)

k5(θ + k6)

]
Z6 =

a4ηHZ1 + a4Z2

k5
,[

1 +
θ

k6

]
Z7 =

(σv + θc)

k6
Z6.

Now we can rewrite the equations as:

Z1[1 + F1(θ)] + Γ = (MZ̄)1,

Z2[1 + F2(θ)] = (MZ̄)2,

Z3[1 + F3(θ)] = (MZ̄)3,

Z4[1 + F4(θ)] = (MZ̄)4, (28)

Z5[1 + F5(θ)] = (MZ̄)5,

Z6[1 + F6(θ)] = (MZ̄)6,

Z7[1 + F7(θ)] = (MZ̄)7.

where,

F1 =

[
θ + a1
k1

+
a1σH

k1(θ + k2)
+

σHa1τH
(θ + k2)(θ + k4)k1

+
σHa1τHγ1

(θ + k2)(θ + k4)(θ + µH)k1

]
,

F2 =
θ

k2
, F3 =

θ

k3
, F4 =

θ

k4
, F5 =

θ

µH
,
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F5 =
θ + a2
k5

+
a2(σv + θc)

k5(θ + k6)
, F7 =

θ

k6
.

with,

M =



0 0 µ1
k1

0 0 a3ηV
k1

a3
k1

σH
k2

0 µ2
k2

0 0 0 0

0 0 0 0 0 0 0

0 τH
k4

0 0 0 0 0

0 0 0 γ1
µH

0 0 0

a4ηH
k5

a4
k5

0 0 0 0 0

0 0 0 0 0 (σv+θc)
k6

0


,

The notation M(Z̄)i (with i = 1, 2, 3, 4, 5, 6, 7) denotes the ith coordinate of the vec-

tor M(Z̄). It should be noted that the matrix M has non-negative entries, and the

equilibrium Ē1 satisfies Ē1 = MĒ1.

Furthermore, since the coordinates of Ē1 are all positive, it follows then that if Z̄ is a

solution of equation (28), then it is possible to find a minimal positive real number, s,

such that [19,22]

| Z̄ |≤ sĒ1, (29)

where, | Z̄ |= (| Z1 |, | Z2 |, | Z3 |, | Z4 |, | Z5 |, | Z6 |, | Z7 |) with the lexicographic order

and | · | is a norm in C.

The goal is to show that Reθ < 0. Assume the contrary (i.e., Reθ ≥ 0). We consider

two cases: θ = 0 and θ 6= 0.

Assume the first case θ = 0. Then, equation (27) is a homogeneous linear system in

the variables Zi (i = 1, 2, 3, 4, 5, 6, 7). The determinant of this system corresponds to

that of the Jacobian of system (25) evaluated at Ē1, which is given by
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M = −k2k3k4k6a1a2µH − k2k3k4k5k6a1µH − k2k3k4a1a2σV

− k2k3k4a1a2µHθc − k1k2k3k4k6a2µH − k1k2k3k4k5k6µH

− k1k2k3k4a2σV µH − k1k2k3k4a2µHθc − k3k4k6a2a1µHσH

− k3k4k5k6a1σHµH − k3k4a1a2σHσV µH − k3k4a1a2σHθcµH

− k3k6a1a2τHσHµH − k3k5k6a1τHσHµH − k3a1a2τHσHµHσV

− k3a1a2τHσHµHθc − k3k6a1a2τHσHγ1 − k3K5k6a1τHσHγ1

− k3a1a2τHσHγ1σV − k3ka1a2τHσHγ1θc + k3k4a3a4σHµHσV

+ k3k4a3a4σHµHθc + k3k4k6a3a4σHµHηV + k2k3k4a3a4σvµHηH

+ k2k3k4a3a4θcµHηH + k2k3k4k6a3a4µHηHηV .

= −k2k3k4k6a1a2µH − k2k3k4k5k6a1µH − k2k3k4a1a2σV

− k2k3k4a1a2µHθc − k1k2k3k4k6a2µH − k1k2k3k4k5k6µH

− k1k2k3k4a2σV µH − k1k2k3k4a2µHθc − k3k4k6a2a1µHσH

− k3k4k5k6a1σHµH − k3k4a1a2σHσV µH − k3k4a1a2σHθcµH

− k3k6a1a2τHσHµH − k3k5k6a1τHσHµH − k3a1a2τHσHµHσV

− k3a1a2τHσHµHθc − k3k6a1a2τHσHγ1 − k3K5k6a1τHσHγ1

− k3a1a2τHσHγ1σV − k3ka1a2τHσHγ1θc

+ k3k4a3a4µH

[
σHσV + σHθc + σHηV + k2σvηH + k2θcηH + k2k6ηHηV

]
.

= −k2k3k4k6a1a2µH − k2k3k4k5k6a1µH − k2k3k4a1a2σV

− k2k3k4a1a2µHθc − k1k2k3k4k6a2µH − k1k2k3k4a2σV µH

− k1k2k3k4a2µHθc − k3k4k6a2a1µHσH − k3k4k5k6a1σHµH

− k3k4a1a2σHσV µH − k3k4a1a2σHθcµH − k3k6a1a2τHσHµH

− k3k5k6a1τHσHµH − k3a1a2τHσHµHσV − k3a1a2τHσHµHθc

− k3k6a1a2τHσHγ1 − k3K5k6a1τHσHγ1 − k3a1a2τHσHγ1σV

− k3ka1a2τHσHγ1θc − k1k2k3k4k5k6
[
1− (R0)

2

]
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Since the model parameters are non-negative, and by algebraic manipulation, we finally

get:

⇒M = −k2k3k4k6a1a2µH − k2k3k4k5k6a1µH − k2k3k4a1a2σV

− k2k3k4a1a2µHθc − k1k2k3k4k6a2µH − k1k2k3k4a2σV µH

− k1k2k3k4a2µHθc − k3k4k6a2a1µHσH − k3k4k5k6a1σHµH

− k3k4a1a2σHσV µH − k3k4a1a2σHθcµH − k3k6a1a2τHσHµH

− k3k5k6a1τHσHµH − k3a1a2τHσHµHσV − k3a1a2τHσHµHθc

− k3k6a1a2τHσHγ1 − k3K5k6a1τHσHγ1 − k3a1a2τHσHγ1σV

− k3ka1a2τHσHγ1θc − k1k2k3k4k5k6
[
1− (R0)

2

]
6= 0

(30)

Therefore the system (25) has a trivial solution Z̄ = 0 (which corresponds to the DFE,

E0.)

Now we consider the case θ 6= 0. In this case, by assumption, Re θ > 0. Thus,

| 1 + Fi(θ) |> 1 for i = 1, 2, 3, 4, 5, 6, 7. Now, define F (θ) = min | 1 + Fi(θ) |, i =

1, 2, 3, 4, 5, 6, 7. Then, F (θ) > 1. Therefore, s
F (θ)

< s. Since s is a minimal positive real

number such that | Z̄ |≤ sĒ1, then

| Z̄ |> s

F (θ)
Ē1. (31)

Taking norms on both sides of the third equation of (28), and using the fact that I is

non-negative, gives

F (θ) | Z2 |≤ I(| Z |)2 ≤ s(I | Ē1 |)2 ≤ sI∗∗H . (32)

Then, it follows from the above inequality that | Z2 |≤ s
F (θ)

I∗∗H which contradicts the

equation (31). Hence, Re θ < 0, which implies that Ē1 is LAS, if R01 > 1.

The epidemiological implication of Theorem (8) is that the disease would persists in

the community if the basic reproduction threshold R01 > 1.
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Global Stability of EEP of the Model (8) The global stability of EEP of the

model (8) is consider for the special case where the dengue induce mortality is very

negligible (so that, δH = δV = 0) and at the endemic stage S∗∗H ≥ SH , E∗∗H ≥ EH ,

S∗∗V ≥ SV , E∗∗V ≥ EV .

Theorem 3. The unique EEP, E1, of the model (8), is globally asymptotically stable

in Ω whenever R0 > 1.

Proof. Consider the non-linear Lyapunov function

F =

[
SH − S∗∗H − S∗∗ln

SH
S∗∗H

]
+

[
EH − E∗∗H − E∗∗H ln

EH
E∗∗H

]
+ a1

[
IH − I∗∗H − I∗∗H ln

IH
I∗∗H

]
+ a2

[
MH −M∗∗

H −M∗∗
H ln

MH

M∗∗
H

]
+ a3

[
TH − T ∗∗H − T ∗∗H ln

TH
T ∗∗H

]
+ a4

[
RH −R∗∗H −R∗∗H ln

RH

R∗∗H

]
+ a5

[
AV − A∗∗V − A∗∗V ln

AV
A∗∗V

]
+

[
SV − S∗∗V − S∗∗V ln

SV
S∗∗V

]
+

[
EV − E∗∗V − E∗∗V ln

EV
E∗∗V

]
+ a6

[
IV − I∗∗V − I∗∗V ln

IV
I∗∗V

]
(33)

with Lyapunov derivative of (33) given by

Ḟ =

[
1− S∗∗H

SH

]
ṠH +

[
1− E∗∗H

EH

]
ĖH + a1

[
1− I∗∗H

IH

]
İH

+ a2

[
1− M∗∗

H

IM

]
ṀH + a3

[
1− T ∗∗H

TH

]
ṪH + a4

[
1− R∗∗H

RH

]
ṘH

+ a5

[
1− A∗∗V

AV

]
ȦV +

[
1− S∗∗V

SV

]
ṠV +

[
1− E∗∗V

EV

]
ĖV

+ a6

[
1− I∗∗V

IV

]
İV ,

(34)

where,

a1 = 0, a2 =
µ1

(µ1 + µ2 + µH)
, a3 = 0,

a4 = 0, a5 =
γm

(γm + µV + Ca)
, a6 = 0,
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Substituting these value in to the equation (34), we get

Ḟ = πH −
C1(ηVEV + IV )

NH

SH − µHSH − πH
S∗∗H
SH

+
C1(ηVE

∗∗
V + I∗∗V )

N∗∗H
S∗∗H

+ µHS
∗∗
H +

C1(ηVEV + IV )

NH

SH − (µH + σH)EH −
C1(ηVE

∗∗
V + I∗∗V )

N∗∗H
S∗∗H

E∗∗H
EH

+ µ1MH − µ1M
∗∗
H

E∗∗H
EH

+ (µH + σH)E∗∗H +
µ1

(µ1 + µ2 + µH)

[
π1 − π1

M∗∗
H

MH

+ (µ1 + µ2 + µH)M∗∗
H − (µ1 + µ2 + µH)MH

]
+

γm
(γm + µV + Ca)

[
πV

− πV
A∗∗V
AV
− (γm + µV + Ca)AV + (γm + µV + Ca)A

∗∗
V

]
+ γmAV − (µV + Cm)SV

− γmAV
S∗∗V
SV

+ (µV + Cm)S∗∗V −
C2(ηHEH + IH)

NH

SV +
C2(ηHE

∗∗
H + I∗∗H )

N∗∗H
S∗∗V

+
C2(ηHEH + IH)

NH

SV − (σV + θc + µV + Cm)EV −
C2(ηHE

∗∗
H + I∗∗H )

N∗∗H

E∗∗V
EV

S∗∗V

+ (σV + θc + µV + Cm)E∗∗V ,

(35)

In the above equation (35), we will use the following relations:

πH =
C1(ηVE

∗∗
V + I∗∗V )

N∗∗H
S∗∗H + µHS

∗∗
H ,

µ1 =
(µH + σH)E∗∗H −

C1(ηV E
∗∗
V +I∗∗V )

N∗∗
H

S∗∗H

M∗∗
H

,

M∗∗
H =

π1
(µ1 + µ2 + µH)

,

A∗∗V =
γm

(γm + µV + Ca)
,

(µV + Cm) =
γmA

∗∗
V +

C2(ηV E
∗∗
V +I∗∗V )

N∗∗
V

S∗∗V

S∗∗V
,

(σV + θc + µV + Cm) =

C2(ηV E
∗∗
V +I∗∗V )

N∗∗
V

S∗∗V

E∗∗V
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Now from equation (35), we get

Ḟ ≤ πH − πH
S∗∗H
SH
− C1(ηVE

∗∗
V + I∗∗V )

N∗∗H
S∗∗H

E∗∗H
EH

+ µ1M
∗∗
H − µ1M

∗∗
H

E∗∗H
EH
− µ1MH

+ 2µ1M
∗∗
H − µ1

(M∗∗
H )2

MH

+ γmA
∗∗
V − γmAV + γmA

∗∗
V − γm

(A∗∗V )2

AV

+ (γmAV − γmAV
S∗∗V
SV

)− C2(ηHEH + IH)

NH

SV +
C2(ηHE

∗∗
H + I∗∗H )

N∗∗H
S∗∗V

− (µV + Cm)SV +
C2(ηHEH + IH)

NH

SV − (σV + θc + µV + Cm)EV

+ (µV + Cm)S∗∗V + (σV + θc + µV + Cm)E∗∗V −
C2(ηHE

∗∗
H + I∗∗H )

N∗∗H

E∗∗V
EV

S∗∗V ,

(36)

Finally,

Ḟ ≤ πH(1− S∗∗H
SH

)− C1(ηVE
∗∗
V + I∗∗V )

N∗∗H
S∗∗H

E∗∗H
EH

+ µ1M
∗∗
H (1− E∗∗H

EH
)

+ µ1M
∗∗
H

[
2− M∗∗

H

MH

− MH

M∗∗
H

]
+ γmA

∗∗
V

[
2− AV

A∗∗V
− A∗∗V
AV

]
+ γmAV (1− S∗∗V

SV
) +

C2(ηHE
∗∗
H + I∗∗H )

N∗∗H
S∗∗V

[
1− E∗∗V

EV

]
,

(37)

Since the arithmetic mean exceeds the geometric mean, it follows then that

[
2− M∗∗

H

MH

− MH

M∗∗
H

]
≤ 0,[

2− AV
A∗∗V
− A∗∗V
AV

]
≤ 0,

Also since, SH , EH ,MH , AV , SV , EV , approaches S∗∗H , E
∗∗
H ,M

∗∗
H , A

∗∗
V , S

∗∗
V , E

∗∗
V asymptoti-

cally, or SH , EH ,M
,
HAV , SV , EV becomes, and remains, less than S∗∗H , E

∗∗
H ,M

∗∗
H , A

∗∗
V , S

∗∗
V , E

∗∗
V

in finite time, then from equation (37), we get

SH − S∗∗H ≤ 0, EH − E∗∗H ≤ 0,

SV − S∗∗V ≤ 0, EV − E∗∗V ≤ 0,
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i.e.,

S∗∗H ≥ SH , E∗∗H ≥ EH ,

S∗∗V ≥ SV , E∗∗V ≥ EV ,

Therefore from equation (37), we can finally say that

Ḟ ≤ 0 for R0 > 1

Thus, by the Laypunov function F , and the LaSalle Invariance Principal [18], every

solution to the equations in the model (8) approaches E1 as t→∞ for R0 > 1.

At the end of the discussion, we can say that, the model (8) has a globally-asymptotically

stable DFE wheneverR0 ≤ 1 and a unique EEP forR0 > 1. It is shown that the unique

EEP of the model (8) is globally-asymptotically stable, for the special case whenever

disease-induce mortality is very negligible and the threshold quantity that is the basic

reproduction number greater than the unity (R0 > 1).

Numerical Simulations and Discussions The model (8) is simulated, using the

parameter values given in Table-(2) and Table-(3) (unless otherwise stated).

Figure (2) presents the simulations of the dengue transmission model (8), showing a

contour plot of the reproduction threshold R0 which depicts that if the rate C2 = CV H

at which human acquire infection from infected mosquitoes (exposed or infectious) and

the rate C1 = CHV at which mosquitoes acquires infection from infected humans (ex-

posed or infectious) decreases then the burden of the dengue disease decreases (in line

with theorem 1). However if the rates C1 and C2 increases then the burden of the

disease increases (in line with theorem 3).

Figure (3) presents the simulations of the dengue transmission model (8), showing
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a contour plot of the reproduction threshold R0 which indicates that if the rate σV

at which the vector individuals transfer from exposed class to infected class increases

and at the same time if we have the effective precautionary measures the we would be

able to control the disease spread and no endemic will occur (in line with theorem 1),

otherwise the disease burden will increases.

Figure (4) depicts that if the rate σH at which the exposed human population de-

veloped clinical symptoms of dengue disease move to infectious class decreases and the

rate σV , at which the exposed vectors developed clinical symptoms of dengue disease

move to infectious class decreases, then the total number of infected human population

also decreases, otherwise burden of the disease increases.

Figure (5), (6), (7), (8), and (9) monitor the effect of the effective vector control

rate Cm and Ca. If we do not have any necessary precautionary measures, then the

total number of vector population increases rapidly (Figure (5)) and persist in the

community ultimately. If we take the precautionary measures in the aquatic stage

(i.e., if the control rate Ca increases), the number of total infected vector IV decreases

rapidly as like figure (7). However if we take the necessary precautionary measures in

the adult stage (i.e., if the control rate Cm increases), the total infected vector IV also

decreases, (Figure (6)). Additionally if we take the precautionary step in the aquatic

and adult both stage, then the total number of infected vector decreases drastically

(Figure (8)). To see the total changes in the vector population after some necessary

precautionary measures, we have, from figure (8), that the total vector population NV

decreases rapidly. Figure (5) and (18), present the comparative situation before and

after the precautionary measures have taken.

Figure (10) and (11) present the effect of the migratory infected individuals. From

figure (11) we see that if the rate µ1 at which the migratory population added to the
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exposed class EH and the rate µ2 at which the migratory individuals added to the

infected class IH varies, then the number of new infectious cases varies as well. From

figure (10), we see that, small rate of increase in µ1 and in µ2 can increases the total

number of infection and can create an endemic. From figure (10), we can also see a

comparative presentation of the model (8) simulation where, if µ1 = µ2 = 0, then the

number of new infected population decreases. If µ1 = µ2 6= 0, then the number of new

infected individuals increases rapidly and converges to the endemic situation.

Conclusion: A deterministic model for dengue transmission dynamics presented and

rigorously analysed. The disease-free equilibrium, E0, is shown to be locally asymptot-

ically stable when the associated epidemic threshold known as the basic reproduction

number, R0, for the model is less than unity. This equilibrium (DFE) is shown to be

globally-asymptotically stable whenever R0 is less than unity (Theorem 7). The model

has a unique endemic equilibrium (EEP), E1, is shown to be locally asymptotically

stable whenever R0 is greater than unity (Theorem 8). By considering special cases

EEP is shown to be globally-asymptotically stable whenever R0 > 1 (Theorem 9).

Numerical simulation reveals that if the rate at which human acquire infection from

infected mosquitoes (CV H) and the rate at which mosquitoes acquires infection from

infected humans (CHV ) increases then the burden of the dengue disease increases. Nu-

merical simulations indicates that if the rate of migratory exposed (µ1) or migratory

infected (µ2) individuals increases then the rate of cumulative number of new cases

increases. Numerical simulations suggest that proper treatment decreases the rate of

infectiousness. Numerical simulation depicts that if we take the precautionary mea-

sures more seriously then it would be more effective then even giving the treatment

to the infected individuals. Numerical simulations reveals that the spread of dengue

virus can be controlled more effectively, if we take the precautionary measures at the

aquatic and adult stages.

Table 3.1: Description of variables of the dengue model (8):
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Variables Description

SH(t) Susceptible humans

EH(t) Exposed humans

IH(t) Infected humans

MH(t) Migrated class of individuals comes from different parts of the

world to the host country and contains the virus of dengue

TH(t) Treated humans

RH(t) Recovered individuals

AV (t) Aquatic class

SV (t) Susceptible mosquitoes

EV (t) Exposed mosquitoes

IV (t) Infected mosquitoes
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Table 3.2: The value of the parameters of the dengue model (8):

Parameter Description Baseline values

πH Recruitment rate of humans 20day−1 [7]

πV Recruitment rate of vectors 5000day−1 [20]

1
µH

Natural death rate of humans 67years [20]

1
µV

Natural death rate of vectors [4, 14]days [20, 41]

CHV Contact rate from host to vector 0.75day−1 [24]

CV H Contact rate from vector to host 0.375day−1 [24]

σH Exposed individuals with develop clinical symptoms

of dengue disease move to infectious class at that rate (0, 1)day−1 [29]

σV Exposed vectors develop symptom of disease and

move to infections class at this rate (0, 1) assumed

τH Rate of treatment Variable

δH Disease induced death 10−3day−1 [5]

π2 Migrated population Variable

µ1, µ2 Transition rates between EH and IH classes Variable

γ1 Transfer rate from treatment class to recovery class 0.1428day−1 [5, 24]

δV Disease induced death rate for infectious negligible

γm The mean aquatic transition rate Variable

Ca Control effect rate Variable

ηH , ηV Modification parameters (0, 1] [7]

Cm Control effect rate Variable

θc Extrinsic incubation rate of vector Variable

Table 3.3: The values for variables for the figure (3.2–3.16)

SH EH IH MH TH RH AV SV EV IV

6000 500 300 50 290 280 1000000 10000 5000 3000
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Figure 2: Simulations of the model (8) showing a contour plot of R0 as a function

of contact rate from vector to host (C2 = CV H) and contact rate from host to vector

(C1 = CHV ). Parameter values used are as given in table (3.2), (3.3), with ΠH = 20,

σV = 0.0130, δH = 0.0001, δV = 0.01, σH = 0.0230, γ1 = 0.0428, γm = 0.00575,

Ca = 0.850, Cm = 0.650, π1 = 7, τH = 0.190, ηH = .03902, ηV = 0.0129, θc = .075,

µ1 = 0.0, µ2 = 0.0, πV = 5000, µH = 0.01492537, µV = 0.363
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Figure 3: Simulations of the model (8) showing a contour plot of R0 as a function of

control rate at the adult stage (Cm) and transfer rate from exposed to infected class

(σV ). Parameter values used are as given in table (3.2), (3.3), with ΠH = 2, C1 = 0.75,

C2 = 0.375, δH = 0.0001, δV = 0.01, γ1 = 0.001428, γm = 0.003575, Ca = 0.450,

π1 = 7, τH = 0.190, ηH = .02902, ηV = 0.0129, θc = .075, µ1 = 0.0, µ2 = 0.0,

πV = 5000, µH = 0.01492537, µV = 0.363

Figure 4: Simulations of the model (8) showing the total number of infected human

population (EH + IH +MH + TH) as a function of time (for reducing values of σH and

σV ), using the parameter values in table (3.2) and (3.3) with ΠH = 20, C1 = 0.035,

C2 = 0.0375, σV = 0.0130, σH = 0.01250, δH = 0.0001, δV = 0.01, γ1 = 0.01428, γm =

0.013575, Ca = 0.0, Cm = 0.0, π1 = 7, τH = 0.0, ηH = .12902, ηV = 0.073, θc = .075,

µ1 = 0.0, µ2 = 0.0, πV = 5000, µH = 0.01492537, µV = 0.363333, R0 = 0.5337.
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Figure 5: Simulations of the model (8) (without precautionary measures Ca = Cm = 0)

showing the total number of vector population (AV + SV + EV + IV ) as a function of

time, using the parameter values in table (3.2) and (3.3) with ΠH = 20, C1 = 0.75,

C2 = 0.375, σV = 0.135, σH = 0.125, δH = 0.0001, δV = 0.01, γ1 = 0.1428, γm = 0.035,

Ca = 0.0, Cm = 0.0, π1 = 7, τH = 0.0, ηH = .02902, ηV = 0.037103, θc = 0.75, µ1 = 0.0,

µ2 = 0.0, πV = 5000, µH = 0.01492537, µV = 0.363333, R0 = 2.1326.

Figure 6: Simulations of the model (8) (with precautionary measures at the adult

stage Cm 6= 0 and aquatic stage Ca = 0) showing the total number of infected vector

individuals (EV + IV ) as a function of time, using the parameter values in table (3.2)

and (3.3) with ΠH = 20, C1 = 0.75, C2 = 0.375, σV = 0.135, σH = 0.125, δH = 0.0001,

δV = 0.01, γ1 = 0.01428, γm = 0.03575, Ca = 0.0, Cm = 0.89, π1 = 7, τH = 0.0,

ηH = .129, ηV = 0.171, θc = .0075, µ1 = 0.0, µ2 = 0.0, πV = 5000, µH = 0.01492537,

µV = 0.363333, R0 = 0.7455.
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Figure 7: Simulations of the model (8) (with precautionary measures at the aquatic

stage Ca 6= 0 and Cm = 0) showing the total number of infected vector individuals

(EV + IV ) as a function of time, using the parameter values in table (3.2) and (3.3)

with ΠH = 20, C1 = 0.75, C2 = 0.375, σV = 0.135, σH = 0.125, δH = 0.0001,

δV = 0.01, γ1 = 0.01428, γm = 0.03575, Ca = 0.89, Cm = 0.0, π1 = 7, τH = 0.0,

ηH = .12902, ηV = 0.17, θc = .01175, µ1 = 0.0, µ2 = 0.0, πV = 5000, µH = 0.01492537,

µV = 0.363333, R0 = 0.6637.

Figure 8: Simulations of the model (8) (with precautionary measures at the aquatic

stage Ca 6= 0 and both adult stage Cm 6= 0) showing the total number of infected

vector individuals (EV + IV ) as a function of time, using the parameter values in table

(3.2) and (3.3) with ΠH = 20, C1 = 0.75, C2 = 0.375, σV = 0.0135, σH = 0.125,

δH = 0.0001, δV = 0.01, γ1 = 0.01428, γm = 0.013575, Ca = 0.89, Cm = 0.89, π1 = 7,

τH = 0.42, ηH = 0.129, ηV = 0.173, θc = .01175, µ1 = 0.0, µ2 = 0.0, πV = 5000,

µH = 0.01492537, µV = 0.363333, R0 = 0.6304.
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Figure 9: Simulations of the model (8) (with precautionary measures at the aquatic

stage Ca 6= 0 and both adult stage Cm 6= 0) showing the total number of vector

individuals (AV +SV +EV +IV ) as a function of time, using the parameter values in table

(3.2) and (3.3) with ΠH = 20, C1 = 0.75, C2 = 0.375, σV = 0.01130, σH = 0.01125,

δH = 0.0001, δV = 0.01, γ1 = 0.01428, γm = 0.013575, Ca = 0.889, Cm = 0.89, π1 = 7,

τH = 0.42, ηH = .02902, ηV = 0.01137103, θc = .01175, µ1 = 0.0, µ2 = 0.0, πV = 5000,

µH = 0.01492537, µV = 0.363333, R0 = 0.3093.

Figure 10: Simulations of the model (8) (with µ1 = µ2 6= 0) showing the total number

of infected human population (EH + IH + MH + TH) as a function of time, using the

parameter values in table (3.2) and (3.3) ΠH = 20, C1 = 0.75, C2 = 0.375, σV = .130,

σH = 0.1250, δH = 0.0001, δV = 0.01, γ1 = 0.01428, γm = 0.03575, Ca = .450,

Cm = .650, π1 = 20, τH = 0.19000, ηH = .012902, ηV = 0.0137103, θc = .075,

µ1 = 0.050000, µ2 = 0.69000, πV = 5000, µH = 0.01492537, µV = 0.363333.
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Figure 11: Simulations of the model (8) by considering different values of µ1 and µ2,

where ΠH = 20, C1 = 0.75, C2 = 0.375, δH = 0.0001, δV = 0.01, γ1 = 0.01428,

γm = 0.03575, π1 = 20, θc = .075, πV = 5000, µH = 0.01492537, µV = 0.363333, and

other parameters are as in table (3.2) and (3.3).
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