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Abstract

This study aims to investigate the impacts of the Defense Industry Development
Act on the volatility of the defense industry as geopolitical risk is raised. Applying
the smooth transition generalized autoregressive conditional heteroskedasticity
(ST-GARCH) model for daily defense stocks, we demonstrate that the structure
breaks in the volatility dynamics process of all defense stocks for Taiwan. The
empirical findings show that most defense stocks started the adjustment process
more than one year before the date of launch of Defense Industry Development
Act except Magnate Technology Corporation (MTC) and China Ship Building
Corporation Taiwan (CSBC). The model specification tests suggest two types of
transition functions including U-shaped and Z-shaped for all defense stocks. The
estimated parameters indicate that the volatilities of returns in defense stocks
for Taiwan have inverted U-shaped and inverted Z-shaped patterns of structure
breaks. The volatilities of defense enterprise stock return shift by the event of
Defense Industry Development Act.
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1 Introduction

There are many reasons which could explain why Taiwan plays a critical role in global
geopolitics. In the geographical aspect, Taiwan is located at the midpoint of the first
island chain and guards the Taiwan Strait and Bashi Channel. Therefore, Taiwan
occupies an important strategic position for the United States. In the economic field,
the relationship between the U.S. and China has been deteriorating since the 2018
US-China trade war. Recently, the U.S. government promulgated sweeping restrictions
on selling semiconductors and related equipment to China in late 2022. Additionally,
according to the data from the Ministry of Economic Affairs, Taiwan manufactures
over 60% of the world’s semiconductors and about 90% of the most advanced ones.
In view of the late closer relationship between the US and Taiwan, the Taiwan and
China tensions are rising evidently and conflict risk is also growing.

Furthermore, the Taiwan geopolitical risk (GPR, for short) index constructed by
Caldara and Iacoviello [1] shows in Fig. 1. The period of the monthly Taiwan geopo-
litical risk index is collected from January, 2010 to May, 2023, available open source
from the website.1 We could clearly observe that the GPR index became slightly
volatile during 2016 to 2017, and then it turns into more and more volatile after 2018.
Additionally, Lin et al. [2] consider that the tension across the Taiwan Strait became
alleviated could be attributed to the cross-strait agreement. The cross-strait peace
explains that the GPR index appears relatively stable from 2010 to 2016.

.0

.1

.2

.3

.4

.5

.6

.7

.8

.9

10 11 12 13 14 15 16 17 18 19 20 21 22 23

GPR

Fig. 1 Taiwan geopolitical risk from January 2010 to May 2023

All in all, the most volatile flashpoint between the U.S. and China is Taiwan.
Therefore, national defense turns into a top issue for Taiwan. In order to improve the

1Data downloaded from https://www.matteoiacoviello.com/gpr.htm on June 10, 2023
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national defense forces, the Taiwan government passed Defense Industry Development
Act on May 31, 2019. The national defense independent policy aims to accelerate
public-private partnerships to build internally manufactured weapons, especially in
shipbuilding, aerospace, and information security, thereby aiding the country in accom-
plishing its goal of defense autonomy. According to the former research, military
spending could stimulate employment in the long term in Taiwan [3]. In the light of
the official information of the Ministry of National Defense, the act could not only take
into consideration the need of national defense security and economic development but
also attract firms to invest and expand the national defense market size. Hence, this
policy might mainly and directly benefit the military industry enormously.2 Briefly
speaking, the implementation of Defense Industry Development Act could integrate
industrial resources and create synergy. These advantages could be mirrored in the
related information flow. Ross [4] demonstrates that in the absence of arbitrage, the
market volatilities will move up as the concerned information flows get more exposure.
In this article, we believe that the announcement of Defense Industry Development
Act could not only increase the revelation of information flows but change the volatil-
ity state. Consequently, we surmise that the act could alter the dynamic volatility
process of defense stock return.

This paper firstly detects whether the volatility structure change is existence or
not. Secondly, we hire the smooth transition approach to discover the regime-switching
date as it is a presence. According to the related public news, we conjecture that
the structure breaking date could arrive before the promulgation of Defense Industry
Development Act.3 For this reason, using the threshold method to depict the policy
impacts of volatility might be biased. Our analysis verifies this viewpoint later.

The previous literature has utilized threshold, smooth transition, and Markov
switching methods to deal with the structure change problem. In this study, we choose
the smooth transition mechanism to investigate the endogenous structure break of the
dynamic volatility process. The smooth transition method is more suitable for this
topic because the influence of planned acts on volatility structure is picked up by a pro-
cess of osmosis. Regarding the Markov switching approach, it is appropriate to describe
the effect of unexpected shocks. Granger and Teräsvirta [5] and Lin and Teräsvirta [6]
propose the smooth transition approach and introduce this nonlinear concept into the
mean equation. A lot of subsequent studies employ the smooth transition mechanism
in the variance equation further, such as Hagerud [7], González-Rivera [8], Anderson
et al. [9], Lundbergh and Teräsvirta [10], Liau and Yang[11], Chou et al. [12], Chen et
al. [13], Ho et al. [14], and Li et al. [15]. Considering the purpose of this research is to
find out the endogenous structure break point of volatility, we hire the smooth tran-
sition GARCH model proposed by Lundbergh and Teräsvirta [10] to fit the dynamic
volatility process. In the light of estimated results of the parameter consistency test,
almost all defense stock volatilities contain an inverted U-shaped pattern except for

2The main related defense companies of the military industry include Aerospace Industrial Development
Corporation (AIDC), Magnate Technology Corporation (MTC), National Aerospace Fasteners Corporation
(NAFCO), China Ship Building Corporation Taiwan (CSBC), Lanner Electronics Incorporation (LE) and
TOPKEY Corporation (TK). AIDC, MTC, and NAFCO manufacture the aerospace components. CSBC,
LE, and TK produce ship, advanced network appliances, and aviation products individually.

3The earliest published news about the national defense independent policy is on October 10, 2018, from
the wealth magazine (https://www.wealth.com.tw/articles/79386c21-338b-4dfd-b128-832fb9950c78).
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the National Aerospace Fasteners Corporation (NAFCO). We have evidence that the
regime change date for all defense stock return volatilities begins ahead of the act
besides MTC. Additionally, the empirical findings show that the long-term uncondi-
tional volatilities shift from a lower volatility state to a higher one and then return to
the lower case except NAFCO.

We can perceive that nongovernmental defense communication activities become
more active in the last few years. In accordance with the recent data from the Tai-
wan Defense Industry Development Association, there are 50 domestic companies and
legal persons who joined the member.4 It indirectly explains that the development
for military industry chain seems boosted by the implementation of Defense Indus-
try Development Act. Therefore, we attempt to clarify this amusing influence of the
policy for Taiwan’s national defense industry.

The remainder of this paper is organized as follows. Section 2 introduces the
methodology including the classical GARCH model, GARCH model with threshold
variable, and smooth transition GARCH model. Section 3 presents the data and
empirical results. Section 4 concludes this paper.

2 Methodology

2.1 Related GARCH models

The GARCH model introduced by Engle [16] and Bollerslev [17] is one of the widely
applied dynamic volatility models. The classical GARCH (1, 1) model could be used
to measure the dynamic volatility process, that is,

Rt = εt

ht = α0 + α1ε
2
t−1 + β1ht−1

εt | Ωt−1 ∼ N(0, ht) (1)

where Rt denotes the underlying asset returns at time t, ht denotes the conditional
volatility at time t, ε2t−1 represents the square residual at time t−1, and Ωt−1 represents
the information set at time t − 1. The parameters, α0, α1, and β1, can be shown as
the intrinsic uncertainty level, short-run effect of volatility shocks, and long-run effect
of volatility shocks, individually. The specification of the conventional GARCH (1, 1)

4The members involve ChenFull Precision Co., Jong Shyn Shipbuilding Co., China Steel Corporation,
Chung-Hsin Electric and Machinery Manufacturing Corp., TAIWAN AEROSPACE Corporation, CSBC
Corporation, Zyxel Communications Corp, Apex Flight Academy Inc., CyCarrier Co., Hung Shen Propeller
Co., Air Asia Company, DragonCloud Technology Co., SGD Engineering Co., Topkey Corporation, Loop
Telecommunication International, Kolik Enterprise Co., Athemaster Co., Kolead Aerospace Co., Ship and
Ocean Industries R & D Center, National Chung-Shan Institute of Science and Technology, Vivian & Vincent
International Trading Company, Geosat Aerospace & Technology Inc., Aerospace Industrial Development
Corporation, Data Force System Ltd., Ming Rong Yuan Business Co., LungTeh Shipbuilding Co., Trend
Micro Incorporated, Chan Ta Machinery & Electric Mfg.,Co., Shengan Marine Co., Yung Chi Paint & Var-
nish Mfg. Co., Karmin International Co., Tri-Force International Inc., ADLINK Technology Inc., Digicentre
Company Limited, Kun Yi Engineering Co., Tron Future Tech Inc., KeyXentic Inc., Gbit Technology Cor-
poration, Wavefidelity Inc., Funz-San Industry Co., Value Valves Co., MiTwell, Inc., Orient Semiconductor
Electronics Limited, Twoway Communications Inc., Gong Wei Co., Accton Technology Corporation, U & U
Engineering Inc., F Time Technology Industrial Co., InfoKeyVault Technology Co. and Skylink Technology
Co..
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model could not expose the nonlinear structural breaks for the dynamic volatility
process. In this paper, we focus on the influence of Defense Industry Development Act
on the defense stocks volatility process, thence it is natural to apply an exogenous
threshold variable to Eq. (1). That is,

ht = α0 + α1ε
2
t−1 + β1ht−1 +Dt(θ0 + θ1ε

2
t−1 + θ2ht−1), (2)

where Dt denotes an exogenous dummy variable allowing the value 1 post-case phase
and 0 pre-case phase. We put three threshold terms, containing a single threshold term
and two cross-product terms, in the variance equation for catching the entire process.
On the condition that the given break date implies correct and full information, this
exogenous specification could be delineated in the form of regime changes. It means
that the erroneous definition of break date could bring about insignificant and biased
estimating consequences.

2.2 The smooth transition GARCH model

From previous literature, applying the endogenous variable to a nonlinear volatil-
ity model is superior to delineating the regime change. The smooth transition model
built by Granger and Teräsvirta [5] and Lin and Teräsvirta [6] could examine the
structure change data through itself. Several recent literature indicate that combin-
ing the smooth transition mechanism with the GARCH model can receive many
vantages in parameter estimates of the dynamic volatility model.5 The ST-GARCH
model offers the dynamic volatility process with nonlinear state switches. Further-
more, the ST-GARCH model could clearly capture the actual date of regime changes
in the data-generating process for the dynamic volatility process. Lundbergh and
Teräsvirta [10] constructed the generalized framework for detecting the appropri-
ateness of an estimated ST-GARCH type model. The ST-GARCH model could be
presented as,

yt = f(wt;ψ) + εt

εt = zt(ht + gt)
1/2, (3)

where ht = η′st, gt = λ′stF (τt; γ, c), wt denotes a regressor vector in mean, ψ

represents the coefficient vector, zt
iid∼ (0, 1), st = (1, ε2t−1, ..., ε

2
t−q, ht−1, ..., ht−p)

′,

η = (α0, α1, ..., αq, β1, ..., βp)
′, λ = (ᾱ0, ᾱ1, ..., ᾱq, β̄1, ..., β̄p)

′. In particular,

F (τt; γ,ν) = (1 + exp(−γ

k∏
i=1

(τt − vi)))
−1, (4)

where τt is the transition variable at time t, γ shows the slope parameter (γ > 0),
ν = (ν1, ν2, ..., νk) shows a location vector in which ν1 ≤ ν2 ≤ ... ≤ νk, and k shows
the number of transition systems. The model specification means transitions between
two states, F (τt; γ,ν) = 0 and F (τt; γ,ν) = 1.

5Also see [7], [8], [9], [10], [11], [12], [13], [14], and [15].
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Lundbergh and Teräsvirta [10] believe that the ST-GARCH model has several
superiorities. First, the timing determination for state alteration in parameters is
endogenous in estimation and this critical mode is more suitable than artificially given
a priori. Second, the specification of the GARCH model with threshold variable could
be viewed as a special case as the slope parameter (γ) gets to infinity. Lastly, the
transition function, F (τt; γ,ν), offers another flexible model specification to define the
forms of structure changes. For example, Eq. (4) reduces to a special case of a chow’s
state break as γ → ∞ and k = 1. In another case, as the slope parameter γ → ∞ and
k = 2, Eq. (4) becomes a double-step function.

Before estimating the ST-GARCH model, we consider the suggestion from [10] to
examine the hypothesis of parameter constancy in GARCH model. We assume the
null model as gt = 0 and let x̄′

t = ĥ−1
t ∂ĥt/∂η

′ under the null. In addition, we regard
the transition variable as time, τt = t, in order to take an assessment of the impacts
of Defense Industry Development Act on the defense stocks volatility in Taiwan. Let,
ωit = tist, ω̂it = tiŝt, and ωit = (ω̂1t, ω̂2t, ω̂3t)

′ for i = 1, 2, and 3.
The statistical test procedure can be estimated by an artificial regression as below.

First, estimate the parameters of the conditional model under the null. Let SSR0 =∑T
t=1(ε

2
t/ĥt − 1)2, and then regress (ε2t/ĥt − 1) on x̄′

t, ω̂
′
t and gather the sum of

squared residuals, SSR1. The LM test statistic can be calculated by LM = T (SSR0−
SSR1)/SSR0. On the other hand, the F test statistic can be calculated by F =
((SSR0 − SSR1)/k/SSR1/(T − p − q − 1 − k)). Lastly, we use the statistics to find
out a suitable k to fit the ST-GARCH models. The choosing criterion of k value is the
smallest p-values.

3 Data and empirical results

In our article, we are concerned about the defense stocks volatility for Defense Industry
Development Act in Taiwan. We chose defense stocks, containing Aerospace Indus-
trial Development Corporation (AIDC), Magnate Technology Corporation (MTC),
National Aerospace Fasteners Corporation (NAFCO), CSBC Corporation, Taiwan
(CSBC), Lanner Electronics Incorporation (LE) and TOPKEY Corporation (TK).6

These daily data of defense stocks could be gathered from Yahoo Finance7 for the
sample period starting from October 24, 2014 to May 5, 2023. The daily closing prices
for all defense stocks are separately plotted in Fig. 2. At first glance, the daily clos-
ing prices for all defense stocks seem to become more volatile after 2018. We use the
first difference of the logarithmic closing prices to calculate the daily defense stock
returns. Table 1 shows the descriptive statistics for these daily defense stock returns.
We separate the entire period into two sub-sample periods by the event of Defense
Industry Development Act. Most of the items of descriptive statistics for the pre-and
post-launch period seem different, especially the standard deviation for all defense

6The purpose of this paper is to examine the influence of Defense Industry Development Act released in
May 31, 2019 on defense stock return volatility. Consequently, the chosen defense companies have to trade
in the stock market during our research period. We skip AEWIN Technologies Co., CASwell Inc., Lungteh
Shipbuilding Co., and Aero Win Technology Co.

7See http://finance.yahoo.com/.
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stock returns. After publishing Defense Industry Development Act, the standard devi-
ation of whole defense stock returns increase. It is necessary to check whether the
discrepancy is considerably existing or not. In accordance with the significance of the
Ljung-Box [18] Q2 statistics for all defense stock returns, we could conjecture that it
is suitable to estimate them by the GARCH family model.
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Fig. 2 Daily closing prices for defense stocks over the period October 24 2014 to May 5 2023

By dealing more commonly with volatility data with structural change, we employ
the adjusted GAHCH model embedded in an exogenous variable. A more flexible
volatility model specifies the exogenous variable separately into the intercept, lagged
squared residual, and lagged conditional variance term. The parameter estimation
results of the adjusted GARCH model are shown in Table 2. According to the sig-
nificance of parameter estimates and Ljung-Box [18] Q2 statistics, we could find out

7



Table 1 Descriptive Statistics

Mean SD Skewness Kurtosis Maximum Minimum Q2(10)

Before Defense Industry Development Act (October 24, 2014 to May 30, 2019)

AIDC 0.013 1.310 0.356 8.397 8.071 -10.104 315.94*
MTC -0.019 1.983 0.903 5.199 9.531 -9.132 259.06
NAFCO 0.058 2.166 0.682 5.616 9.531 -10.507 314.39*
CSBC -0.023 2.130 0.855 7.526 9.531 -10.495 234.57*
LE 0.086 1.994 0.087 3.507 9.518 -9.848 246.76*
TK 0.045 1.578 0.438 4.524 9.300 -8.038 293.02*

After Defense Industry Development Act (May 31, 2019 to May 5, 2023)

AIDC 0.067 1.648 0.588 8.252 9.500 -10.478 245.50*
MTC -0.057 2.170 0.654 5.293 9.531 -10.423 253.86*
NAFCO 0.030 2.405 0.455 4.423 9.531 -10.536 289.70*
CSBC 0.011 2.264 0.669 4.658 9.531 -10.447 305.47*
LE 0.077 2.477 -0.062 3.054 9.517 -10.536 276.38*
TK 0.049 2.394 0.298 2.509 9.476 -10.524 283.15*

Notes:
1This table reports the summary statistics for the logarithmic stock returns before and after the
introducing of the Defense Industry Development Act. The Ljung-Box [18] test for serial correlation
up to 10th order in the squared standardized residuals reports as Q2(10).
2Return is defined as 100×[log(pt)− log(pt−1)]. Significant at the 1% level is expressed as *.

the impacts of Defense Industry Development Act appear to affect all defense stock
volatilities. At first glance, adopting the adjusted GARCH model with a dummy vari-
able could approximately delineate the effects of Defense Industry Development Act.
However, it is intuitively to employ an endogenous deciding model, the ST-GARCH
model, to straightly catch the real date of volatility structural changes of Defense
Industry Development Act.

It is necessary to examine the parameter constancy by the LM test built by [10]
before estimating the ST-GARCH model. Firstly, we assume that the null model is the
conventional GARCH (1, 1) model. Then, we calculate the LM statistics for k = 1, 2,
and 3. Lastly, we make a list of the estimation results in Table 3. We show that the
parameter constancy is violated for all defense stocks. To put it another way, the regime
changes in the dynamic volatility pattern practically exist against the corresponding
GARCH (1, 1) model. In addition, we discover that the parameter, k = 2, reveals the
smallest p-value for AIDC, MTC, CSBC, LE, and TK, but the parameter, k = 1,
discloses the smallest p-value for NAFCO.

Table 4 expresses the estimated results of the ST-GARCH (1, 1) model. The param-
eter estimates of the GARCH (1, 1) model are also reported in Table 5 for the object of
contradistinction at the same time. According to the parameter estimates in Tables 4
and 5, we observe that the existence of serial correlation up to the 10th order in the
standardized residuals and residuals squared for both models exhibit almost negligi-
ble for all defense stocks. The estimation of volatility persistence of state 1 is stronger
than that of state 2 for all defense stock returns in Table 3. It shows that the event
of the Defense Industry Development Act diminishes the persistence of shocks in the

8



T
a
b
le

2
T
h
e
es
ti
m
a
ti
o
n
o
f
a
d
ju
st
ed

G
A
R
C
H

(1
,1

)
m
o
d
el

w
it
h
ex

o
g
en

o
u
s
v
a
ri
a
b
le
s

R
t
=

ε t
ε t

|Ω
t−

1
∼

N
(0
,h

t
)

h
t
=

α
0
+

α
1
ε2 t−

1
+

β
1
h
t−

1
+

D
t
(θ

0
+

θ 1
ε2 t−

1
+

θ 2
h
t−

1
)

α̂
0

α̂
1

β̂
1

θ̂ 0
θ̂ 1

θ̂ 2
Q
(1
0
)

Q
2
(1
0
)

L
o
g
L

A
ID

C
0
.0
3
1
*

0
.0
0
6
*

0
.9
1
5
*

0
.0
0
4

0
.0
9
1
*

-0
.0
6
2
*

7
.1
7
4

1
7
.5
0
0

-3
4
8
0
.8
5

[<
0
.0
0
1
]

[<
0
.0
0
1
]

[<
0
.0
0
1
]

[0
.6
1
9
]

[<
0
.0
0
1
]

[<
0
.0
0
1
]

[0
.7
0
9
]

[0
.0
6
4
]

M
T
C

0
.2
6
8
*

0
.0
9
7
*

0
.8
3
4
*

0
.1
2
3
*

0
.2
0
9
*

-0
.1
8
1
*

1
1
.0
2
6

3
.1
8
5

-4
2
1
7
.4
7
4

[<
0
.0
0
1
]

[<
0
.0
0
1
]

[<
0
.0
0
1
]

[0
.0
1
0
]

[<
0
.0
0
1
]

[<
0
.0
0
1
]

[0
.3
5
6
]

[0
.9
5
5
]

N
A
F
C
O

0
.0
2
0
*

0
.0
2
7
*

0
.9
6
9
*

0
.1
8
2
*

0
.0
4
8
*

-0
.0
8
2
*

1
7
.5
7
9

1
1
.0
8
0

-4
4
9
0
.1
4
5

[<
0
.0
0
1
]

[<
0
.0
0
1
]

[<
0
.0
0
1
]

[0
.0
1
0
]

[<
0
.0
0
1
]

[<
0
.0
0
1
]

[0
.0
6
2
]

[0
.3
5
1
]

C
S
B
C

0
.0
2
6
*

0
.0
9
5
*

0
.9
1
3
*

0
.0
9
0
*

0
.0
2
2

-0
.0
4
2
*

2
0
.4
0
0

2
4
.8
1
2

-4
1
9
0
.5
0
5

[<
0
.0
0
1
]

[<
0
.0
0
1
]

[<
0
.0
0
1
]

[0
.0
1
0
]

[0
.0
7
7
]

[<
0
.0
0
1
]

[0
.0
2
6
]

[0
.0
0
6
]

L
E

0
.1
2
2
*

0
.0
8
2
*

0
.8
8
7
*

0
.0
7
5
*

-0
.0
0
6

0
.0
0
3

1
8
.5
5
1

5
.4
7
2

-4
3
8
7
.8
0
8

[<
0
.0
0
1
]

[<
0
.0
0
1
]

¡<
0
.0
0
1
]

[0
.0
1
5
]

[0
.7
1
0
]

[0
.8
8
1
]

[0
.0
4
6
]

[0
.8
5
8
]

T
K

0
.1
2
5
*

0
.0
9
9
*

0
.8
4
7
*

0
.2
4
3
*

-0
.0
2
5

0
.0
1
6

9
.2
3
5

9
.9
6
9

-4
1
4
8
.3
4
2

[<
0
.0
0
1
]

[<
0
.0
0
1
]

[<
0
.0
0
1
]

[<
0
.0
0
1
]

[0
.1
9
3
]

[0
.4
7
1
]

[0
.5
1
0
]

[0
.4
4
3
]

N
o
te
s:

1
T
h
e
n
u
m
b
er

in
b
ra
ck
et
s
is

p
-v
a
lu
e.

*
d
en

o
te
s
si
g
n
ifi
ca

n
ce

a
t
th

e
5
%

le
v
el
.
N
o
rm

a
li
ty

te
st
s
a
re

b
a
se
d
o
n
th

e
B
er
a
-J
a
rq
u
e
st
a
ti
st
ic
s.

T
h
e
L
ju
n
g
-B

o
x
[1
8
]

te
st

fo
r
se
ri
a
l
co

rr
el
a
ti
o
n
u
p
to

th
e
1
0
th

o
rd

er
in

th
e
st
a
n
d
a
rd

iz
ed

re
si
d
u
a
ls

re
p
re
se
n
ts

a
s
Q
(1
0
),

a
n
d
th

e
L
ju
n
g
-B

o
x
[1
8
]
te
st

fo
r
se
ri
a
l
co

rr
el
a
ti
o
n
u
p

to
1
0
th

o
rd

er
in

th
e
sq
u
a
re
d
st
a
n
d
a
rd

iz
ed

re
si
d
u
a
ls

sh
o
w
s
a
s
Q

2
(1
0
).

2
B
ef
o
re

M
a
y
3
0
,
2
0
1
9
,
th

e
d
u
m
m
y
v
a
ri
a
b
le

D
t
is

0
.
A
ft
er

M
a
y
3
1
,
2
0
1
9
,
th

e
d
u
m
m
y
v
a
ri
a
b
le

D
t
is

1
.

9



Table 3 LM tests of parameters constancy for k = 1, 2, and 3

LM = T
(SSR0−SSR1)

SSR0

k

1 2 3

AIDC 14.074 24.642 25.926
[0.003] [< 0.001] [0.003]

MTC 1.658 9.838 11.522
[0.046] [0.132] [0.364]

NAFCO 1.528 3126 3.380
[0.676] [0.793] [0.959]

CSBC 1.658 9.838 11.522
[0.646] [0.132] [0.364]

LE 4.708 8.908 9.348
[0.195] [0.179] [0.449]

TK 17.531 22.858 24.450
[0.001] [0.001] [0.007]

Note: The number in brackets is p-value.

dynamic volatility process. In addition, we find that the estimated volatility persistent
rates for the GARCH model and the ST-GARCH model are distinct from each other.

The estimation of the smooth transition function, F (t), is graphed in Fig. 3. It is
obvious that the graphs of F (t) display U-shaped designs for AIDC, MTC, CSBC, LE,
and TK, but Z-shaped patterns for NAFCO. In the line of the model specification,
the upper state could be expressed as F (t) = 1, and the lower state as F (t) reaches its
minimum value. The minimum values of the estimated smooth transition function are
zero for all defense stocks. This article also takes the estimated location parameters,
ν1 and ν2, to measure the relatively objective structure change date for the volatil-
ity pattern, which is shown in Table 6. The responses of volatility structure break
for AIDC, NAFCO, CSBC, LE, and TK occurred before the episode of the Defense
Industry Development Act. However, the responses of volatility structure break for
MTC arose after the episode of the Defense Industry Development Act. The empirical
findings indicate that adopting a given and biased judgment in structure change time
in fitting the dynamic volatility pattern might receive inconsistent estimation results.

By the diagram of the time-varying unconditional volatility for all defense stocks in
Figure 4, we could definitely exhibit the shifting shape of the dynamic volatility pro-
cess. The dynamic unconditional volatilities for most defense stocks, including AIDC,
MTC, SCBC, LE, and TK change from a lower phase to a higher one, and then it
returns to a lower case. On the other hand, the unconditional volatilities for defense
stocks of NAFCO merely change from a lower state to a higher case. We infer that the
scenario of the Defense Industry Development Act raises the dynamic unconditional
volatility pattern during the sample period for all defense stocks.

In this section, the estimation of the ST-GARCH model also consists of some
beneficial meaning. First, the adjusted GARCH model with a dummy variable seems
reasonable for estimating the dynamic volatility process. However, hiring the ST-
GARCH model to fit dynamic volatility patterns can receive more actual estimates of
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Table 5 The estimation of GARCH (1, 1) model

Rt = εt
εt | Ωt−1 ∼ N(0, ht)

ht = α0 + α1ε2t−1 + β1ht−1

α̂0 α̂1 β̂0 Q(10) Q2(10) LogL Persistence

AIDC 0.042* 0.118* 0.873* 6.344 13.856 -3492.925 0.991
[< 0.001] [< 0.001] [< 0.001] [0.786] [0.180]

MTC 0.321* 0.177* 0.761* 11.811 3.244 -4238.744 0.938
[< 0.001] [< 0.001] [< 0.001] [0.298] [0.975]

NAFCO 0.179* 0.068* 0.898* 16.199 6.818 -4508.129 0.966
[< 0.001] [< 0.001] [< 0.001] [0.094] [0.799]

CSBC 0.070* 0.125* 0.875* 19.518 17.426 -4206.021 0.999
[< 0.001] [< 0.001] [< 0.001] [0.034] [0.864]

LE 0.149* 0.075* 0.893* 19.494 5.381 -4397.743 0.968
[< 0.001] [< 0.001] ¡< 0.001] [0.034] [0.864]

TK 0.082* 0.087* 0.894* 10.476 9.582 -4175.838 0.981
[< 0.001] [< 0.001] [< 0.001] [¡0.400] [0.478]

Notes: The number in brackets is p-value. * denotes significance at the 5% level. Normality tests are
based on the Bera-Jarque statistics. The Ljung-Box [18] test for serial correlation up to the 10th order
in the standardized residuals is expressed as Q(10), and the Ljung-Box [18] test for serial correlation
up to 10th order in the squared standardized residuals is represented as Q2(10). The persistence rate
is computed by the sum of short- and long-term effects.

Fig. 3 Estimated smooth transition functions for defense stocks
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Table 6 Estimated location parameters and corresponding calendar dates

Defense stock c1 Date c2 Date

AIDC 0.173 March 11, 2016 0.605 August 23, 2019
MTC 0.506 November 7, 2018 0.616 September 23, 2019
NAFCO 0.175 March 16, 2016
CSBC 0.347 August 1, 2017 0.653 January 10, 2020
LE 0.011 November 26, 2014 0.900 December 29, 2021
TK 0.171 March 4, 2016 0.435 April 13, 2018

the break time dating. Lastly, the impacts of the release of Defense Industry Develop-
ment Act really being and can alter the volatility structure of defense stocks. It also
means that this policy brings a variation on the volatility of defense industry corporate
performance.
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Fig. 4 Estimated unconditional variance under ST-GARCH model for defense stocks

4 Conclusions

In this article, we investigate how the shocks of the launch of Defense Industry Devel-
opment Act triggered structure change in the volatility process for all defense stocks.
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We employ the conventional GARCH model, the adjusted GARCH model with exoge-
nous threshold variable, and the ST-GARCH model to delineate the dynamic volatility
process, separately. The empirical results display statistically considerable volatility
regime break in defense corporations by the estimation of both adjusted GARCH and
ST-GARCH models. We further find that the volatility persistent rate computed from
the conventional GARCH (1, 1) model could involve a single and fixed value, as the
dynamic volatility conceals state changes. The case of Defense Industry Development
Act cuts down the volatility persistent rate for all defense stock returns. In addition,
the estimation of the adjusted GARCH model with an exogenous threshold variable
might simultaneously provide a biased state break date. Our investigation also illus-
trates that the dynamic volatility structure for most defense stocks embedded two
state change points through the LM test suggested by [10].

Furthermore, we apply the estimation of the ST-GARCH model to graph the time-
varying unconditional volatilities and to calculate the calendar day of switching time
for all defense stocks. The patterns of unconditional volatility for most defense stocks
(AIDC, MTC, SCBC, LE, and TK) show a similar inverted U-shaped. On the other
hand, the patterns of unconditional volatility for NAFCO display the inverted Z-
shaped. The empirical estimation shows that the dynamic volatility shifting dates are
earlier than the event of Defense Industry Development Act for most defense stocks
except MTC.
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