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Abstract

We propose new unit root tests using stationary instrumental variables in the framework
of the Dickey-Fuller (DF) regression. The most noteworthy feature of the suggested tests
is that they are free of nuisance parameters. Under the null hypothesis, the proposed test
statistic converges to the standard normal distribution regardless of various types of linear
deterministic trends or structural breaks in the time series.
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1. Introduction

The limiting distributions of the pioneering Dickey-Fuller [1] (DF) unit root tests are

non-standard. They are expressed as functionals of Brownian motions. The standard model

specifications involve a constant and/or a trend function in the testing regression. However,

we often need to allow for various types of deterministic terms. One popular example

includes the models with break dummy variables. It is well known that the DF test statistics

will depend on the location of breaks in the mean-shift or trend-shift terms. The location

poses a nuisance parameter, and things will become complicated in the presence of multiple
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breaks; as the number of breaks increases, it might become infeasible to obtain the relevant

critical values for all possible combinations of multiple breaks. That is, each of different

cases changes the DF distribution and requires simulating new critical values. The same

situation occurs when stationary covariates are added to the testing regression. The DF

tests depend on the nuisance parameter reflecting the contribution of stationary covariates,

and new critical values should be tabulated. Things become more complicated when we have

mixed cases. For example, consider the case where breaks occur in the data and stationary

covariates are added. In such case, obtaining the proper critical values would be difficult, if

not impossible.

Although it has been common to have non-standard distributions for unit root tests (also

cointegration tests) when we deal with non-stationary data and test the long-run parameters,

the source of the non-standard distributions is not necessarily non-stationarity of the data.

If different estimation strategies were employed, it would be possible to obtain the usual

results where the standard normal distribution or chi-square distribution are utilized in

testing on the long-run parameter when dealing with potentially non-stationary variables.

For example, So and Shin [2] suggest using an instrumental variable (IV) method using a

(nonlinear) sign function as an instrumental variable. Their IV statistics follow the standard

normal distribution. The suggested idea is intuitive and appealing. Phillips et al. [3]

extend the idea further and consider another types of nonlinear IV tests. These works are

enlightening and they demonstrate that it is possible to perform valid statistical inference

based on the standard distribution theory when testing for a unit root, if we use nonlinear

instruments.1

In this paper, we suggest new unit root tests that modify the conventional DF tests.

We employ stationary instrumental variables that can be defined from the Dickey-Fuller

type regression. We call these as DF-IV tests since we utilize IV estimation instead of OLS

estimation. We adopt the moment conditions that are naturally embodied in the DF testing

1Harris et al. [4] examine the sample autocovariance function E(ytyt−k) and its long-run variance esti-
mate. It is encouraging to find that the standardized statistic using these estimates has a standard normal
distribution. Their method relies on a nonparametric approach.
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regression. As we demonstrate, the asymptotic distributions of the new tests are standard

normal, regardless of different deterministic terms in the underlying model. Therefore, it is

possible to use a standard t-test in testing stationarity. What is even more appealing, our

tests have a standard normal distribution regardless of different deterministic terms (con-

stant, trend, or dummy variables). It is especially convenient when testing for a structural

breaks, because non-standard test statistics depend on a location of the break. Furthermore,

since the instruments are naturally given from the regressors in a linear model framework

rather than relying on nonlinear functions, they can be easily extended to more general

models, which might include the models with stationary covariates and even cointegration

models with breaks. In addition, our suggested IV tests do not require the additional recur-

sive procedure to achieve normality. Indeed, the underlying scheme to achieve normality is

different from other nonlinear IV tests.

It will be helpful to explain intuitively why the standard normal result will follow in

our IV tests. The moment conditions based on IV estimation are different from those

based on the Ordinary Least Squares (OLS) estimation. Suppose that we have the data

{yt : t = 1, 2, ..., T} which follows a pure stochastic AR(1) process. The conventional DF

unit root tests are essentially viewed as using the moment conditions E(yt−1∆yt) = 0,

t = 1, ..., T, under the null hypothesis, against E(yt−1∆yt) < 0 under the alternative hy-

pothesis. Various extensions of the existing unit root tests adopt similar moment conditions

when yt−1 is replaced with ỹt−1, where ỹt−1 is the residual from the regression of yt−1 on

certain deterministic terms. Traditional DF tests adopt the OLS method to utilize these

moment conditions. Although the moment E(yt−1∆yt) of the OLS based tests are natural

to implement, they result in non-standard distributions because moment conditions depend

on the non-stationary term yt−1 under the null hypothesis. Thus, the dependency of the

moment conditions on yt−1 are the source of the non-standard distributions in the usual

unit root tests. In contrast, the IV tests that we adopt in this paper are based on moment

condition E[(yt−1 − yt−1−m) ∆yt] = 0. We may wish to utilize the term yt−1− yt−1−m which

is a stationary process even when yt−1 is non-stationary. It is easy to see that the sample

moment
√
T
∑T

t=1(yt−1 − yt−1−m)∆yt converges to the normal distribution. Moreover, this
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outcome continues to hold when different deterministic terms are included in the model.

Testing can be undertaken with the usual t-tests from the IV estimation of the DF type

regression using yt−1 − yt−1−m as an instrument. Clearly, a standard normal distribution

is free of any nuisance parameters. The normality result also holds in various extended

models with breaks or stationary covariates which can lead to the dependency on the nui-

sance parameters otherwise. This is an important feature of the IV tests. Thus, we do not

need to simulate new critical values for the extended models. This feature can offer a great

flexibility in the applied research.

The remainder of the paper is organized as follows. In Section 2, we provide test statistics

and their relevant asymptotic results in three basic models and the model with structural

breaks. In Section 3, we examine the small sample performance of the tests via simulations.

Section 4 provides concluding remarks.

2. Stationary IV Test

Suppose we have data yt, for t = 1, 2, ..., T, generated as

yt = dt + xt, (1)

where dt is a deterministic component, and xt is a stochastic component of a time series.

Let xt component follow an autoregressive process

xt = φxt−1 + εt, (2)

where εt is the innovation term which is assumed to have zero mean and satisfy the following

assumption.

Assumption 1 {εt} is a martingale difference process satisfying

E(εt|εt−1,εt−2,...) = 0, and E(ε2t |εt−1,εt−2,...) = σ2, for t = 1, 2, ..., . with 0 < σ2 <∞.

Here, we can consider various models when the deterministic component dt is properly

defined with different types of deterministic functions. We assume that the initial value y0

is finite such that y0 = Op(1). However, we do not assume that y0 = 0, and it can take any
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large value. In general, the initial value is not a nuisance parameter under the null, but the

power of the corresponding tests can depend on this value. Combining (1) and (2), we have

(1− φL)yt = (1− φL)dt + εt, (3)

and the testing regression model is

∆yt = βyt−1 + (1− φ)dt + φ∆dt + εt, (4)

where β = φ − 1. Interest focus is on testing the null hypothesis β = 0 against the

alternative hypothesis β < 0. We let zt = (dt, ∆dt)
′. Note that the term ∆dt drops out

from the regression when dt is a function of a polynomial of t, but it remains in zt when

dt contains dummy variables to capture structural breaks. In this paper, we examine four

different models. In the simplest case, we consider a model with zero mean and no trend,

where dt = 0. Then we examine models with a non-zero mean and/or a linear trend. We

also consider models with structural breaks.

Model 1 : ∆yt = βyt−1 + εt (5)

Model 2 : ∆yt = βyt−1 + γ0 + εt (6)

Model 3 : ∆yt = βyt−1 + γ0 + γ1t+ εt (7)

Model 4 : ∆yt = βyt−1 + γ0 + γ1t+ γ2(t×Dt) + γ3∆Dt + εt. (8)

For Model 4, we assume that a break occurs between t = TB and TB + 1, and introduce

a dummy variable as

Dt =

0, t < TB

1, t ≥ TB + 1

(9)

Model 4 is a general model which allows for shifts in both level and trend. When γ2 = 0, we

have a crash model as a special case, which captures a shift in the mean. Here, ∆Dt = 1 for

t = TB+1, and zero otherwise. Note that ∆Dt should not be omitted in the above regression.

It is a one-point dummy variable whose effect can vanish asymptotically. However, if ∆Dt

is excluded in the above regression, the resulting test becomes invalid. Lee and Strazicich
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[5] and [6] note that some popular unit root tests can suffer from spurious rejections when

this term is excluded from the testing regression. One motivation to examine Model 4 is

to show the invariance result, implying that the distribution of the IV unit root test does

not depend on the nuisance parameter indicating the location of a break, λ = TB /T . This

result can be easily generalized to models with multiple structural breaks. This is a very

appealing feature of this test, since applied researchers do not need to simulate new critical

values for different types of structural breaks that can occur at different locations.

In this section, we consider the DF testing procedure using IV estimation. We express

the DF type regression model as

∆yt = βyt−1 + z′tγ + εt, t = 1, 2, ..., T, (10)

where we let zt = 0, [1], [1, t]′, and [1, t, Dt, tDt,∆Dt]
′ for Models 1, 2, 3 and 4, respectively. A

standard estimation procedure is to adopt the least squares method. It is well known that the

OLS estimator of β and the corresponding t-statistic will converge to a functional of Wiener

processes under the null hypothesis. Moreover, the asymptotic non-standard distribution

depends on the type of deterministic variables that are included in the regression. To utilize

instrumental variable estimation in regression (10), we define an instrumental variable for

the regressor yt−1 as

wt = yt−1 − yt−1−m, (11)

where m is a finite positive integer. Note that the instrumental variable wt is stationary.

Straightforward algebra shows that

β̂DF−IV =

T∑
t=1

wt∆yt −
T∑
t=1

wtz
′
t

(
T∑
t=1

ztz
′
t

)−1 T∑
t=1

zt∆yt

T∑
t=1

wtyt−1 −
T∑
t=1

wtz′t

(
T∑
t=1

ztz′t

)−1 T∑
t=1

ztyt−1

(12)
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and the corresponding t-statistic is given by

tDF−IV =

T∑
t=1

wt∆yt −
T∑
t=1

wtz
′
t

(
T∑
t=1

ztz
′
t

)−1 T∑
t=1

zt∆yt

σ̂

√
T∑
t=1

w2
t −

T∑
t=1

wtz′t

(
T∑
t=1

ztz′t

)−1 T∑
t=1

ztwt

(13)

where σ̂2 is a consistent estimator of the variance of the error terms in the model, σ2. It is

obtained by

σ̂2 =
1

T

T∑
t=1

(
∆yt − β̂yt−1 − ztγ̂

)2
.

The distribution of the IV statistic is described as follows.

Theorem 1. Under Assumption 1 and the null hypothesis, the limiting distribution of the

DF type IV statistic converges in distribution to

√
T β̂DF−IV

d→ W (1)

σ
(
1
2
{W (1)2 + 1}

) (14)

for Model 1. For Model 2, the limiting distribution is given as

√
T β̂DF−IV

d→ W (1)

σ
(

1
2
{W (1)2 + 1} −W (1)

∫ 1

0
W (r)dr

) . (15)

The limiting distribution for Model 3 is

√
T β̂DF−IV

d→ (16)

W (1)

σ

 [W (1)2 + 1]−W (1)
∫∞
0
W (r)dr + 3[

∫ 1

0
W (r)dr]2+

3W (1)
∫ 1

0
rW (r)dr − 6

∫ 1

0
W (r)dr

∫ 1

0
rW (r)dr

 .
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For Model 4, it follows that

√
T β̂DF−IV

d→ (17)

W (1)/σ

[W (1)2 + 1]−{
3W (λ)/λ2 + 6

(
λW (1)− λ

∫ 1

0
W (r)dr

)
/λ3
}∫ λ

0
rW (r)dr

+
{

2W (λ)/λ− 3
(
λW (1)− λ

∫ 1

0
W (r)dr

)
/λ2
}∫ λ

0
W (r)dr

+

 6
(

(1− λ)W (1)− (1− λ)
∫ 1

0
W (r)dr

)
/

(1− λ)3 − 3W (1− λ)/(1− λ)2

∫ 1

λ
rW (r)dr

+

 −
(

3(1− λ)W (1)− (1− λ)
∫ 1

0
W (r)dr

)
/

(1− λ)2 + 2W (1− λ)/(1− λ)

∫ 1

λ
W (r)dr



where W (·) denotes a standard Wiener process; and where the notation
d→ denotes con-

vergence in distribution, λ = limT→∞ TB/T, and W1(·) and W2(·) are independent Wiener

processes. Also, for all four models, the distribution of the corresponding t-statistic follows

tDF−IV
d→ W (1). (18)

Proof. See the Appendix

Therefore, it is clear that the limiting distribution of the t-statistic does not depend on

the parameters in the deterministic terms. Thus, the distribution is free of any nuisance

parameters. When structural breaks in the level or trend are allowed in the testing regres-

sion, the distribution is still standard normal and free of the nuisance parameter λ which

indicates the location of the break. The intuitive reason for normality is clear from the

expressions for the t-statistics in (13). The first term in the numerator of (13) is expressed

as the stationary moment condition,
√
T
∑T

t=1(yt−1 − yt−1−m)∆yt, which follows a normal

distribution. Note that the first term in the denominator in (13) is stationary. Moreover,

the second terms in the numerator and denominator in (13) are asymptotically degenerate.

The deterministic components in the models are relegated to these asymptotically negligible
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terms. As a consequence, the normality of the t-test is applied directly to all four models

and other extended models. However, we note that the distribution of the estimated coeffi-

cient, β̂DF−IV , does not converge to a normal distribution. They can be referred to as the

coefficient tests. It is shown that
√
T β̂DF−IV converges to functionals of Wiener processes.

This result is not surprising. Intuitively speaking, the source for the non-standard distribu-

tion for β̂DF−IV lies in the first term
∑T

t=1wtyt−1 in the denominator of (12), which is given

as a functional of a non-stationary term yt−1.

We note that the instrument wt is asymptotically uncorrelated with yt−1 under the null

hypothesis.2 On the other hand, under the alternative hypothesis the correlation coefficient

between wt and yt−1 is 1 − φm. This result essentially shows the consistency of the test.

Also, we note that if stationary covariates are used as regressors, their effects will be cap-

tured in the second terms of the numerator and the denominator in (13). The resulting

t-statistic will have a standard normal distribution and is free of nuisance parameters. This

property significantly differs from that of OLS based unit root tests using covariates, whose

distribution is a convex combination of the non-standard Dickey-Fuller distribution and the

standard normal distribution. Using stationary IV tests will achieve power without incur-

ring this nuisance parameter. Hansen [7] initially suggests that the usual unit root tests

can become more powerful if the information in related time series is utilized. He suggests

adding stationary variables, if available, to the unit root testing regression. The required

condition is that these added covariates are stationary and highly correlated with yt−1 but

not correlated with ∆yt. The question is whether such variables are readily available in

practical applications. However, if they are available we can also improve the power of our

IV tests.

In a more general case where the error terms are serially correlated, we can simply adopt

an augmented version of the Dickey-Fuller test to control for serial correlations. If we allow

p lagged terms of yt−1 in the regression, the instrumental variable needs to be adjusted to

wt = yt−1−yt−p−m. The asymptotic normality of test statistics in this case is rather obvious.

2In finite sample, wt is correlated with yt−1. The covariance between wt and yt−1 under the null is mσ2,
and the corresponding correlation coefficient converges to 0 as t increases.
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Although the asymptotic result is rather straightforward for any finite m, the size prop-

erty of the test in finite samples depends on the selected value of m. At the same time, a

moderately bigger value of m is necessary for obtaining desirable power properties of the

tests. While in theory any value of m can be used to achieve the asymptotic normality

result, it is desirable to choose the value of m properly to minimize finite sample biases.

In this paper, as a practical guide, we suggest using the value that minimizes the sum of

squared residuals.

Owing to the standard normal result, it is obvious that the asymptotic distribution is

free of any nuisance parameters in (5) – (8). In this paper, we illustrate this point by

examining the model with structural change, but our tests can be easily extended to other

settings including seasonality, cointegration and nonlinear models. Adding more regressors

in the testing regression may affect the size and power properties in finite samples, but the

normality result will still hold.

3. Simulations

In this section, we investigate the small sample properties of the DF-IV unit root tests

through Monte Carlo simulations. The data generating process (DGP) implies (1) and (2).

We note that all tests are invariant to the parameters γ in the corresponding DGP for which

we utilize dt = z′tγ. Thus, using γ = 0 or any values of γ in the DGP will not change the

simulation results when the corresponding expression of zt is used for each of the models.

We use pseudo-iid N(0,1) random numbers from the Gauss 15.0.10 RNDNS procedure. We

consider two different values for the error variance of the initial value with σ2 = 1 and

σ2 = 5, to see their effects on the power of the tests. All the simulation results are based on

10,000 replications. We use the asymptotic one-sided critical values of the standard normal

distribution at the 5% significance level; it is −1.645 in each case.

The instrumental variable wt is given in (11). We examine the effect of choosing the

value of m that minimizes the sum of squared residuals. We also use five different fixed

values of m = 1, 2, 3, 4, and 5. We do not examine Model 1, but consider three models,

Model 2, 3 and 4, as specified in (5) - (8). We refer to these models as drift, trend, and
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trend-shift. We use φ = 1 to calculate the empirical size, and φ = 0.9 to compute the power

of the tests. We experiment with cases of T = 50, 100, 300 and 1000. In the models with

level or trend shifts, we assume that the break occurs in the middle of the time period, such

that λ = 0.5.

In Table 1, we report the simulation results for the DF-IV tests. These results can

provide a practical guideline to select a value of m that gives the best possible correct size

for each of the tests. We notice that when T = 50, using m = 2 or 3 gives rejection rates

that are closer to the nominal sizes than using higher values of m for the model with drift.

For the models with trend, level-shift or trend-shift, m = 1 gives the lowest size distortions.

The tests tend to exhibit size distortions when a higher value of m is used. When T =

100, using m = 3 gives more or less correct sizes for the model with drift but m = 1 gives a

better size of the test for the model with trend, level-shift, or trend-shift. When T = 1000,

choosing m = 5 gives more or less correct sizes for the model with drift, but a lower value

of m is needed to warrant good size under the null. It is clear that the values of m that lead

to correct size increase as the sample size increases.

We now look at the power of the test. The results in Table 2 show that the power

increases as m increases. This occurs in all cases. Also, we note that the power increases

significantly when the error variance, σ2 increases, while the size of the tests is not affected

by σ2. This is a good feature of the DF type tests; on the contrary, the LM or DF-GLS

type tests have the shortcoming that they tend to lose power under the same situation.

4. Summary and Concluding Remarks

In this paper, we have developed new unit root tests using stationary instrumental vari-

ables. Our new unit root tests are based on the moments E[(yt−1 − yt−1−m) ∆yt]. In contrast,

most existing unit root tests are essentially based on the moment conditions E(yt−1∆yt) = 0.

Since these tests can be undertaken with the usual t-tests in the unit root regression using

yt−1−yt−1−mT
as an instrument, we call these tests as ‘stationary IV tests’. The asymptotic

distribution of our stationary IV statistics is standard normal under the null hypothesis

regardless of differing deterministic terms or detrending methods in the underlying model.
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As such, with our new testing procedures it is possible to perform valid statistical inference

based on the standard distribution theory when testing for a unit root. Also, we demon-

strated that the coefficient tests do not have the normal distribution as they depend on yt−1

under the null hypothesis.

This paper utilizes the DF type regression. However, it is possible to consider other

testing strategies using the Lagrange Multiplier (LM, Schmidt and Phillips [8]) or the DF-

GLS detrending methods (Elliott et al. [9]). Although the tests adopting such methods may

look more powerful than the DF version tests, the power comparison depends on whether

the initial value of a time series is large or not. When the initial value is large, these other

unit root tests lose power. Then, the DF version of the test is preferred in this situation.

Still, such tests can be desired in other situations, and they remain as future research topics.
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Tables

Table 1: Size of the test

T = 50 T = 100 T = 300 T = 1000

σ2 = 1 σ2 = 5 σ2 = 1 σ2 = 5 σ2 = 1 σ2 = 5 σ2 = 1 σ2 = 5

Model 2: With Drift

m = 1 0.023 0.022 0.013 0.014 0.009 0.010 0.007 0.005

m = 2 0.044 0.044 0.032 0.030 0.023 0.025 0.018 0.015

m = 3 0.060 0.058 0.046 0.043 0.033 0.032 0.025 0.022

m = 4 0.071 0.072 0.054 0.051 0.038 0.038 0.031 0.029

m = 5 0.082 0.082 0.060 0.060 0.043 0.046 0.035 0.034

Model 3: With Trend

m = 1 0.061 0.060 0.045 0.041 0.026 0.026 0.017 0.018

m = 2 0.106 0.104 0.076 0.076 0.047 0.048 0.033 0.035

m = 3 0.139 0.135 0.097 0.092 0.059 0.061 0.042 0.047

m = 4 0.162 0.162 0.118 0.113 0.071 0.072 0.051 0.053

m = 5 0.194 0.187 0.133 0.131 0.080 0.079 0.057 0.054

Model 4: With Trend Shift

m = 1 0.110 0.113 0.066 0.063 0.035 0.033 0.025 0.021

m = 2 0.212 0.208 0.112 0.113 0.060 0.054 0.040 0.043

m = 3 0.296 0.290 0.150 0.151 0.077 0.072 0.056 0.055

m = 4 0.376 0.372 0.189 0.190 0.091 0.090 0.058 0.059

m = 5 0.447 0.449 0.225 0.229 0.107 0.107 0.065 0.068
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Table 2: Power of the test

T = 50 T = 100 T = 300 T = 1000

σ2 = 1 σ2 = 5 σ2 = 1 σ2 = 5 σ2 = 1 σ2 = 5 σ2 = 1 σ2 = 5

Model 2: With Drift

m = 1 0.074 0.650 0.105 0.632 0.209 0.558 0.491 0.500

m = 2 0.119 0.663 0.165 0.655 0.327 0.594 0.733 0.592

m = 3 0.149 0.660 0.214 0.657 0.436 0.604 0.859 0.645

m = 4 0.181 0.651 0.246 0.648 0.514 0.609 0.930 0.675

m = 5 0.201 0.637 0.276 0.638 0.584 0.611 0.964 0.693

Model 3: With Trend

m = 1 0.101 0.384 0.119 0.517 0.224 0.518 0.489 0.485

m = 2 0.160 0.405 0.188 0.544 0.344 0.552 0.730 0.577

m = 3 0.197 0.396 0.245 0.548 0.439 0.569 0.857 0.628

m = 4 0.235 0.382 0.281 0.539 0.513 0.575 0.928 0.663

m = 5 0.273 0.359 0.312 0.521 0.588 0.574 0.962 0.680

Model 4: With Trend Shift

m = 1 0.157 0.308 0.142 0.456 0.215 0.501 0.482 0.468

m = 2 0.262 0.335 0.220 0.489 0.332 0.537 0.716 0.568

m = 3 0.353 0.342 0.287 0.490 0.428 0.555 0.852 0.619

m = 4 0.443 0.341 0.345 0.485 0.504 0.559 0.925 0.655

m = 5 0.517 0.343 0.390 0.478 0.575 0.558 0.961 0.673
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Appendix A.

Lemma 1: Define a partial sum process St =
t∑

j=1

εj, and ξt = εt−1 + ...+ εt−m, where m

is a finite positive integer. Under Assumption 1,

T−1
T∑
t=1

St−1εt
d→ 1

2
σ2
[
W (1)2 − 1

]
(A1)

T−3/2
T∑
t=1

St−1
d→ σ

∫ 1

0

W (r)dr (A2)

T−5/2
T∑
t=1

tSt−1
d→ σ

∫ 1

0

rW (r)dr (A3)

T−1
T∑
t=1

ξtSt−1
d→ 1

2
mσ2

[
W (1)2 + 1

]
(A4)

T−1/2
T∑
t=1

ξt
d→ mσW (1) (A5)

T−3/2
T∑
t=1

ξtt
d→ mσ

[
W (1)−

∫ 1

0

W (r)dr

]
(A6)

T−1/2
T∑
t=1

ξtεt
d→
√
mσ2W (1). (A7)

T−1
T∑
t=1

ξ2t
p→ mσ2 (A8)

Proof. See Hamilton [10] (Proposition 17.1, p.506) for (A1) - (A3). For (A4), note that

ξtSt−1 = ξt(St−1 − St−1−m + St−1−m) = ξt(ξt + St−1−m). T−1
T∑
t=1

ξ2t
p→ mσ2 by the strong law

of large numbers and T−1
T∑
t=1

ξtSt−1−m
d→ 1

2
mσ2 [W (1)2 − 1] from (A1). (A7) follows since

{ξtεt}∞1 is a martingale difference series with variance mσ4; see, for example, White [11]

(p.133). (A8) follows from the strong law of large numbers.
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Lemma 2: Let

AT =
T∑
t=1

wtyt−1 −
T∑
t=1

wtz
′
t

(
T∑
t=1

ztz
′
t

)−1 T∑
t=1

ztyt−1 (A9)

BT =
T∑
t=1

wt∆yt −
T∑
t=1

wtz
′
t

(
T∑
t=1

ztz
′
t

)−1 T∑
t=1

zt∆yt (A10)

CT =
T∑
t=1

w2
t −

T∑
t=1

wtz
′
t

(
T∑
t=1

ztz
′
t

)−1 T∑
t=1

ztwt (A11)

Under the null hypothesis and Assumption 1, T−1AT converges in distribution to

2mσ2
(
[W (1)2 + 1]

)
, (A12)

for Model 1, and

2mσ2

(
[W (1)2 + 1]− 1

2
W (1)

∫ 1

0

W (r)dr

)
, (A13)

for Model 2, respectively. T−1AT converges to

2mσ2

 [W (1)2 + 1]−W (1)
∫∞
0
W (r)dr + 3[

∫ 1

0
W (r)dr]2+

3W (1)
∫ 1

0
rW (r)dr − 6

∫ 1

0
W (r)dr

∫ 1

0
rW (r)dr

 , (A14)

for Model 3. For Model 4, it converges to

2mσ2



[W (1)2 + 1]−

3W (λ)/λ2 + 6

 λW (1)−

λ
∫ 1

0
W (r)dr

 /λ3

∫ λ0 rW (r)dr

+
{

2W (λ)/λ− 3
(
λW (1)− λ

∫ 1

0
W (r)dr

)
/λ2
}∫ λ

0
W (r)dr

+

 6
(

(1− λ)W (1)− (1− λ)
∫ 1

0
W (r)dr

)
/

(1− λ)3 − 3W (1− λ)/(1− λ)2

∫ 1

λ
rW (r)dr

+

 −
(

3(1− λ)W (1)− (1− λ)
∫ 1

0
W (r)dr

)
/

(1− λ)2 + 2W (1− λ)/(1− λ)

∫ 1

λ
W (r)dr


, (A15)

Also, for all four models,

T−1/2BT
d→
√
mσ2W (1), (A16)
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and

T−1CT
p→ mσ2. (A17)

Proof. Distribution of T−1AT

We consider projecting the matrix zt on wt in order to remove the effects of the deter-

ministic terms. We note that in Models 1, 2 and 3 for which no structural break is allowed

for, such projections will completely purge the deterministic components of wt. In Model

4, the projection does not remove the deterministic component completely. The problem

remains for the m−1 periods for t = TB+1, ..., TB+m−1. But, the remaining term appears

only for a finite time period, and the effect is ignorable asymptotically. We, therefore, have

under the null hypothesis

T−1AT = T−1
T∑
t=1

ξtSt−1 − T−1
T∑
t=1

ξtz
′
t

(
T∑
t=1

ztz
′
t

)−1 T∑
t=1

ztSt−1 + op(1) (A18)

where St−1 and ξt are defined in Lemma 1. For the first term, we have the result in (A4).

This is a case for Model 1. For the asymptotic distribution of Models 2 - 4, we note that the

distribution of the second term depends on zt. We need to examine each case separately.

We re-write the second term in (A18) as

−
T∑
t=1

DT ξtz
′
t

(
T∑
t=1

DT ztz
′
tDT

)−1
T−1

T∑
t=1

DT ztSt−1 + op(1) (A19)

where DT is defined as below.

Model 2: when zt = 1, we let DT = [T−1/2]. Then, it is easy to see from (A2) and

(A5) that

T−1
T∑
t=1

ξt

(
1

T

) T∑
t=1

St−1
d→ mσ2W (1)

∫ ∞
0

W (r)dr

Applying the above result and (A4) to (A18), we can obtain the desired result of (A13).

Model 3: when zt = [1, t], we let DT = diag[T−1/2, T−1/3]. It follows from (A2), (A3),

(A5), and (A6) that
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 T−1/2

T−3/2

 T∑
t=1

ξtz
′
t
d→

 mσW (1)

mσ
[
W (1)−

∫ 1

0
W (r)dr

]  (A20)

(
T∑
t=1

DT ztz
′
tDT

)−1
d→

 4 −6

−6 12


 T−3/2

T−5/2

( T∑
t=1

ztSt−1

)′
d→

 σ
∫ 1

0
W (r)dr

σ
∫ 1

0
rW (r)dr


Then, we obtain the result in (A14) by evaluating the matrix multiplication of the above

terms in (A20).

Model 4: when zt = [1, t, Dt, tDt,∆Dt], we drop ∆Dt for simplicity in deriving the

asymptotic distribution. Including ∆Dt in the regression has the effect of removing one

observation from the series, hence it should have no effects on the asymptotic distribu-

tion. Therefore, we have zt = [1, t, Dt, tDt]. We let z̈t = [Dt, Dtt,D2t, D2tt], where D2t ={
1, t ≤ TB
0, t ≥ TB + 1

. Note that the projection of zt has the same effect as the projection of z̈t. Then,

we consider DT = diag[T−1/2, T−1/3, T−1/2, T−1/3] to have
T∑
t=1

DT ξtz
′
t

(
T∑
t=1

DT ztz
′
tDT

)−1
T∑
t=1

DT ztSt−1DT =
T∑
t=1

ξtz̈
′
t

(
T∑
t=1

z̈tz̈
′
t

)−1 T∑
t=1

z̈tSt−1. But,
∑T

t=1 z̈tz̈
′
t is block diagonal. It is

straightforward to see that

(
T∑
t=1

DT z̈tz̈
′
tDT

)−1
=


4λ−1 −6λ−2 0 0

−6λ−2 126λ−3 0 0

0 0 4(1− λ)−1 −6(1− λ)−2

0 0 −6(1− λ)−2 12(1− λ)−3

 . (A21)
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and

DT

T∑
t=1

ξtz̈
′
t
d→ (A22)

mσW (λ)

mσ
[
λW (1)− λ

∫ 1

0
W (r)dr

]
mσW (1− λ)

mσ
[
(1− λ)W (1− λ)− (1− λ)

∫ 1

0
W (r)dr

]



T−1DT

(
T∑
t=1

z̈tSt−1

)′
d→


σ
∫ λ
0
W (r)dr

σ
∫ λ
0
rW (r)dr

σ
∫ 1

λ
W (r)dr

σ
∫ 1

λ
rW (r)dr


Applying (A4) and the above results to (A18), we obtain the desired result of (A15).

Distribution of T−1/2BT

We have under the null hypothesis

T−1/2BT = T−1/2
T∑
t=1

ξtεt − T−1/2
T∑
t=1

ξtz
′
t

(
T∑
t=1

ztz
′
t

)−1 T∑
t=1

ztεt + op(1) (A23)

The result follows for the first term using (A7). The second term is ignorable asymptotically

since T−1/2
T∑
t=1

ξtz
′
t

(
T∑
t=1

ztz
′
t

)−1 T∑
t=1

ztεt = Op(T
−1/2).

Distribution of T−1CT

We have under the null hypothesis

T−1CT = T−1
T∑
t=1

ξ2t − T−1
T∑
t=1

ξtz
′
t

(
T∑
t=1

ztz
′
t

)−1 T∑
t=1

ztξt + op(1). (A24)

The result follows from (A8), noticing that the second term on the right hand side is negli-

gible since T−1
T∑
t=1

ξtz
′
t

(
T∑
t=1

ztz
′
t

)−1 T∑
t=1

ztξt = Op(T
−1).
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Proof of Theorem 1: Note
√
T β̂DF−IV =

T−1/2BT

T−1AT
, (A25)

where AT and BT are defined in (A9) and (A10) of Lemma 2. Apply the results for

T−1AT in (A12), (A13) and (A14) for Models 1,2 and 3, respectively, and the result

in (A23) for T−1/2BT . Proof is complete from continuous mapping theorem.

We have

tDF−IV =
BT

σ̂
√
CT

d→
√
mσ2W (1)

σ
√
mσ2

= W (1) (A26)

where CT is defined in (A11). Apply the results for T−1AT in (A12), (A13) and (A14)

for Models 1,2 and 3, respectively, and the result in (A24) for T−1/2CT . Proof is com-

plete from continuous mapping theorem.
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