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TCHARIE Kokou‡

University of Lomé - Togo
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Abstract
The aims of this paper are to prove the existence, uniqueness and continuous depen-

dence upon the data of solution of following intogro-differential hyperbolique equation
with purely integral conditions.

∂2u

∂t2
− a

∂2u

∂x2
− c

∂u

∂x
+ αu(x, t) =

∫ t
0

ϑ(t− s)u(x, s)ds, 0 < x < `, 0 < t ≤ T

u(x, 0) = φ(x), 0 < x < `

∂u

∂t
(x, 0) = χ(x), 0 < x < `,

∫ `
0

u(x, t)dx = E(t), 0 < t ≤ T,

∫ `
0

xu(x, t)dx = G(t), 0 < t ≤ T,
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The proofs are based on a priori estimates and Laplace transform method. We present a
numerical approximate solution to integro-differential equation with integral conditions. A
Laplace transform method is described for the solution of considered equation. Following
Laplace transform of the original problem, an appropriate method of solving differential
equations is used to solve the resultat time-independent modified equation and solution is
inverted numerically back into the time domain. Numerical results are provided to show
the accuracy of the proposed method.

1 Introduction

In this paper, we deal with a class of hyperbolic integro-differential equation with purely non-
local conditions. The precise statement of the problem is a follows : let ` > 0, T > 0, and
Ω = {(x, t) ∈ R2 : 0 < x < `, 0 < t < T }. We shall determine a solution u, in Ω of the
differential equation

∂2u

∂t2
− a

∂2u

∂x2
− c

∂u

∂x
+ αu(x, t) =

∫ t
0

ϑ(t− s)u(x, s)ds, 0 < x < `, 0 < t ≤, T (1.1)

satisfying the initial conditions

u(x, 0) = φ(x), 0 < x < `, (1.2)

∂u

∂t
(x, 0) = χ(x), 0 < x < `, (1.3)

and the integral conditions ∫ `
0

u(x, t)dx = E(t), 0 < t ≤ T, (1.4)

∫ `
0

xu(x, t)dx = G(t), 0 < t ≤ T, (1.5)

where ϑ, ξ, φ, E, G are known functions, `, T and a are pasitive constants, and α, c are the
reals.

Assumption 1.1
For all x, t) ∈ Ω, we assume that

ϑ0 ≤ ϑ(x, t) ≤ ϑ1, ϑ0 > 0, ϑ1. > 0

φis continuously derivate on(0, `).

The notion of nonlocal condition has been introduced to extend the study of the classical
initial value problems and it is more precise for describing nature phenomena than the classical
condition since more information is taken into account, thereby decreasing the negative effects
incurred by a possibly erroneous single measurement taken at the initial value. The inportance
of nonlocal conditions in many applications is discussed in [10], [16] .
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Mathematical modelling by evolution problems with a nonlocal constraint of the form
1

1− `

∫ 1
`

u(x, t)dx = ζ(t)

is encountered in heat transmission theory, thermoelasticity, chemical engineering, underground
water flow, and plasma physic.

Many methods were used to investigate the existence and uniqueness of the solution of
mixed problems which combine classical and integral conditions. J. R. Cannon [5] used the
potentiel method, combining a Dirichlet and an intégral condition for a parabolic equation. L.
A. Mouravey and V. Philinovoski [9] used the maximum principle, combining a Neumann
and an integral condition for heat equation. M.Z DJIBIBE and K. TCHARIE [13], Ionkin
[6] and L. Bougoffa[4] used the Fourier method for same purpose.
Recently, mixed problems with integral conditions for generalization of equation (1.1) have been
treated using the energy-integral method. See M. Z DJIBIBE and K. TCHARIE [11] , M.Z
DJIBIBE and K. TCHARIE [12], M. Z. Djibibe el al. [14],[15], N. I. Yurchuk[16],[17], M.
Mesloub, A. Bouziani and N. Kechkar[8]. Differently to these works, in the present paper
we combine a priori estimate and Fourier’s method to prove existence and uniqueness solution
of the problem (1.1)- (1.5).
The results obtained in this paper generalize the results of [1], and constitute a new contribu-
tion to this emerging field of research

It can be a part in the contribution of the development of a priori estimates an Laplace
methods for solving such problems.

The questions related to these problems are so miscellaneous that the elaboration of a gen-
eral theory is still premature. Therefore, the investigationof these problems requires at every
time a separate study.

The remainder of the paper is organized as follows. After this introduction, in section 2, we
present some preliminaries and basic lemmas. Then in Section 3, we establish a priori estimate.
Finally, in section 4, we prove existence solution.

2 Prelimimaries

We transform the problem (1.1)-(1.5) with nonhomogeneous boundary conditions (1.4) and
(1.5) into a problem with homogeneous boundary conditions. For this, we introduce a new
unknow function defined by u(x, y) = v(x, t) +w(x, t), where

w(x, t) =
2`− 4x

`4
E(t) +

4x− 2`

`4
G(t) =

4x− 2`

`4
(G(t) − E(t)).

3



Then, problem becomes :

∂2v

∂t2
− a

∂2v

∂x2
− c

∂v

∂x
+ αv(x, t) = f(x, t), 0 < x < `, 0 < t ≤ T, (2.1)

v(x, 0) = ϕ(x), 0 < x < ` (2.2)

∂v

∂t
(x, 0) = ψ(x), 0 < x < `, (2.3)

∫ `
0

v(x, t)dx = 0, 0 < t ≤ T, (2.4)

∫ `
0

xv(x, t)dx = 0, 0 < t ≤ T, (2.5)

where

ϕ(x) = φ(x) −
4x− 2`

`4
(G(0) − E(0))

ψ(x) = χ(x) −
4x− 2`

`4
(G′(0) − E′(0))

f(x, t) =

∫ t
0

ϑ(t− s)u(x, s)ds−
2(2x− `)

`4
(G′′(t) − E′′(t)) −

2(2αx− α`− 2c

`4
(G(t) − E(t))

Instead of searching for the function u, we search for the function v. So the solution of problem
(1.1), (1.2), (1.3), (1.4) and (1.5) will be given by u(x, t) = v(x, t) +w(x, t).

Lemma 2.1 (Gronwall)
Let x(t) ≥ 0, h(t), y(t) the integrables fonctions on [a;b]. If

y(t) ≤ h(t) +
∫ t
a

x(τ)y(τ)dτ, ∀t ∈ [a;b]

then

y(t) ≤ h(t) +
∫ t
a

h(τ)x(τ) exp(

∫ t
τ

x(s)ds)dτ, ∀t ∈ [a;b].

In particular, if x(t) ≡ c is invariable fonction and h(t) is an increasing fonction, then

y(t) ≤ h(t)ec(t−a),∀t ∈ [a;b].
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3 Uniqueness and Continuous Dependence of the solu-

tion
Theorem 3.1
If v(x, t) is a solution of problem (1.1), (1.2), (1.3), (1.4) and (1.5), then we have a priori
estimates

sup
0≤t≤T

∫ `
0

(
J2x

(
∂u(x, τ)

∂t

)
+ J2xudx+ u

2

)
dx ≤ A

(∫ `
0

ϕ2(x)dx+

∫ `
0

J2xψ(x)dx+

∫ `
0

J2xϕ(x)dx

)
(3.1)

Proof

Appying Jx to (1.1), Multiplying with Jx
∂u

∂t
and integrating the results obtained over Ωτ =

(0, `)× (0, τ). Observe that∫ `
0

∫ τ
0

Jx

(
∂2v

∂t2

)
Jx

(
∂v

∂t

)
dtdx− a

∫ `
0

∫ τ
0

Jx

(
∂2v

∂x2

)
Jx

(
∂v

∂t

)
dtdx

−c

∫ `
0

∫ τ
0

Jx

(
∂v

∂x

)
Jx

(
∂v

∂t

)
dtdx+ α

∫ `
0

∫ τ
0

Jxv(x, t)Jx

(
∂v

∂t

)
dtdx

=

∫ `
0

∫ τ
0

Jx

(∫ t
0

ϑ(t− s)u(x, s)ds

)
Jx

(
∂v

∂t

)
dtdx, (3.2)

where Jx(u(x, t) =

∫ x
0

u(ξ, t)dξ. Successive intrgration by parts of integrals on the left-hand of

(3.2) are straight-foward but somewhat tedious. We give only their results.

1

2

∫ `
0

J2x

(
∂u(x, τ)

∂t

)
dx−

1

2

∫ `
0

J2xψ(x)dx+
α

2

∫ `
0

J2xudx−
α

2

∫ `
0

J2xϕ(x)dx+
a

2

∫ `
0

u2 dx

−
a

2

∫ `
0

ϕ2(x)dx =

∫ `
0

∫ τ
0

Jx

(∫ t
0

ϑ(t− s)u(x, s)ds

)
Jx

(
∂v

∂t

)
dtdx+ a

∫
Ωτ

u(`, t)
∂u

∂t
dxdt

+ c

∫
Ωτ

uJx

(
∂u

∂t

)
dxdt−

∫
Ωτ

(
a
∂u

∂x
(0, t) + u(0, t)

)
Jx

(
∂u

∂t

)
dxdt. (3.3)

By the Cauchy inequality,∫ `
0

∫ τ
0

Jx

(∫ t
0

ϑ(t− s)u(x, s)ds

)
Jx

(
∂v

∂t

)
dtdx ≤ Tϑ0

2

∫
ΩT

J2xudxdt

+
ϑ0T

2

∫ T
0

∫ `
0

J2x

(
∂u

∂t

)
dxdτ, (3.4)∫

Ωτ

u(`, t)
∂u

∂t
dxdt ≤ 1

2

∫
ΩT

u2 dxdt+
1

2

∫
ΩT

J2x

(
∂u

∂t

)
dxdt, (3.5)∫

Ωτ

uJx

(
∂u

∂t

)
dxdt ≤ 1

2

∫
ΩT

u2 dxdt+
1

2

∫
ΩT

J2x

(
∂u

∂t

)
dxdt. (3.6)
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Substuting (3.6) into (3.5), yields

1

2

∫ `
0

J2x

(
∂u(x, τ)

∂t

)
dx+

α

2

∫ `
0

J2xudx+
a

2

∫ `
0

u2 dx =
a

2

∫ `
0

ϕ2(x)dx+
1

2

∫ `
0

J2xψ(x)dx

+
α

2

∫ `
0

J2xϕ(x)dx+
ϑ0T + |c|+ 1

2

∫
ΩT

J2x

(
∂u

∂t

)
dxdτ+

Tϑ0

2

∫
ΩT

J2xudxdt

+
|a|+ Tϑ0 + |c|

2

∫
ΩT

u2 dxdt. (3.7)

The right-hand side of (3.7) is independent of τ, hence, replacing the left-hand side by the
upper bound with respect to τ and by Gronwall Lemma, we get

sup
0≤τ≤T

∫ `
0

(
J2x

(
∂u(x, τ)

∂t

)
+ J2xudx+ u

2

)
dx ≤ eλT

(∫ `
0

ϕ2(x)dx+

∫ `
0

J2xψ(x)dx+

∫ `
0

J2xϕ(x)dx

)
,

(3.8)

where

λ =

max

(
1

2
,
α

2
,
Tϑ0 + |c|+ 1

2
,
Tϑ0 + |a|+ |c|

2

)
min

(
1

2
,
α

2
,
a

2

) .

From (3.8), we obtain the priori estimates (3.1). This complete the proof of Theoreme (3.1),
with A = eλT

Consequence 3.1
If problem (1.1), (1.2), (1.3), (1.4) and (1.5) has a solution, then this solution is unique and
depends continuously on (ϕ, ψ).

4 Existence of the Solution

Laplace transform is widely used in the area of engineering technology and mathematical sci-
ence. There are many problems whose solution may be found in terms of the Laplace. In fact,
it is an efficient method for solving many diffential equations and partial differential equation.
The mains difficult of the method of Laplace domain into the real domain.
Hence in this section, we apply the technique of the Laplace transform to find solutions of the
problem (1.1)-(1.5).

Suppose that v(x, t) is défined and is of the exponential order for t ≥ 0, there exists
λ > 0, β > 0 and t0 > 0 such that |v(x, t)| ≤ λeβt for t ≥ t0. Then the Laplace transform
V(x, s) includind the function v(x, t) is defined by

V(x, s) =

∫+∞
0

v(x, t)e−st dt, (4.1)

where s is know as a Laplace variable and V is a function in the Laplace domain.
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Applying the Laplace transform on both sides of (3.4), we obtain∫+∞
0

∂2v

∂t2
e−st dt−a

∫+∞
0

∂2v

∂x2
e−st dt− c

∫+∞
0

∂v

∂x
e−st dt+

+α

∫+∞
0

v(x, t)e−st dt =

∫+∞
0

∫ t
0

ϑ(t− s)v(x, s)dsdt. (4.2)

The standard integration by parts of the terms on the left-hand of (4.2), leads∫+∞
0

∂2v

∂t2
e−st dt = −ψ(x) − sϕ(x) + s2V(x, s), (4.3)

∫+∞
0

∂2v

∂x2
e−st dt =

d2V(x, s)

dx2
, (4.4)

∫+∞
0

∂v

∂x
e−st dt =

dV(x, s)

dx
. (4.5)

Substuting (4.3), (4.4) and (4.5) into (4.2), we get

−a
d2V(x, s)

dx2
− c

dV(x, s)

dx
+ (α+ s2)V(x, s) = f(x, s) +ψ(x) + sϕ(x), (4.6)

where f(x, s) =

∫+∞
0

∫ t
0

ϑ(t− s)v(x, s)dsdt.

Similarly, we have ∫ `
0

V(x, s)dx = 0, (4.7)

∫ `
0

xV(x, s)dx = 0. (4.8)

Now, we distinguish the following cas :

I Case 1 : If c2 + 4aα+ 4as2 = 0.

I Case 2 : If c2 + 4aα+ 4as2 > 0.

I Case 3 : If c2 + 4aα+ 4as2 < 0.

In this article, we only deal Case 1 and Case 2

For Case 1, that is c2 + 4aα+ 4as2 = 0, the solution general of (4.8) is given by

V(x, s) = (C1(s)x+ C2(s))e
− c
2a
x −

1

a

∫ x
0

(x− τ)(f(τ, s) +ψ(τ) + sϕ(τ))e
c
2a
τ dτ. (4.9)
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Putting the intagral conditions (4.7) and (4.8) in (4.9), we get(
2−

(
1+

c`

2a
e

−c`
2a

))
C1(s) +

c

2a

(
1− e−

c
2a

)
C2(s)

= 2

∫ `
0

∫ x
0

(x− y)(f(τ, s) +ψ(τ) + sϕ(τ))e
c
2a
τ dτdx,

4a2 + (c2`2 − 4ac`− 4a1))C1(s) + (2a− (2a+ `c))C2(s)

= 4a2
∫ `
0

∫ x
0

x(x− τ)(f(τ, s) +ψ(τ) + sϕ(τ))e
c
2a
τ dτdx

For Case 1, that is c2 + 4aα + 4as2 > 0, Using the method of variation of parameter, to
solve (4.8), we have the general solution as

V(x, s) = C1(s)exp

(
−
c−

√
c2 + 4a(α+ s2)

2a
x

)
+ C2(s)exp

(
−
c+

√
c2 + 4a(α+ s2)

2a
x

)

−
2√

c2 + 4a(α+ s2)

∫ x
0

(f(τ, s) +ψ(τ) + sϕ(τ)] e−
c(x−τ)
2a sinh

(√
c2 + 4a(α+ s2)

2a
(x− τ)

)
dτ,

(4.10)

where C1 et C2 are arbitrary functions of s.

Substuting (4.10) into (4.7) and (4.8), we have

C1(s)

∫ `
0

exp

(
−
c−

√
c2 + 4a(α+ s2)

2a
x

)
dx+ C2(s)

∫ `
0

exp

(
−
c+

√
c2 + 4a(α+ s2)

2a
x

)
dx

=
2√

c2 + 4a(α+ s2)

∫ `
0

∫ x
0

(f(τ, s) +ψ(τ) + sϕ(τ)] e−
c(x−τ)
2a sinh

(√
c2 + 4a(α+ s2)

2a
(x− τ)

)
dτdx,

(4.11)

C1(s)

∫ `
0

xexp

(
−
c−

√
c2 + 4a(α+ s2)

2a
x

)
dx+ C2(s)

∫ `
0

xexp

(
−
c+

√
c2 + 4a(α+ s2)

2a
x

)
dx

=
2√

c2 + 4a(α+ s2)

∫ `
0

∫ x
0

x (f(τ, s) +ψ(τ) + sϕ(τ)] e−
c(x−τ)
2a sinh

(√
c2 + 4a(α+ s2)

2a
(x− τ)

)
dτdx,

(4.12)

where (
C1(s)
C2(s)

)
=

(
a11(s) a12(s)
a21(s) a22(s)

)−1

×
(
b1(s)
b2(s)

)
, (4.13)
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and 

a11(s) =

∫ `
0

exp

(
−
c−

√
c2 + 4a(α+ s2)

2a
x

)
dx

a12(s) =

∫ `
0

exp

(
−
c+

√
c2 + 4a(α+ s2)

2a
x

)
dx

a21(s) =

∫ `
0

xexp

(
−
c−

√
c2 + 4a(α+ s2)

2a
x

)
dx

a22(s) =

∫ `
0

xexp

(
−
c+

√
c2 + 4a(α+ s2)

2a
x

)
dx

b1(s) = −
a√

c2 + 4a(α+ s2)

∫ `
0

∫ x
0

(f(τ, s) +ψ(τ) + sϕ(τ)] e−
c(x−τ)
2a

× sinh

(√
c2 + 4a(α+ s2)

2a
(x− τ)

)
dτdx,

b2(s) = −
a√

c2 + 4a(α+ s2)

∫ `
0

∫ x
0

x (f(τ, s) +ψ(τ) + sϕ(τ)] e−
c(x−τ)
2a

× sinh

(√
c2 + 4a(α+ s2)

2a
(x− τ)

)
dτdx.

(4.14)

If it is not possible to calculate the integral directly, then we calculate tem numerically. If the
Laplace inversion is possibly computed directly for (4.10) and (4.14), we obtain our solution
explicitly. Otherwise, we use the suitable approximate method, then we use the numerical
inversion of the Laplace transform. We have
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a11(s) =

∫ `
0

exp

(
−
c−

√
c2 + 4a(α+ s2)

2a
x

)
dx

=
1

2

n∑
i=1

kiexp

(
−
c−

√
c2 + 4a(α+ s2)

2a
(xi + 1)

)

a12(s) =

∫ `
0

exp

(
−
c+

√
c2 + 4a(α+ s2)

2a
x

)
dx

=
1

2

n∑
i=1

kiexp

(
−
c+

√
c2 + 4a(α+ s2)

2a
(xi + 1)

)

a21(s) =

∫ `
0

xexp

(
−
c−

√
c2 + 4a(α+ s2)

2a
x

)
dx (4.15)

=
1

4

n∑
i=1

ki(xi + 1)exp

(
−
c−

√
c2 + 4a(α+ s2)

2a
(xi + 1)

)

a22(s) =

∫ `
0

xexp

(
−
c+

√
c2 + 4a(α+ s2)

2a
x

)
dx

=
1

4

n∑
i=1

ki(xi + 1)exp

(
−
c+

√
c2 + 4a(α+ s2)

2a
(xi + 1)

)

b1(s) = −
a√

c2 + 4a(α+ s2)

∫ `
0

∫ x
0

(f(τ, s) +ψ(τ) + sϕ(τ)] e−
c(x−τ)
2a

× sinh

(√
c2 + 4a(α+ s2)

2a
(x− τ)

)
dτdx,

=−
a

4
√
c2 + 4a(α+ s2)

n∑
i=1

ki

[
f

(
1

2
(xi + 1), s

)
+ψ

(
1

2
(xi + 1

)
+ sϕ

(
1

2
(xi + 1

)]
×
(
1− (

1

2
(xi + 1)

)
exp

(
−
c

2a

[(
1−

1

2
(xi + 1)

)
xj +

(
1+

1

2
(xi + 1)

)])
×

n∑
j=1

sinh

(√
c2 + 4a(α+ s2)

2a

[
1

2

[(
1−

1

2
(xi + 1)

)
xj +

(
1+

1

2
(xi + 1)

)]
−
1

2
(xi + 1)

])

b2(s) = −
a√

c2 + 4a(α+ s2)

∫ `
0

∫ x
0

x (f(τ, s) +ψ(τ) + sϕ(τ)] e−
c(x−τ)
2a

× sinh

(√
c2 + 4a(α+ s2)

2a
(x− τ)

)
dτdx
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b2(s) = −
a

4
√
c2 + 4a(α+ s2)

n∑
i=1

ki

[
f

(
1

2
(xi + 1), s

)
+ψ

(
1

2
(xi + 1

)
+ sϕ

(
1

2
(xi + 1

)]
×
(
1− (

1

2
(xi + 1)

)(
1

2

[(
1−

1

2
(xi + 1)

)
xj +

(
1+

1

2
(xi + 1)

)])
× exp

(
−
c

2a

[(
1−

1

2
(xi + 1)

)
xj +

(
1+

1

2
(xi + 1)

)])
×

n∑
j=1

sinh

(√
c2 + 4a(α+ s2)

2a

[
1

2

[(
1−

1

2
(xi + 1)

)
xj +

(
1+

1

2
(xi + 1)

)]
−
1

2
(xi + 1)

])
(4.16)

where xi and ki are the abscissa and weights, defined as

xi : ith zero of Pn(x), ki =
2

(1− x2i )(P
′(x))2

Thier tabulated values can be found in [7] for different values of N.
Using Stehfest’s algorithm, the time domain solution is approximated as

u(x, t) ' ln 2

t

n∑
k=1

min(k,n)∑
i=

k+ 1
2


in(2i)!(−1)k+n

(n− i)!i!(i− 1)!(k− i)!(2i− k)!
(4.17)
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