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ABSTRACT

In many applications, the solution of a cubic equation is required. This study improves on the existing methods of solving cubic equations. The general expression for the quadratic factor of a cubic equation is derived. The value assumed by the discriminant 
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adopted in this study is shown to depend on the nature of the root of a given cubic equation. For a cubic equation to have three distinct real roots,
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if the equation has either two equal real roots or three equal real roots. A required and sufficient condition for a cubic equation to have three equal real roots is shown to be 
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. It is also established that a cubic equation has two equal real roots if 
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. The solution of a cubic equation with three equal real roots is found using a method that depends on the corresponding reduced cubic equation.   
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1.1
Introduction

Cubic equation is a special type of polynomial equations that is used in many fields of study. For example, Biney et al (1986) used a cubic equation to predict surface tension and spinodal limits. Characteristic equations emerging from moving average process of order three and autoregressive process of order three are all cubic equations (Box et al, 1994; Chatfield, 1995) . Thus, any attempt to determine if a given moving average process of order three is invertible requires the solution of the cubic characteristic equation. Similarly, we need to solve the characteristic equation associated with an autoregressive model of order three in order to determine if it is stationary or not. Let 
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(1.1) 
A good number of methods of solving cubic equations have been discussed in the literature. Some of these methods are based on a reduced cubic equations formed by making the substitution 
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 (Hahn, 2005; Bessels, 2006).This substitution leads to the following cubic equation
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(1.2) 

Munkundan (2010) provided the solution of cubic equations in form of (1.2). Notably, his method appears not to be suitable when 
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          If we divide (1.1) by 
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, we obtain
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(1.3)

Formulae for finding the roots of cubic equations usually depend on what value the discriminant takes. Folowing (Adewumi, 2014), the discriminant for determining the nature of the roots of (1.3) takes the form
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Where
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Dickson  (1914) pointed out that 
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 can be positive, negative or zero. In the following section, we give the formulae for obtaining the roots of cubic equations based on the corresponding values of the discriminants.
2.0
Finding the roots of cubic equations



As noted earlier, the nature of the roots of a cubic equation depends on whether the associated discriminant is positive, negative or zero. Three cases are discussed in this section. 

2.1
Root of a cubic equation when 
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Let , 
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 denote the roots of a cubic equation. If 
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 , then the cubic equation has three real roots such that (Adewumi, 2014)
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Note that 
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 is measured in radians and 
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Theorem 1: Let 
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Proof

Since 
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We are therefore required to show that  
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By long division approach, 
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It is easily seen that 
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Theorem 2: If
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                                                        ( 2.4)
Proof


According to theorem 1, the quadratic factor of 
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Example 2.1

Consider the cubic equation 
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It is therefore certain that the equation above has three distinct roots. These roots are given by 
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Alternatively, we may consider one of the roots say 
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and use theorem 2 to find other two roots.

Consequently,
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The procedure above can equally be used to find the roots of cubic equations that have two equal real roots as shown in Example 2.3.

2.2
Root of a cubic equation when 
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For 
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, the cubic equation has only one real root given by (Penn State University)
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Here, 
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and
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Theorem 2 may help us to find the accompanying complex roots of cubic equations when  
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Example 2.21
If 
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It is then obvious that the cubic equation has only one real root. For this root, we have 
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Consequently,
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2.3
Obtaining the roots of a cubic equation when 
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In this section, we discuss the two cases for which 
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. These are when the equation has two equal real roots and when the equation has three equal real roots.
Theorem 3: If a cubic equation has two equal real roots, then 
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Let  the roots of the equation be 
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Accordingly, 
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Therefore,
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 It is easily seen that 
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Example 2.3

Given that 
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 These roots are as follows
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With 
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From the foregoing, it is obvious that not much emphasis has been laid on finding the solution of a cubic equation which has three equal roots. First, we  show that  
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Theorem 3: A required and sufficient condition for the cubic equation 
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Proof:

Let each of the roots of the equation be 
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From (2.8), we have 
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It then follows that 
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. This completes the proof.

The reduced cubic equation corresponding to a cubic equation with three equal roots is given in the following theorem.

Theorem 4: Let 
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has three real equal roots, the corresponding reduced cubic equation is 
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Proof

Consider 
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Here, 




[image: image147.wmf]r

x

y

-

=











(2.10)

Substituting (2.10) into (2.9) leads to 




[image: image148.wmf](

)

(

)

(

)

0

3

3

3

2

2

3

=

-

+

+

+

-

+

r

r

y

r

r

y

r

r

y





[image: image149.wmf]0

3

=

y

 Q. E. D

Example 2.4

For
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Since each of 
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 is equal to zero, the cubic equation has three real equal roots. Using theorem 4, we find that 
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Accordingly, each of the roots of the equation is 1.
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