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Abstract

In the present paper, we develop a delayed differential equations epidemic model to study
the transmission dynamics of the COVID-19 by introducing a latent period into susceptible,
and infectious individuals in incidence rate. We compute the basic reproduction rate of the
model and study its effects on the disease diffusion. Thus, we show that the basic reproduction
R0 is the threshold dynamics between the persistence and the extinction of the disease. More
precisely, we prove, through Lyapunov direct method, that the disease-free equilibrium is globally
asymptotically stable if R0 ≤ 1, whereas the disease is persistent if R0 > 1. We also discuss
the impact of the delay by comparing the model with delay and the model without delay.
Furthermore, numerical simulations are carried out to illustrate the theoretical results.

1 Introduction

COVID-19 is a respiratory disease caused by the SARS-COV-2 virus that has spread among humans,
mainly in China, since December 2019. Fever, cough, shortness of breath, and breathing difficulties
are initial symptoms of this infection [5, 18]. The transmission of the disease occurs through direct,
indirect, or close contact with infected people through infected secretions. The number of the con-
firmed cases with COVID-19 is increasing rapidly worldwide, especially in the United States and in
Europe [14, 7]. One major cause of the quick spread of the disease is the lack of information and
awareness about the virus during the early stages of infection. Thus, a difficulty to control COVID-19
is link to variation of incubation period, since it has been shown that the infected human is contagious
during this period. Since, we lack of proper treatment or vaccines, Isolating the infected individuals
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in special quarantine cells has been implemented in most of the countries [16, 3, 15]. Despite of this
prevention, COVID-19 still persists with high level death rate.

Epidemiological models in mathematics have been recognized as valuable tools in analysing the
dynamics of infectious diseases. Mathematical models and computer simulations are used in com-
paring, planning, implementing, evaluating, and optimizing various detection, prevention, therapy,
and control programs that are crucial in informing public health intervention policies. Concerning
the mathematical modelling of COVID-19, different type of models have been formulated in order
predict the disease transmission [17, 12, 11, 19]. However, as we said above, the time period of
incubation plays an important role in understanding the COVID-19 dynamics transmission. So, it
will be more realistic to incorporate that parameter in model. In that direction, P. Magal et al., [10]
have used a delay differential equation to studied the impact of this parameter in the model; but a
rigorous mathematical analysis of the model has not been done.

In This paper, we focus on the impact of latency period of COVID-19 transmission. Thus, our
model is formulated as a delay differential equation (DDE) with recruitment of susceptible individuals
[13, 6].

The paper is organized as follows. In section 2, we formulate the model. In section 3, we introduce
the basic reproduction number of the model and show that it is a threshold dynamics between the
persistence and the extension of the disease. Hence, we prove that if R0 is less than one, the disease
free equilibrium is globally asymptotically stable. If R0 is greater than 1, under certain conditions,
the endemic equilibrium is globally asymptotically stable. In section 4, we compare the DDE and
ODE models. Numerical simulations are performed to illustrate our theoretical results in section 5.
Finally, a conclusion is drawn in section 6.

2 Model Formulation

Based on the development and epidemiological characteristics of COVID-19 infection, the SEIR
model is appropriate to study the dynamic of this disease. In the presence of the disease, the popula-
tion is partitioned into five sub-populations as susceptible individuals (S), asymptomatic infectious
individuals (I), hospitalized symptomatic infectious individuals (H), unreported symptomatic infec-
tious individuals (U) and recovered individuals (R). Indeed, at any time, the susceptible population
is increased by the recruitment of individuals into the population at a rate Λ. The flux of Susceptible
individuals that may acquire infection, following effective contact with infectious individuals (I or
U), is

λ(t) = βS(t)I(t) + βS(t)U(t). (1)

However, in the real situation, there may be a lag between the time Susceptible humans are contacted
by the infectious individuals and the time the contacted individuals become infectious. Let τ be that
period. Then, the flux of asymptomatic infectious individuals is described by

λ(t− τ) = βS(t− τ)I(t− τ)e−µτ + βS(t− τ)U(t− τ)
)
e−µτ , (2)

where e−µτ represents the probability of survival of a human through the period τ . The flux of
individuals leaving the class I is νI(t); and we suppose that a fraction f are reported and a fraction
1 − f are unreported. Humans leave the population through natural death rate µ and the disease-
induced death rate, δ.
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In order to avoid excessive use of parentheses in some of the later calculations, we use the following
notations:

S(t) = S, I(t) = I, U(t) = U, H(t) = H, R(t) = R,

I(t− τ) = Iτ , U(t− τ) = Uτ , S(t− τ) = Sτ .

The paramters of the model are given in Table (1)

Symbols Biological descriptions

Λ Constant recruitment for humans
µ Human natural death rate
f Fraction of asymptomatic infectious that become reported symptomatic infectious
δ Disease-induced death rate for unreported symptomatic infectious individuals
β Transmission rate
ν1 = fν Rate at which asymptomatic infectious become reported symptomatic
ν2 = (1− f)ν Rate at which asymptomatic infectious become unreported symptomatic
1/η Average time symptomatic infectious have symptoms

Table 1: Parameters of the model.
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Figure 1: Diagram of the model

From Figure 1, the number of individuals which survive from recruitment into one class, the next,
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is defined by the following Retarded Functional Differential Equation (RFDE):

Ṡ(t) = Λ− βS(t)(I(t) + U(t))− µS(t),

İ(t) = βS(t− τ)
(
I(t− τ) + U(t− τ)

)
e−µτ − (ν + µ)I(t)

U̇(t) = ν2I(t)− (η + µ)U(t),

Ḣ(t) = ν1I(t)− (η + δ + µ)H(t),

Ṙ(t) = η(U(t) +H(t))− µR(t).

(3)

The initial condition is assumed to be on the form :

S0 = ϕ1, I0 = ϕ2, U0 = ϕ3, H0 = ϕ4, R0 = ϕ5, (4)

where ϕi ∈ C([−τ, 0],R+),∀i = 1, 2, ..., 5. C([−τ, 0],R+) is the Banach space of continuous functions
mapping the interval [−τ, 0] into R+ endowed with the sup-norm, such that ϕ1(0) > 0 and ϕ2(0) > 0.
The existence and uniqueness of the solutions then follow from standard results in the theory of delay
differential equations (see, [4]).

3 Mathematical analysis of the model

3.1 Properties of the model

Lemma 3.1. For any ϕ ∈ C([−τ, 0],R5
+), system (3) has a unique non-negative solution through ϕ.

Moreover, the solution is bounded.

Proof. For any ϕ ∈ C([−τ, 0],R5
+), define

f(ϕ) :=



Λ− βϕ1(0)(ϕ2(0) + ϕ3(0)),

βϕ1(−τ)
(
ϕ2(−τ) + ϕ3(−τ)

)
e−µτ − νϕ2(0)

ν2ϕ2(0))− ηϕ3(0),

ν1ϕ2(0)− (η + δ)ϕ4(0),

η(ϕ3(0) + ϕ4(0)).


(5)

Note that f is continuous, and locally lipschitzian. Hence from Theorem 2.3 in [4], (3) has a unique
solution through (0, ϕ) on its maximal interval [0, Tmax[ of existence. Now let us show that the
solution is non-negative. Let

`(t) = min{S(t), I(t), U(t), H(t), R(t)}.

Suppose that there exists t̄ ∈ [0, Tmax[ such that `(t̄) < 0 and `(t) ≥ 0 for all t ∈ [0, t̄[.
If `(t̄) = S(t̄), Since I(t) ≥ 0 for all t ∈ [0, t̄[, from the first equation of system (3) it yields that

Ṡ(t) > −S(t)
[
β(I(t) + U(t)) + µ

]
, ∀t ∈ [0, t̄[. (6)
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Then,

S(t̄) > S(0) exp

(
−
∫ t̄

0

(βI(s) + βU(s) + µ)ds

)
≥ 0, (7)

which contradicts the fact that S(t̄) < 0.
If `(t̄) = I(t̄), Since Sτ , Iτ and Uτ are positive, from second equation of model (3), we have

İ(t) > −(ν + µ)I(t), ∀t ∈ [0, t̄[. (8)

Then,

I(t̄) > I(0)e−(ν+µ) ≥ 0, (9)

which leads to a contradiction.
Similar contradiction can be obtained if `(t̄) = U(t̄), `(t̄) = H(t̄) and `(t̄) = R(t̄). Therefore,

solutions of system (3) with conditions S(0) ≥ 0, I(0) ≥ 0, U(0) ≥ 0, H(0) ≥ 0 and R(0) ≥ 0 are
non-negative.

Moreover, at any time t ≥ 0, we have:

Ṡ = Λ− βS(I + U)− µS ≤ Λ− µS.

Let us consider the following ordinary differential equation :

Ṡ1 = Λ− µS1,

with general solution:

S1(t) =
Λ

µ
+

(
S(0)− Λ

µ

)
e−µt.

Thanks to standard comparison theorem [8] we have: lim sup
t→+∞

S(t) ≤ Λ

µ
. Similarly, we show that

I(t), U(t), H(t) and R(t) are bounded. It then follows that Tmax = +∞ and solutions exist globally.

Remark 1. In the rest of the paper we discuss system (3) in the following closed set :

Ω :=

{
ϕ ∈ C : ‖ϕ1‖ ≤

Λ

µ
, ϕi ≥ 0

}
.

It is easy to show that Ω is positively invariant with respect to (3).

3.2 Basic reproduction number and Existence of equilibria

The basic reproduction number is an indicator of COVID-19 transmission. It is a threshold dynamics
which predicts the disease invasion. It can be defined as a average number of new free infectious
individual derived from a single infectious human introduced into an entirely susceptible population.
Moreover, by simple calculation, we prove that model (3) has a unique free-infected equilibrium E0

defined by

E0 = (S0, 0, 0, 0, 0), with S0 =
Λ

µ
.

The basic reproduction number (3) can be computed as follows [10, 20]:

R0 =

√
βS0

ν + µ

(
1 +

ν2

η + µ

)
e−µτ .
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Lemma 3.2. If R0 > 1 system (3), has an unique infected equilibrium E∗ = (S∗, I∗, U∗, H∗, R∗).

Proof. At equilibrium, system (3), satisfies:

0 = Λ− βS∗(I∗ + U∗)− µS∗,
0 = βS∗

(
I∗ + U∗

)
e−µτ − (ν + µ)I∗,

0 = ν2I
∗ − (η + µ)U∗,

0 = ν1I
∗ − (η + δ + µ)H∗,

0 = η(U∗ +H∗)− µR∗.

(10)

Let

A1 = S0, A2 =
ν + µ

µ
eµτ , A3 =

ν2

η + µ

A4 =
ν1

η + µ+ δ
, A5 =

η

µ
(A3 + A4).

Solving system (10), we have:

S∗ = A1 − A2I
∗, U∗ = A3I

∗, H∗ = A4I
∗, R∗ = A5I

∗ (11)

where I∗ satisfies the following quadratic equation:

x2 − bx = 0; with b =
A1

A2

(
1− 1

R2
0

)
. (12)

Thus, if R0 > 1, then equation (12) has an unique positive solution x∗ = b. Therefore, system (3)
has an unique infected equilibrium, defined by

E∗ = (S∗, I∗, U∗, H∗, R∗),

with

S∗ =
S0

R2
0

, U∗ = A3I
∗, H∗ = A4I

∗, R∗ = A5I
∗, I∗ =

A1

A2

(
1− 1

R2
0

)
.

3.3 Local stability of free infected equilibrium

Theorem 3.3. If R0 < 1, then the infected free equilibrium E0 is locally asymptotically stable.

Proof. By linearising the system (3) at E0, we obtain the following system

Ṡ(t) = −βS0(I(t) + U(t))− µS(t),

İ(t) = βS0
(
Iτ + Uτ

)
e−µτ − (ν + µ)I(t)

U̇(t) = ν2I(t)− (η + µ)U(t),

Ḣ(t) = ν1I(t)− (η + δ + µ)H(t),

Ṙ(t) = η(U(t) +H(t))− µR(t).

(13)
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Let

J0 =


−µ −βS0 −βS0 0 0

0 0 −a 0 0

0 ν2 −d1 0 0

0 ν1 0 −d2 0

0 0 η η −µ

 , J−τ =


0 0 0 0 0

0 Q1(τ) Q1(τ) 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,

with

a = ν + µ; d1 = η + µ; d2 = η + µ+ δ; Q1(τ) = βS0e−(µ+λ)τ .

Then, we have :

∆(λ) = det(λI5 − J0 − e−λ.τJ−τ ) =

∣∣∣∣∣∣∣∣∣∣∣

µ+ λ βS0 βS0 0 0

0 Q1(τ) + a+ λ Q1(τ) 0 0

0 −ν2 d1 + λ 0 0

0 −ν1 0 d2 + λ 0

0 0 −η −η µ+ λ

∣∣∣∣∣∣∣∣∣∣∣
By simple calculation, we have the following characteristic equation:

(λ+ µ)2(λ+ d2)P (λ) = 0 (14)

with

P (λ) = λ2 + (a+ d1 −Q2(τ))λ+ ad1 − (d1 + ν2)Q2(τ) (15)

We shall study the distribution of the roots of the transcendental equation (14). Denote λ = r(τ) +

iω(τ), the eigenvalue of equation (14) where r et ω depend on the delay τ , [2]. Moreover, when the
delay increases, roots can only possibly enter the right half plane by crossing the imaginary axis in
the complex plane [1].

(i) If τ = 0 and R0 < 1, then thanks to all roots of equation

P (λ) = λ2 + (a+ d1 −Q2(0))λ+ ad1(1−R2
0) = 0

have negative real part.

(ii) Suppose that there exists τ0 > 0 such that λ = iω(τ0), ω > 0, is a purely imaginary root of
(14). Thus, we have the following equation:

ω4 + (a2 + d2
1 − q2

1)ω2 + (ad1)2 − (q1q2)2 = 0, (16)

with
q1 = βS0e−µτ ; q2 = d1 + ν2.

Let y = ω2. Then, equation:

y2 + (a2 + d2
1 − q2

1)y + (ad1)2 − (q1q2)2 = 0,

has no positive root if R0 < 1. That is a contradiction.
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3.3.1 Global stability of steady states

In this section, we analyze the global stability of equilibria by the use of Lyapunov functions.

Theorem 3.4. If R0 ≤ 1, then E0 is globally asymptotically stable.

Proof. We consider the following Lyapunov function:

L1(S, I, U) = V1(S, I, U) + β

∫ τ

0

Ss(Is + Us)ds, (17)

where

V1(S, I, U) = S − S0 − S0 ln

(
S

S0

)
+R2

0Ie
µτ +

βS0

(η + µ)
U. (18)

Note that:

• L1(S0, 0, 0) = 0 and L1(S, I, U) > 0 if (S, I, U) 6= (S0, 0, 0).

• Otherwise, the time derivative of L1 along the solution of (3) is given by :

L̇1(S, I, U) = V̇1(S, I, U) + β
(
S(I + U)− Sτ

(
Iτ + Uτ

))
,

with

V̇1(S, I, U) =

(
S − S0

S

)
Ṡ +R2

0İe
µτ +

βS0

(η + µ)
U̇ ,

= −µ(S − S0)2

S
− βS(I + U) + βS0(I + U) + βR2

0Sτ
(
Iτ + Uτ

)
−βS0(I + U).

Then, we have:

L̇1(S, I, U) = −µ(S − S0)2

S
+ βSτ

(
Iτ + Uτ

)
(R2

0 − 1) ≤ 0, if R0 ≤ 1. (19)

• If S = S0, I = 0 and U = 0, then L̇1(S, I, U) = 0.

therefore, the largest compact invariant set contained in {(S, I, U) ∈ Ω : L̇1(S, I, U) = 0} is the
singleton {E0}. Hence, thanks to LaSalle’s invariant principle [9], E0 is globally asymptotically
stable.

Theorem 3.5. If R0 > 1 and 1 ≤ I + U

I∗ + U∗
≤ U

U∗
, then E∗ is globally asymptotically stable.

Proof. We consider the following lyapunov function:

L2(S, I, U) = V2(S, I, U) +

∫ τ

0

G

(
Ss(Is + Us)

S∗(I∗ + U∗)

)
ds. (20)

with

V2 = G

(
S

S∗

)
+ a2G

(
I

I∗

)
+ a3G

(
U

U∗

)
, (21)

a1 =
1

β(I∗ + U∗)
, a2 =

I∗eµτ

β(I∗ + U∗)
, a3 =

U∗

ν2I∗
and G(x) = x− 1− lnx. (22)
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• L2(S∗, I∗, U∗) = 0 and L2(S, I, U) > 0 if (S, I, U) 6= (S∗, I∗, U∗).

• Otherwise, the time derivative of L2 along the solution of (3) is given by:

L̇2(S, I, U) = V̇2(S, I, U) +G

(
S(I + U)

S∗(I∗ + U∗)

)
−G

(
Sτ (Iτ + Uτ )

S∗(I∗ + U∗)

)
, (23)

with

V̇2(S, I, U) = a1
Ṡ

S∗

(
1− S∗

S

)
+ a2

İ

I∗

(
1− I∗

I

)
+ a3

U̇

U∗

(
1− U∗

U

)
.

Thus, we have:

a1
Ṡ

S∗

(
1− S∗

S

)
= −a1µ

(S − S∗)2

SS∗
+ 1 +

I + U

I∗ + U∗
− S(I + U)

S∗(I∗ + U∗)
− S∗

S
, (24)

a2
İ

I∗

(
1− I∗

I

)
=

Sτ (Iτ + Uτ )

S∗(I∗ + U∗)
− I

I∗
− Sτ (Iτ + Uτ )

S∗(I∗ + U∗)
.
I∗

I
+ 1, (25)

a3
U̇

U∗

(
1− U∗

U

)
=

I

I∗
− I

I∗
U∗

U
− U

U∗
+ 1. (26)

Adding (24)−(26), It then follows that:

L̇2(S, I, U) = −a1µ
(S − S∗)2

SS∗
+ 1 +

I + U

I∗ + U∗
− S(I + U)

S∗(I∗ + U∗)
− S∗

S
+
Sτ (Iτ + Uτ )

S∗(I∗ + U∗)

−Sτ (Iτ + Uτ )

S∗(I∗ + U∗)
.
I∗

I
+ 1− I

I∗
U∗

U
− U

U∗
+ 1 +G

(
S(I + U)

S∗(I∗ + U∗)

)
−G
(
Sτ (Iτ + Uτ )

S∗(I∗ + U∗)

)
let

x =
S

S∗
, y =

I

I∗
, z =

I + U

I∗ + U∗
, zτ =

Iτ + Uτ
I∗ + U∗

, w =
U

U∗
.

It yields that:

L̇2(S, I, U) = −a1µ
(S − S∗)2

SS∗
+ z + 1− 1

x
− xτ

y
zτ + 1− y

w
− w + 1 + ln(xτzτ )− ln(xz)

by adding and subtracting the quantity ln(yw), we obtain:

L̇2(S, I, U) = −a1µ
(S − S∗)2

SS∗
−G

(
1

x

)
−G

(
xτ
y
zτ

)
−G

(
y

w

)
−G(w) +G(z).

• If S = S∗, I = I∗ and U = U∗, then L̇2(S, I, U) = 0. Therefore, the largest compact invariant
set contained in {(S, I, U) ∈ Ω : L̇2(S, I, U) = 0} is the singleton {E∗}. Hence, thanks to
LaSalle’s invariant principle [9], E∗ is globally asymptotically stable.
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4 Comparison with model without time delay

Setting τ = 0, that means the system (3) without delay, then we obtain we following ordinary
differential equation (ODE):

Ṡ(t) = Λ− βS(t)(I(t) + U(t))− µS(t),

İ(t) = βS(t)
(
I(t) + U(t)

)
− (ν + µ)I(t)

U̇(t) = ν2I(t)− (η + µ)U(t),

Ḣ(t) = ν1I(t)− (η + δ + µ)H(t),

Ṙ(t) = η(U(t) +H(t))− µR(t).

(27)

Moreover, using the method of Van den Driessche and Watmough [20], we compute the basic repro-
duction ratio of model (27), as follows:

R̂0 =

√
βS0

ν + µ

(
1 +

ν2

η + µ

)
. (28)

Moreover, model (27) has the two similar equilibrium E0 and E∗ (if R̂0 > 1). We have the
following results:

Corollary 1. Let 1 ≤ I + U

I∗ + U∗
≤ U

U∗
.

i) If R̂0 ≤ 1, then the disease-free equilibrium E0 is locally and globally asymptotically stable.

ii) If R̂0 > 1, then the endemic equilibrium E∗ is locally and globally asymptotically stable.

Proof. In the case of ODE model (τ = 0), The lyapunov functional, L1 and L2 can be rewritten as
follows :

L1(S, I, U) = S − S0 − S0 ln

(
S

S0

)
+R2

0I +
βS0

(η + µ)
U (29)

L2(S, I, U) = G

(
S

S∗

)
+ a2G

(
I

I∗

)
+ a3G

(
U

U∗

)
(30)

5 Numerical simulations

In this section, we perform some numerical simulations to support our theoretical analysis. we use
the MATLAB technical computing software with the fourth-order Runge-Kutta method. Values of
parameters are listed in Table 2.

In the both Figure (2) and (3), blue solids lines represent the solution of ODE model that arise
when there is no delay; and red solids lines are the solutions of RFDE model that arise when there
is a delay. Our simulations indicate the persistence of COVID-19 for each model. Since R0 > 1,
solutions converge globally to the endemic equilibrium E∗ which illustrate the theoretical result of
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Parameters Values Sources Dimenssions

Λ 90 estimated /day
µ 0.00152 [12] /day
f 0.8 [10] /day
δ 0.1 [19] /day
β 0.000044 [12] /day
ν 1/7− 1/4 [10] /day
η 1/7− 1/4 [10] /day

Table 2: Values of parameters

(a) Susceptible individuals (b) asymptomatic infectious individuals

(c) reported symptomatic infectious in-
dividuals

(d) Hospitalized symptomatic infectious
individuals

Figure 2: Graphs of symptomatic infectious individuals (Unreported and reported individuals) for
τ = 7, ν = 1/7, η = 1/7, S0 = 10000, I0 = 10, U0 = 2, H0 = 8, R0 = 1 and R0 = 4.62.

Theorem 3.5. Moreover, it is important to notice that RFDE model and ODE models show epidemics
peaks. However, the corresponding time at which the peaks of ODE model occurs is different to the
RFDE model.

Remark 2. According to our numerical results, the latency period τ has a large impact on the
dynamics of COVID-19 transmission and prediction. Thus, ODE model can underestimate the
prediction date of the peaks of the disease. Besides, it easy to show that fixing all parameters, the
larger τ is, the smaller the basic reproduction number, R0 becomes. So, realistic model must take
into account this parameter.
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(a) Susceptible individuals (b) asymptomatic infectious individuals

(c) reported symptomatic infectious in-
dividuals

(d) Hospitalized symptomatic infectious
individuals

Figure 3: Graphs of symptomatic infectious individuals (Unreported and reported individuals) for
τ = 4, ν = 1/4, η = 1/4, S0 = 10000, I0 = 10, U0 = 2, H0 = 8, R0 = 1 and R0 = 3.51.

6 Conclusion

In this paper we have presented a mathematical model of COVID-19 transmission with latency period
of incubation. The basic reproduction number has been computed, and we have shown that it is the
threshold parameter between the persistence and the extinction of the disease. It emerges from our
study that under some conditions, the disease-free equilibrium is globally stable if R0 ≤ 1, whereas
the disease is persistent if R0 > 1.

Furthermore, we have shown that the latency period, τ has significant effect on the disease
transmission dynamics. More precisely, the length of the maturation period determines how fast or
how slow the disease will progress within an area. From a biological viewpoint, this period play a
positive role in the virus infection process in order to eliminate disease. Sufficiently large delay makes
the virus progress slower, and the virus is controlled. This gives us some suggestions on new drugs
to prolong the time of the latent period in order to reduce the disease transmission.
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