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Propagation of The electromagnetic field above an atmospheric surface duct
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   The pulsed electromagnetic radiation from a vertical electric dipole above an atmospheric surface duct is investigated theoretically. The duct model used is that of Kahan and Eckart [1950] and consists of a discontinuous drop of the otherwise constant relative permittivity at the upper duct boundary. The Earth is assumed to be an ideal conductor and planar. The modified Cagniard method is used to derive closed form expressions for the Hertztan vector anywhere above the duct. From the physical point of view, Cagniard' s idea is applicable as it is based on evaluating the field in a series of image sources of the primary source. The step - function solution of the problem can then be determined as an infinite sum of definite integrals over finite intervals. Two cases would be distinguished on the basis of the distance between the receiving and transmitting ends ends and whether it is greater or lesser than the total reflection distance  
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1 Introduction.
The pulsed electromagnetic radiation from a vertical magnetic dipole above a conducting earth is investigated theoretically. The propagation of electromagnetic waves over finitely conducting surfaces is considered to be well understood. Stratified an   isotropic models have been treated Wait[1] and an ability to compute accurately the transient electromagnetic field radiated by pulsed sources in the presence of the dispersive media is of hreat impore   various mixed path geometries have been analyzed. Hill and Wait[2], but with few exceptation  Fischer[3]. The anisotropy is restricted to lateral uniformity. Subsequently, Kuster [4] investigated the transient reflected field of a pulsed line source over a conducting half-space. Applying a method suggested by Dook [5], he arrived at an exact solution in the form of a double finite integral. In this paper we study the electromagnetic field of a pulsed vertical magnetic dipole above a conducting earth. Abo seliem[6], theoretical study for computing the magnetic field from a Fitzgrald vector in the ionosphere is presented.

Abo seliem [7], also the integral is evaluated by two dimensional methods. As our pulsed source is point source, this result is essentially more simple that Kuester’s expression for the line source.       

Between quasi – static and non quasi  – static frequency regions. The complete integral representations for the electromagnetic field components are cast into forms involving only known to bulleted   Sommerfeld integrals. The derived closed – form expressions are used to complete both amplitude – and phase – frequency spectra of the field and the a chivied results are compared with the data provided by both the quasi – static and high frequency formulations. Two integral transform are applied to analyze the transient field of a vertical electric dipole in a dielectric later. A laplace   trancform in time and a two – dimensional Fourier transform in horizontal coordinates in space are used for the hertiz vector in the wave equation we use a method originated by Cagniard [9] and simplified by Doak[5]. In the present work, we condone our anchor exclusively to the elementary vertical Horizon dipoles. Embedded in air , we computed the z- compuent of the Hertz vector and showed the behavior of the absolute value of the z- component of the hertz vector.    The reflected waves and integrals Abo-Seliem[8], the component of the electric field strength is also arbitrary for the excitation function   
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 at some fixed but arbitrary position from the point of observation in the half-space.        

2 Formulation of the problem     

Fig.1 shows the duct model of Kahan and Eckart[9]. A dielectric layer is assumed of relative permittivity 
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 over laying an infinitely conducting plane earth which is confined by the plane z=0 of a rectangular coordinate system. The source of the field is assumed to be a vertical electric dipole in the medium 1 at the point x=y=0, z=d>0 whose moment is given by 
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, t being the time variable and 
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 the three-dimensional 
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-distributation. Regarding F(t), we make the assumptions  F(t)=0 for t ≤ 0 and 
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The  starting  point is the wave equation for the Z-component  of the Hertz vector 
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where 
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 denotes  the phase velocity of medium i. The electric and magnetic field generated by this Hertizan dipole can be derived from a Hertizan vector  
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  through the radiations. 
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in the region z>h, we write:
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where 
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yields the primary simulation, while 
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accounts for the secondary simulations, similarly, in the regions 0<z<h, we write:
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where 
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yields the reflected and consists of an incidented waves from the conducting plane z=0. At any interior point of the appropriate half-space 
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and in medium 
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are assumed to be continuous togther with their first and second orther partial derivatives. We get for 
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where    
[image: image24.wmf])

7

(

)

(

)

(

)

(

)

(

)

,

(

C

1

2

1

1

1

2

1

1

12

b

a

g

+

b

a

g

b

a

g

-

b

a

g

=

b

a


   and 
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with  
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 are the variables in the transform space of the two-dimensional Fourier transform 
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3 Application of  Cagniard  method.
we shall try to cost the integral on the right-hand side of (6) in such a form that 
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can be found more or less by inspection. This is accomplished by introducing new variables of integration 
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Since   
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In which, as  
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In order to bring the right-hand side of (10) in a form which is analogous to the two-dimensional case; we introduce the variable  
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as  a complex variable in the 
[image: image42.wmf]p

-plane. While  
[image: image43.wmf]q

 kept real. The result is: 
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In which 
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By virtue of Cauchy’s Theorem and Jordan’s Lemma the integration along the imaginary p-axis can be replaced by an integration along the branch  
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 of a hyperbola, where 
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A long 
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 we have 
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In (14), (15) and (16) the upper and lower signs belong together.

Taking into account the symmetry of the part of integration with respect to the real axis and introducing 
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 as variable of integration, we obtain:   
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Now we interchange the order of  integration, which leads to:
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where 
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Application of the shift rule yields the well-known result
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4 Numerical results

We can present some synthetic curves showing the horizontal normalization hertizian vector above the duct layer as function of normalization time when    we take
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 the height of the primary source and the point of observation has been taken to be z=d=20m and duct height h=15m . in such a manner that the corresponding potent ional  of the primary source is independent of the horizontal distance r and takes on the value for  
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 denotes the spherical distance between the source and the point of observation. If r=2000 m is beyond that distance where the contribution of the image source 
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, to the total field undergoes total reflection at upper duct boundary , hence its shows the lateral wave front before time of the spherical wave front before 
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 Fig.(2). The delay of the wave fronts originating from the second image source against the primary wave front becomes before the primary wave front and becomes greater and greater. Also , more and more reflected image sources must be considered , since with increasing distance more spherical wave front due to the reflected image sources undergo total reflection and contribute to the receiving potential with their logarithmic singularities, If r=2000m the wave front due to the reflected first image source now arrives before the primary wave front and becomes greater and greater t .
[image: image64.emf] 
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5 Conclusion  


A theoretical study for computing the electromagnetic field from a Hertizan vector in the ionosphere is presented. We see now that the total reflection occurs for the spherical wave front originating from the reselected first image source and we see another wave front arraigning before the primary wave front.
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