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Abstract: 
It has been verified theoritically the residual magnetic domains has 2 power aleph cardinality.  It has also been verified theoritically that 
ferro para magnetic phase transitions can be explained by revision of belief  mathematics.  Experimentally,it has been verified nano 
Nd2FeB14 permanent magnet  has the predominant role in the mechanical proberties  in duplex stainless steel 2205 and magnetic 
composite materials.In this paper,more advances in the set theoritical model for magnetism wil l be achieved..Algebric geometry will be 
used to achieve the equilibrium relations between the torus in ecluidian space and riemannian manifold  related to the torus defined in 
them .Tensor triangulated category will be used to discover the logical relations between the ecluidian torus and riemannian manifold 
torus.Bakehausen effect will be explained in a new mathematical approach related to the order of cardinalities by model theory 
mathematics. The barkhausern effect  related to Nd2FeB14 materials  will be mathematically approached .Landau levels will be deeply 
related to the problastic functions and conditional functions. 
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Introduction: 
 
Spin models tried hard to capture the dimensionality problem of spins in Heisenberg model and Ising model.It has been verified 
theoritically that the residual  magnetic domain has the cardinality 2 power aleph and their motion is explained by fixed brouwer theory 
to solve the problem ofdimensionality.Also,we have used belief revision 
mathematics to solve the ferro para magnetic phase transition .[seeRef1,Ref2]. 
This new theoritical advance must be extended to explain the Barkhausen effect and  Landau levels. 
It will be a great deal with the torus mathematics to define an equilibrium of magnetic domain motions by algebric topologica l 
mathematics.Tensor triangulated category will be used to describe the geometrical description of magnetic fields more precisely. 
 
Spinodal reactions will be hindered by magnetic treatment by using lusternik schirlmen category theory in Duplex stainless st eel 
2205.[see Ref 3] 
 
It will be redifined mathematically and will be proved in general formula using another experimental data found recently in Moscow 
university researches .[See Ref 4] 
The set theoritical model that have been verified recently must be generalized to explain another phenomological magnetic 
transitions.We will review the theoritical advances in the set theoritical model related to the magnetism and ferro para revision of belief  
mathematics  in chapter 1 ,chapter 2 
 chapter 1 ,the set theoritical model of magnetism . 
We will call the chapter 2 belief revision mathematics of ferro para transitions. 
In chapter 3,we will define the equilibrium concept of magnetic domain using the mathematical torus and tensor triangulated category.  
 
In chapter 4,the bakenhausen effect will be rexplained mathematically. 
In chapter5,the bakehausen jumps  will be deeply related with the experimental advances in material science.  
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In chapter6,Landau levels on torus  will be linked with probability functions and conditional functions. 

 
 
1.Set theoritical model for magnetism : 
In his research *some proposition that links ferromagnetic models with cantorian set theory*,Mohamed atef has made this model 
to solve the dimensionality problem of Heisenberg model that consider the spins in x,y,z dimensions and Ising model that restrict 
the spins in z axis  and he has proved that the magnetic domains has the cardinality of 2 power aleph by the comparison with the 
landau lifshits model using what is proved by Danial Kapovich in the Riemannian manifold: 
1.After applying and removing magnetic field H = 0, we can assume that there are magnetic domains in XYZ directions and these 

domains can be written as:   3
1 1 2 2 3 3, [ , ] [ , ]a b a b a b    

 
2. These domains have the cardinality 2 power aleph  

3. We will use the theory of invariance of dimensions which is proved by Brouwer as the domains   3
1 1 2 2 3 3, [ , ] [ , ]a b a b a b    

 

4. Using Brouwer theory, there will be no bijection if magnetic domains   3
1 1 2 2 3 3, [ , ] [ , ]a b a b a b   are transported to z axis  

 
5. The reason of restriction of the spins of Ising model in z axis is that there is : XY Z zT H H  
 (continous or injective). But in the case of Heisenberg Hamiltonian there will be no restriction as there is no function  
 
 
6. In the case of materials that is explained by Ising model, temperature will have the concept of the function that  transport magnetic 
domain to z – axis 
 
7. In phase transitions that are explained only by Ising model,we can expect fractal behavior in general in these materials.  
 
8. These fractal motions belong to space – filling curve category ( Peano, Hilbert, ..... etc ) curve will explain it.  
 
9.Space filling curves like Hilbert Space are continous functions will appear in Ising model materials as  
 
11. Heisenberg model shows the spins in ( Sx, Sy, Sz),so there will be no fractal behavior in the material that exhibit phase transitions 
under it.  
13. The phase transitions of thin films are exhibited by Ising model mainly and they cannot be explained by Heisenberg Model.  
 
 14.Summary of magnetic model, where d/D (dimension of spins /dimension of lattice)  
15. We can say Ising Model can explain thin films but Heisenberg Model cannot explain thin films. Spin flucations are strongly 
dependent on temperature, so we can consider it as a tool to describe the phase transitions. The assumption of the existence of magnetic 
domain with cardinality (2 power aleph) solve the problem of dimensionality of the spin models and give the proper explanation to the 
difference between Heisenberg model  and Ising model.  
 
 
We consider the case of materials that is explained by Ising model, temperature will have the concept of the function that transport 
magnetic domain to z – axis, T: HXYZ→HZ 
, so we can expect fractal motion in these materials. The fractal properties of spin clusters and boundries which are cluster  themselves 

are described by percolation theory. Asymptotically, cluster distributions take a general form: exp( )nt n n    

There is a tendancy to the fractal motion in Landau Lifshits model (Henriksen, 1953; Piette & Zakrzewski, 1998; Ding & Wang, 1998). 
Magnetic bubbles is a small round magnetic domain induced by magnetic field in a thin film of magnetic material. Let us investigate 
solutions in a 2 dimensional Landau- Lifshits model. We look at Landau -Lifshits model for the anistropic Heisenberg model when the 
external magnetic field is switched off A=0,the staticsolution is given by holomorphic functions (Jiang, 1953).  
 
 
2.Ferro-Para magnetic phenomena by belief revision mathematics: 
In his book,Set theoretical model for magnetism ,Mohamed atef has linked the ferro para magnetic phenomena with the belief 
revision mathematics and XOR functions. 
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He has demonstrated that Chiu Fan Lee∗and Neil F. Johnson clearified that the spins of Ising model is like noncoperative 
game.So,Nash Equilibrium is some essential concept.He has built XOR indetermined games that are consistent with his 
assumption of magnetic domain has the cardinality of 2 power aleph in the solution of Landau Lifshits equations.[2] 
 
Revision and merging differ in that the first operation  is done when the new belief to incorporate is  considered more reliable than the 
old ones; therefore, consistency is maintained by removing some of the old beliefs. Merging is a more general operation, in that the 
priority among the belief sets may or may not  
be the same. he AGM postulates for revision are: 
1.Closure: *K P is a belief base (i.e., a deductively  
closed set of formulae); 
2.Success: *P K P  
3.Inclusion: *K P K P   
4.Vacuity:, P KthenK P    
5. *K P  isinconsistentonly ifPis inconsistent orK 
is inconsistent 
6.Extensionality: * *K P K Q  
 
Let us design a model that explain the ferro -para magnetic phase transition as + operation as it transfer of magnetic domains from XYZ 
directions or XY direction to Z axis:from Z axis toXYZ directions and XY directions. These domains have the cardinality 2 power 
aleph.So it can be consider a language (L,+,-) .This model satisfy the rules of revision belief model .Postulates for conditional 
revision(We have supposed that magnetic phase Ferro,Para is  
an epistemic state):Suppose Ψ is an epistemic state and (B|A), (D|C) are conditionals. Let Ψ ∗(B|A) denote the result of revising Ψ by 
(B|A).(CR0) Ψ ∗(B|A) is an epistemic state. 
 
Chiu Fan Lee∗and Neil F. Johnson has showed how non-cooperative phenomena can emerge from Ising Hamiltonians, even though the 
individual spins behave cooperatively.They consider Ising spin models because they serve as basic models in condensed matter physics, 
and focus on the classical regime to avoid the complication of quantum entanglement. [40]By  treating each site or subset of sites in the 
Ising model as a game-playing agent, we show that non-cooperative behaviour is indeed possible. In particular, we show the emergence 
of a prisoner‘s dilemma game being ̳played‘ within a multi-spin system. So can macroscopic non-cooperative behavior ever arise? We 
now show that it can, if the subsystem under consideration has several possible configurations and hence more states from which to 
choose. In particular, we will search for non-cooperative phenomena in two subsystems each containing many spins. We concentrate on 
the specific example of non-cooperation offered by the prisoner‘s dilemma, since this is the only symmetric two-player two-strategy game 
with a unique Nash equilibrium  
which never coincides with the global optimum  
.We start by specifying more precisely the criterion for the existence of non-cooperative behaviour. A system composed of two-body Ising 
Hamiltonians such asH = a | ↑↑ih↑↑| −| ↑↓ih↑↓| −| ↓↑ih↓↑| + |↓↓ih↓↓| . 
Is there a tool to express about these phenomena by Belief models and is thereDepending on how beliefs are represented and what kinds 
of inputs are accepted, different typologies of belief changes are possible. In the most common case, when beliefs are represented by 
sentences in some code, and when a belief is either accepted or rejected in a belief system Kone can distinguish three main k inds of  
belief changes.  
 
Solutionsof Landau Lifshitz model inRiemannian manifold and XOR functions  
complete information models):Magnetic bubbles is a small round magnetic domain induced by magnetic field in a thin film of magnetic 
material.Let us investigate solutions in a 2 dimensional Landau-Lifshits model .We look at Landau -Lifshits model for the anistropic 
Heisenberg modelKapovich proved the striking result :if M has a non constant holomorphic function then the ring of holomorpbhic 
function on M has a chain of prime ideals of the length of continuum(2 power aleph). 
Critical properties of the Ising models on some two  dimensional deterministic Sperinski fractals with  different Haussdorff measures. 

Haussdorff measures are strongly related with the axiom of martin, Theorem.: Let s0and let sH be the s-dimensional Haussdorff 

measure in n. The union of less than continuum manysHnegligible subsets  of sH is negligible .Søren Riis showed by using the axiom 
of choice ,the construction of a symmetrical and self similar subset A ⊆[0, 1] ⊆R.  
Then by an elementary strategy stealing argument it is shown that A is not determined. The (possible) existence of fractals l ike A 
clarifies the status of the controversial Axiom of Determinacy.  
 

Definition : An infinite XOR function f : Bω →B is a function with the following property: if hd(w 1w2) = 1 then f(w 1)f(w 2).  

Theorem : There exist 2c infinite XOR functions. 
Theorem :No player has a winning strategy in an  
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infinite XOR game Gf. There is a unique functor between the chain of prime ideals and the 2cinfinite XOR functions.  
.  
  
3.The equilibrium concept of magnetic domains and tensor triangulated category and Cox Particle : 
 
Let us describe why it is so important to make an equilibrium concept of magnetic domains that have 2 power aleph and the tool of tensor 
triangulated category. 
 
First of all,we have solved landau lifshitz equations by holonomic functions when there is no applied magnetic field.  
 
Also we have described their motion by fixed brouwer theory 

4. Using Brouwer theory, there will be no bijection if magnetic domains   3
1 1 2 2 3 3, [ , ] [ , ]a b a b a b   are transported to z axis  

 
5. The reason of restriction of the spins of Ising model in z axis is that there is : XY Z zT H H  
 (continous or injective). But in the case of Heisenberg Hamiltonian there will be no restriction as there is no function  
 
We have used the mathematical achievement of Daniel Kapovich proved the striking result :if M has a non constant holomorphic function 
to the complex number then the ring of holomorpbhic function on M has a chain of prime ideals of the length of continuum(2 power 
aleph).So the magnetic domains that have the cardinality of 2 power aleph can be redifined as M has a non constant holomorphic funct ion 
to the complex number then the ring of holomorpbhic function on M has a chain of prime ideals of the length of continuum(2 power 
aleph).So there are two opposite ways to describe the magnetic domains: 
The first way when the magnetic domains are transferred and move : XY Z zT H H  

 The second way when the magnetic domains are formed as a a chain of prime ideals of the length of continuum(2 power aleph) which is 
appear when the manifold is transferred to complex number.The first way means the transfer and the second way means the formation 
.There must be an equilibrium between the two different ways.When we use the tensor triangulated category to make an algebric 
construction for the holonomic function hyper geometric series that are the solutions of Landau Lifshitz equations .There will be an 
obvious establishment for the concept of ideals.Also the tensor triangulated category will be defined after introduction for the algebric 
torus .This algebric torus is a must for studying the the conserved current associated to the U(1) symmetry of a complex field related to 
Klein–Gordon–Fock equation.[see Ref 57] 
 

Klein Jordan equations and cox particle will be describe well in the scope of tensor triangulated category. 
 
The formation of magnetic domains is related to riemannian manifold that is described by danial kapovich theorems. 

This riemannian manifold can be embbeded into ecludian space according to nash embeeding theorems. 

The Nash embedding theorems (or imbedding theorems), named after John Forbes Nash, state that every Riemannian manifold can be 
isometrically embedded into some Euclidean space. Isometric means preserving the length of every path. For instance, bending without 
stretching or tearing a page of paper gives an isometric embedding of the page into Euclidean space because curves drawn on the page 
retain the same arclength however the page is bent.[See Ref57] 

The first theorem is for continuously differentiable (C1) embeddings and the second for analytic embeddings or embeddings that are 
smooth of class Ck, 3 ≤ k ≤ ∞. These two theorems are very different from each other; the first one has a very simple proof and leads to 
some very counterintuitive conclusions, while the proof of the second one is very technical but the result is not that surpri sing. 

The C1 theorem was published in 1954, the Ck-theorem in 1956. The real analytic theorem was first treated by Nash in 1966; his 
argument was simplified considerably by Greene & Jacobowitz (1971). (A local version of this result was proved by Élie Cartan and 
Maurice Janet in the 1920s.) In the real analytic case, the smoothing operators (see below) in the Nash inverse function argument can be 
replaced by Cauchy estimates. Nash's proof of the Ck- case was later extrapolated into the h-principle and Nash–Moser implicit function 
theorem. A simplified proof of the second Nash embedding theorem was obtained by Günther (1989) who reduced the set of nonlinear 
partial differential equations to an elliptic system, to which the contraction mapping theorem could be applied. 

 

Theorem. Let (M,g) be a Riemannian manifold and ƒ: Mm → Rn a short C∞-embedding (or immersion) into Euclidean space Rn, where n 
≥ m+1. Then for arbitrary ε > 0 there is an embedding (or immersion) ƒε: Mm → Rn C1,  

v,w ∈ Tx(M) in the tangent space at x ∈ M, 

https://en.wikipedia.org/wiki/John_Forbes_Nash
https://en.wikipedia.org/wiki/Riemannian_manifold
https://en.wikipedia.org/wiki/Embedding
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Isometry
https://en.wikipedia.org/wiki/Rectifiable_path
https://en.wikipedia.org/wiki/Isometric_embedding
https://en.wikipedia.org/wiki/Arclength
https://en.wikipedia.org/wiki/Continuously_differentiable
https://en.wikipedia.org/wiki/Analytic_function
https://en.wikipedia.org/wiki/Smooth_function
https://en.wikipedia.org/wiki/Nash_embedding_theorem#CITEREFGreeneJacobowitz1971
https://en.wikipedia.org/wiki/%C3%89lie_Cartan
https://en.wikipedia.org/wiki/Maurice_Janet
https://en.wikipedia.org/wiki/H-principle
https://en.wikipedia.org/wiki/Nash%E2%80%93Moser_theorem
https://en.wikipedia.org/wiki/Nash%E2%80%93Moser_theorem
https://en.wikipedia.org/wiki/Nash_embedding_theorem#CITEREFG.C3.BCnther1989
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Contraction_mapping_theorem
https://en.wikipedia.org/wiki/Short_map
https://en.wikipedia.org/wiki/Immersion_%28mathematics%29
https://en.wikipedia.org/wiki/Tangent_space
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1. ( , ) ( ( ), ( ))g v w df v df w   

2.ε-close to ( ) ( )f x f x   [45] 

The Nash embedding theorem is a global theorem in the sense that the whole manifold is embedded into Rn. A local embedding theorem 
is much simpler and can be proved using the implicit function theorem of advanced calculus in a coordinate neighborhood of the 
manifold. The proof of the global embedding theorem relies on Nash's far-reaching generalization of the implicit function theorem, the 
Nash–Moser theorem and Newton's method with postconditioning. The basic idea of Nash's solution of the embedding problem is the use 
of Newton's method to prove the existence of a solution to the above system of PDEs. The standard Newton's method fails to converge 
when applied to the system; Nash uses smoothing operators defined by convolution to make the Newton iteration converge: this is 
Newton's method with postconditioning. The fact that this technique furnishes a solution is in itself an existence theorem and of 
independent interest. There is also an older method called Kantorovich iteration that uses Newton's method directly (without the 
introduction of smoothing operators).The motion of magnetic domain and its transfer is described by brouwer theory on ecludian spaces . 

  3
1 1 2 2 3 3, [ , ] [ , ]a b a b a b   : XY Z zT H H ,So we have two ecludian spaces one of them is the ecludian space of 

formation which is well defined by nash embeeding theorem of daniel kapovich riemannian manifold and the second is the ecludian 
space of transfer.To achieve the precise description of the formation and transfer of magnetic domains ,we must use the tensor triangulate 
category.This can be achieved by definning the algebric torus. 

In mathematics, an algebraic torus is a type of commutative affine algebraic group. These groups were named by analogy with the 
theory of tori in Lie group theory (see Cartan subgroup).[See Ref 61] 

Tori are of fundamental importance in the theory of algebraic groups and Lie groups and in the study of the geometric objects associated 
to them such as symmetric spaces and buildings.If F is a field then the multiplicative group overis a field F s the algebraic 

group mG such that for any field extension E F theEare isomorphic to the group *E .Let F be a field with algebraic closure F Then 

a F torus is an algebraic group defined over F which is isomorphic over F to a finite product of copies of the multiplicative group Over 
any algebraically closed field there is up to isomorphism a unique torus of any given rank. Over the field of real numbers there are 

exactly (up to isomorphism) two tori of rank 1: the split torus *  

So let us define the algebric torus on ecludian space related to Nash Embeeding and related to the fixed brouwer theory. torus 
embedding is an algebraic variety containing an algebraic torus as an open dense subset, such that the action of the torus on itself 
extends to the whole variety. Toric varietyover any field are Cohen–Macaulay Ring. 
 

3 3
inf: relatedtoNashembeedingandmagneticdoma ormation relatedtoBrouwertheoryandmagneticdomainmotionF   

 
Where F is a functor. 
We have established above the algebric torus  and the concept of toric variety ,we have also verified the exsitence of magnetic domain 
and their hypergeometric and holonomic charachterstic.So, we can use what is called tensor triangulated category to achieve the 
geometrical concept of magnetic domains.  A Gorenstein ring is a commutative Noetherian ring such that each localization at a prime 
ideal is a Gorenstein local ring, as defined above. A Gorenstein ring is in particular Cohen–Macaulay. 
CM(R) is atriangulated category ifRis Gorenstein. Let SpecRdenote the prime ideal spectrum ofR, that is, the set of prime ideals ofR, 
and let S ing Rdenote the singular locus ofR, thatis, the set of prime idealspofRsuchthat the local ringRpis singular. Main 
Theorem.(1)LetRbe an abstract hypersurface local ring (i.e., the completion of Ris isomorphic toS/(f)for some complete regular local 
ringSand some element fofS). Then one has the following one-to-one correspondences:  
 
 
 

    thick subcategories ofCM R  

1Supp  Supp   

    specialization closed subsets ofSpecRcontained inSingR  

 

https://en.wikipedia.org/wiki/Implicit_function_theorem
https://en.wikipedia.org/wiki/Manifold#Charts
https://en.wikipedia.org/wiki/Nash%E2%80%93Moser_theorem
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Existence_theorem
https://en.wikipedia.org/wiki/Kantorovich_theorem
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Algebraic_group
https://en.wikipedia.org/wiki/Group_%28mathematics%29
https://en.wikipedia.org/wiki/Lie_group
https://en.wikipedia.org/wiki/Cartan_subgroup
https://en.wikipedia.org/wiki/Symmetric_space
https://en.wikipedia.org/wiki/Building_%28mathematics%29
https://en.wikipedia.org/wiki/Algebraic_variety
https://en.wikipedia.org/wiki/Algebraic_torus
https://en.wikipedia.org/wiki/Dense_subset
https://en.wikipedia.org/wiki/Group_action
https://en.wikipedia.org/wiki/Localization_of_a_ring
https://en.wikipedia.org/wiki/Prime_ideal
https://en.wikipedia.org/wiki/Prime_ideal
https://en.wikipedia.org/wiki/Cohen%E2%80%93Macaulay_ring
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(2)LetRbe ad-dimensional Gorenstein singular local ring with residue ldk which is locally an abstract hypersurface on the punctured 
spectrum. Then one has the following 
 

  ( ) ( )thick subcategories ofCM R containing k  

1Supp  Supp   

 

     nonempty specialization closed subsets ofSpecRcontained inSingR [See54] 

 
In his paper,Mohamed Atef  has verified his theoretical assumptions by what is verified experimentally in Nd2FeB14 and what is 
achieved by Antena scientists to achieve the Hilbert fractal motion . 
Also the spectra that is verified by Daniel kapovich can be comparable by the Spec R of the previous tensor triangulated category. 
The torsion group expresses the fractal motion of this magnetic domains . 
 
Theorem.LetR=K[X1………XN+1]be the polynomial ring inN+1variablesover an algebraically closed eld K of characteristic zero. 

suppose that F R defines a reduced hypersurfaceA with isolated singularities in the affine space 1N
K

A .Let 

J ( ,.........., / )n
i

F F X
X


  


) 

denote the Jacobian ideal, letI:= (J;F) denote theideal de ning the singular locus Sing 

(A) in 1N
K

A .Then the following conditions are equivalent: 

(a) The torsion module Torsion /( )N
A K Is a cyclicA-module 

(b) dim /( )N
A K is a maximal  

 
 

The fractal motion of magnetic domain can be described by this thn syzygy between 
3 3

inf: relatedtoNashembeedingandmagneticdoma ormation relatedtoBrouwertheoryandmagneticdomainmotionF   

 
The symbol Supp, which we call thestable support, is a support for the stable categoryof Cohen-Macaulay modules. 

1 1
1 1 1 0.........n n n

n n nF F F F F M   

        be a minimal free resolution of M 

 

1.The thn syzygy ofM is de ned as the image of the map n and we denote it by n M  

2. The(Auslander) transposeofMis de ned as the cokernel of the map HomR(  ;R). 

 
 
 
Now ,let us describe the cox particles and  Klein–Gordon–Fock equation by the common rules of algebric torus . 

 
The algebric torus is deeply related with the compact form, which can be realised as the unitary group U(1) or as the special orthogonal 
groupSO(2) It is an anisotropic torus. As a lie group it is also isomorphic to the 1-torus T1which is where the designation of 
diagonalisable algebraic groups as tori comes from. 

https://en.wikipedia.org/wiki/Unitary_group
https://en.wikipedia.org/wiki/Orthogonal_group
https://en.wikipedia.org/wiki/Orthogonal_group
https://en.wikipedia.org/wiki/Torus_%28mathematics%29
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The conserved current associated to the U(1) symmetry of a complex field ( )x   satisfying the Klein Gordon equation 

reads

* *( ) , ( ) ( ) ( ) ( ) ( )J x o J x x x x x   

         
 

 
So there is a key word betweeen the algebric torus and Klein –Gordon equations that is called unitary group U(1). 
The algebraic torus is deeply related with cohen maccaulay hyper surface as we have defined in the tensor triangulated category. 

Also, Klein Gordon equation is deeply related with cox particles and their solutions can be comparable with analytical rings and 
functorial charachteristics. 
 
K.V. KAZMERCHUK, E.M. OVSIYUK gives a precise describtion for Cox’s Particle in a Magnetic Field in the Spherical Riemann 
Space In the cylindric coordinate system of a spherical Riemann 
space (for little 𝑟 and 𝑧, the metric coincides with the known one in the Minkowski space) 𝑑𝑆2 = 𝑑𝑡2 − cos2 𝑧 
(︀𝑑𝑟2 + sin2 𝑟 𝑑𝜑2)︀− 𝑑𝑧2, An analog of the uniform magnetic field is given by the 

relations 2(cos 1), sinrA B r F B r      

 

We have established that magnetic domains are formed in 3 and their motion is described by brouwer theory as fractals 

move.[seeRef57].Then we have established functorial relation between what is embeeded in 3 by nash embeeding and the 3 by  
3 3

inf: relatedtoNashembeedingandmagneticdoma ormation relatedtoBrouwertheoryandmagneticdomainmotionF   

Then we described fractal motion by thn syzygy . 
 
So,the best description for Cox’s Particle in a Magnetic Field in the Spherical Riemann Space in this functorial relation that uses the 
term of cohen macculay hypersurface is what is described by analytical rings and their geometrical charachteristics have a high similarity 
index with Cox’s Particle in a Magnetic Field in the Spherical Riemann Space. 
 

As the motion has been described by thn syzygy ,so we can consider it as finitely generated.The magnetic domain can be described as 
ideal and is very related with the theme of spectra and ideals.The  radial equation is solved exactly in hypergeometric functions, but the 
equation in the 𝑧-variable can be examined qualtivaley. 
 
Definition. A domain is called a Bezout ring when every finitely generated ideal is principal.  [See Ref58] 
 
The motion of magnetic domain can be parameterized by  valuation field .A valued _eld is an algebraic extension K of k((t)) We 

put k i
i

i
x u



 
   

 
 is a discrete valuation ring, which is complete for the adic 

topology. /K K
con conx   in K

conandshowthatxis vertible .The  uniform magnetic field that is described by K.V. 
KAZMERCHUK, E.M. OVSIYUK can be summeriazed as newoton polygon in this figure below. 
 
 
 

https://en.wikipedia.org/wiki/Unitary_group
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An analog of the uniform magnetic field is given by the relations 2(cos 1), sinrA B r F B r     can be compared with the 

newton polygon can be compared with the graph and sin ,cos of the newton polygon. 
 
 
This comparison comes from the similarity index for algebraic torus and klein Jordon equations related to the U(1).  The magnetic domain 
have 2 power aleph .An important theme in computable model theory isthe study of computable models of complete firstorder 
theories. More precisely, given a complete firstordertheory T, one would like to know which modelsof T have computable copies  and 
which do not. A special case of interest is when T is an ℵ 1-categoricaltheory. In this paper we are interested in computable models of 
ℵ 1- categorical theories, and we always assume that these theories are not ℵ 0-categorical. In addition, since we are interested in 
computable models, all the structures in this paper are countable.We assume that all languages we consider are computable. 
. 
After making a countable partitioning for the magnetic domains .We can establish the nash equilibrium between the functorial relation 

of 
3 3

inf: relatedtoNashembeedingandmagneticdoma ormation relatedtoBrouwertheoryandmagneticdomainmotionF   

By this theorem:If M and N are countable, then thesecond player has a winning strategy in Gω(M, N) if and only if M ∼= N. 
 
 
4.Barkhausen effect  and  partitioning of  magnetic domains to topological spaces: 
Roland Roeder in his research*The Ising model for magnets and the mysterious Lee-Yang zeros* showed the deep relations between 
magnetism and discountinous jumps . 
He showed also the importance of LY Zeros and partionning in the magnetic phase transitions.[see Ref94,95 and 96] 
This tough result is so related with what is proved by Mohamed atef as he showed that residual magnetic domains has 2 power aleph 
power. 
Using Brouwer theory ,he showed the magnetic phase transitions and the discountinuty term importance in magnetic domain motions . 
Now we link the partition that is enlighted by LY Zeros with the set theoretical partitions of magnetic domains. 
 
 
The Barkhausen effect is a name given to the noise in the magnetic output of a ferromagnet when the magnetizing force applied to it is 
changed. Discovered by German physicist Heinrich Barkhausen in 1919, it is caused by rapid changes of size of magnetic domains 
(similarly magnetically oriented atoms in ferromagnetic materials). Barkhausen's work in acoustics and magnetism led to the discovery, 
which became the main piece of experimental evidence supporting the domain theory of ferromagnetism proposed in 1906 by Pierre-
Ernest Weiss. The Barkhausen effect is a series of sudden changes in the size and orientation of ferromagnetic domains, or microscopic 
clusters of aligned atomic magnets (spins), that occurs during a continuous process of magnetization or demagnetization. When an 
external magnetizing field through a piece of ferromagnetic material is changed, for example by moving a magnet toward or away from 
an iron bar, the magnetization of the material changes in a series of discontinuous changes, causing "jumps" in the magnetic flux through 
the iron. These can be detected by winding a coil of wire around the bar, attached to an amplifier and loudspeaker. The sudden 
transitions in the magnetization of the material produce current pulses in the coil, which when amplified produce a sound in the 
loudspeaker. This makes a crackling sound, which has been compared to candy being unwrapped, Rice Krispies, or the sound of a log 

https://en.wikipedia.org/wiki/Ferromagnet
https://en.wikipedia.org/wiki/Heinrich_Barkhausen
https://en.wikipedia.org/wiki/Magnetic_domain
https://en.wikipedia.org/wiki/Acoustics
https://en.wikipedia.org/wiki/Magnetism
https://en.wikipedia.org/wiki/Magnetic_domain
https://en.wikipedia.org/wiki/Pierre-Ernest_Weiss
https://en.wikipedia.org/wiki/Pierre-Ernest_Weiss
https://en.wikipedia.org/wiki/Spin_%28physics%29
https://en.wikipedia.org/wiki/Magnetization
https://en.wikipedia.org/wiki/Ferromagnetic
https://en.wikipedia.org/wiki/Magnet
https://en.wikipedia.org/wiki/Iron
https://en.wikipedia.org/wiki/Loudspeaker
https://en.wikipedia.org/wiki/Rice_Krispies
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fire. This sound, first discovered by German physicist Heinrich Barkhausen, is called Barkhausen noise. Similar effects can be observed 
by applying only mechanical stresses (e.g. bending) to the material placed in the detecting coil.y pinned between two points A and B.For 

X aset and ,  cardinals,we let [ ]X  be the collection of all subsets with cardinals  .We call :[ ]f X   apartition of  

[ ]X  .We say X Y is homogeneous for the partition f , , ( )f A   [See65] 

We must again mention we have proved that magnetic domains has the cardinality of 2 power aleph. 
We can partition the magnetic domains to sets with less cardinality by Erdos Rado theory: 

Erdos – Rado theorem : 1( ) ( )n
n    õ [See Ref66] 

These sets can be formed topological spaces with small cardinalities less than 2 power aleph 
We can explain the barkhausern effect by this partitionning as when we partition the magnetic domains  of 2 power aleph we can verify 
that magnetic domains can be changed and then the bakehausern effect is produced. 
Now we must explain the bake hausen jumpes also by this theory:  
The pinning down number pd(X) of a topological space X is the smallest cardinal such that for any neighborhood assignment 

U:X X ,there is a set A  [ ]X  with A ( )U x     for all x X  

Let us mention that we can express the bakehausern jumps as a variation on the pinning down number pd(X)[See 64] 
As it can be different from jump to jump and can be written in the form of different cardinalities.In a metric space, the separation 
between two points is quantified very precisely- by the metric. It is not so in any topological space. The separation axioms, T1⋯T6 
characterize the degree of separation between two points in a topological space.  T3.5 is a degree of separation "in between" T3 and T4. 
Therefore, let us go through T3 and T4 before T3.5.[See65] 

T3 stands for regular hausdorff:  Every pair of points can be separated by disjoint open sets and a point and a closed set can also be 
separated by disjoint open sets. 

T4 stands for normal hausdorff: Every pair of points can be separated by disjoint open sets and every pair of closed sets can also be 
separated by disjoint open sets. 

Separation by disjoint open sets is one way of separating. Now there is a big qualitative difference between T3 and T4, that is given by 
the Urysohn's lemma .It says that in a T4 space, for any pair of disjoint closed  sets, one can define a continuous function from the space 
to [0,1] that takes the value 0 in one of the closed sets and 1 in the other. 

It seems, two closed sets in a  T4 space are so separated that a function can continuously drop from 1 to 0 between them. This is a 
different degree of separation than separation by open sets- it is called separation by a continuous function. Therefore, the natural 
question is, is a similar theorem true about regular spaces?. Can we separate a point and a closed set in a T3 space by a continuous  
function? The answer is no.  

A point and a closed set in a T3 space are not separated enough for a function to fall from 1 to 0 between them; Therefore there must be 
an intermediate between T3 and T4 where points and closed sets start to be separated by a function. Therefore we define T3.5 as the 
intermediate axiom.  

T3.5 stands for Tychonoff: A closed set and a point not in it can be separated by a function; i.e., one can define a continuous function 
with codomain [0,1] such that it takes the value 0 at the point and 1 in the closed set. Sometimes it is called Tπ 

 
We can  regulate the magnetic domains to be Tπ I think it is so easy to make a topological regulation for the magnetic domains . The 
motion of magnetic domain and its transfer is described by brouwer theory on ecludian spaces . 

  3
1 1 2 2 3 3, [ , ] [ , ]a b a b a b   : XY Z zT H H ,So we have two ecludian spaces one of them is the ecludian space of 

formation which is well defined by nash embeeding theorem of daniel kapovich riemannian manifold and the second is the ecludian 
space of transfer. In his paper,Mohamed Atef  has verified his theoretical assumptions by what is verified experimentally in Nd2FeB14 
and what is achieved by Antena scientists to achieve the Hilbert fractal motion .Also the spectra that is verified by Daniel kapovich can 
be comparable by the Spec R of the previous tensor triangulated category.The torsion group expresses the fractal motion of this magnetic 
domains . 
 
Riemannian manifold in itself can be treated as hausdroff space. High rank set theoretical topologist Danial Kaspovich have verified his 
results by ZFC axioms which is in consistent with the axiom of determinancy.So if we want to make a revision of belief model it must be 

https://en.wikipedia.org/wiki/Heinrich_Barkhausen
https://en.wikipedia.org/wiki/Urysohn%27s_lemma
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a complete information model by XOR functions .Let B = {0, 1}. For two words v,w ∈B m, where m ≤ ω, let hd(v,w) = |{i : v i 6= w i}| 
be the Hamming distance between v and w. For v,w ∈Bω, we let v ∼w i hd(v,w) < ω 
Definition : An infinite XOR function f : Bω →B is a function with the following property: if hd(w 1w2) = 1 then f(w 1)f(w 2).  

Theorem : There exist 2c infinite XOR functions. 
Theorem :No player has a winning strategy in an  
infinite XOR game Gf. There is a unique functor between the chain of prime ideals and the 2cinfinite XOR functions.  

So the pinning down number for Tπ regulation of magnetic domain of 2 power aleph is deeply related to the partitioning theorems of 
erdos radon . 
 
If X is a T3.5-space, then F(X) and A(X) denote the free topologicalgroup and the free abelian topological group on X.  
F(X) is a topological group containing (a homeomorphic copy of) Xsuch that 
1. X generates F(X) algebraically, 
2. every continuous function f : X → H, where H is any topologicalgroup, can be extended to a continuous homomorphism 
¯f: F(X) → H.Similarly for A(X).The existence of these groups was proved by Markov.  
Theorem (JvMSSz) Let X be a T3.5-space. Then d(X) = d(F(X)) = d(A(X)).If X is neat, then so are A(X) and F(X), and pd(X) = 
pd(A(X)) = pd(F(X)). 
 
 
 
By the partionning of T3.5-space into small groups by erdos-rado theorem into small cardinalities. 
We can use these partitioned T3.5-space to create a generated free abelian groupsY.After that,we can regulate this pinning 
number by gp,(Y,,) is the set of words of length not exceeding n in the subgroup generated. 
 
 
In recent years ,Eli katz ,S.A.Morris and Peter Nicolas have investigated the question of which free abeliantopological groups can be 
embedded as subgroups of the free abelian topologicalgroup on the closed unit interval I and, more generally, the closed ball  B”, for 
positive integers n.[See 67 and 68] 
Definition. If X is a topological space with distinguished point e, the abelian topological group F(X) is said to be the (Graev) free 
abelian topological group onX if(a) X is a subspace of F(X), and 
(b) any continuous map $ from X into any abelian topological group H, sending eto the identity of H, extends uniquely to a continuous 
homomorphism f : F(Y) H. 
 
 
Theorem A (Mack et al. )Let Y= UY, be any k,-space with distinguished point e. Then F(X) is a k,-space and F(Y) has km-decomposition 
F(Y)=U, gp,(Y,,), where gp,(Y,,) is the set of words of length not exceeding n in the subgroup generated by Y,. [See 67 and 68] 
 
Definition. Let Y= U X,, be a k,-space, and let Z= U Z, be a closed k,-subspaceof F(X). Then Y is said to be regularly situated with 
respect to X if for each natural number n there is an integer tn such that gp(Y) fl gp,(X,) C_ gp,(Y,). 
 
 
Theorem B (Mack et al. )ZfX is a km-space, and Y is a closed subset of F(Y)containing e such that Z \ {e} is a free algebraic basis for 
gp(Z) and Z is regularly situated with respect to Y, then gp(Z) is F(Z). 

Let T be a L-theory with infinite model.For any L aleph   ,there is N T of cardinality  with 2 automorphisms. 

So the pinning structures can be saved in all the partition methodologist into different finite cardinals . 
 

5.Barkhausen jumps according to the advances in experimental material science: 
 
 
In the absence of an externalmagnetic field the magnetic moments of the soft magneticfiller particles are close to zero. Thus , the ME 
materials haveno net magnetization and in static experiments (static shear,elongation or compression) demonstrate usual elastic 
behaviorcharacterized by linear Hookean stress–strain dependenceat small strains. We have synthesized recently ME based on hard 
magneticparticles of NdFeB alloy . In contrast to MEfilled with carbonyl iron or magnetite, magnetically hardmagnetic elastomers 
(MHME) have non-zero magnetizationin the absence of external magnetic field and demonstrate thestriking properties which MSME 
acquire only in a magneticfield. In particular, the preliminary studies have shown thatbeing pre-magnetized MHME are characterized by 
a straindependentmodulus and demonstrate the shape memory effect. Besides, we have found a strong magnetodielectriceffect in MHME 
displayed as 150% increase of effectivedielectric permittivity in the magnetic field of 10 kOe.Thus, these materials could be used in 
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numerous applicationsin various areas and understanding of their behavior inmagnetic field is challenging. we analyze in deta ils the 
influence of themagnetizing field on the magnetic and viscoelastic propertiesof MHME based on NdFeB powder of different particle s ize 
and concentration. The NdFeB and carbonyl iron powders were used asmagnetic fillers. To study the influence of magnetic parti clesize 
on the ME properties the two types of NdFeB powderswere chosen with the average particle sizes of 50 μm and2 μm. The image of  the 
NdFeB particles is presented infigure 1. Carbonyl iron particles have the average sizeof 3 μm.[See Ref4] 
 

 
 
 
 
I t is proved that there was many enhancing in the surface energy of this composite.In his paper heat treatment of duplex stainless steel 
2205 by inserting nano Nd2FeB14 inHIP manifold ,Mohamed atef succeded to verify experimentally that the impact energy increased 
from 20-25J to be 100 Joule after applying magnetic field and solve the problem of  losing impact energy during aging treatment of 
duplex stainless steel 2205. [See Ref3] 
  

 
Fig 2: Aged -ferrite grain after impact test after inserting Nd2 Fe B14 particles in HIP manifold and the application of high magnetic 
field 
 
Mohamed Atef has used Lusternik Schnierelman category in his paper to formulate the thermal content OF DUPLEX 
STAINLESS 2205 .The same mathematics can be extended to cover The NdFeB and carbonyl iron powders.[See Ref3,4] 
 
 
DEFINITION. The Lusternik-Schnirelman category of A in X, cat(A: X), is the least integer n such that A can becovered by n closed 
subsets of X each of which is contractible in X. If no such integer n exists we put cat (A; X) = . We define cat(X) = cat(X; X) 
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The Lusternik-Schnirelman category is used for finslers spaces especially. As we mentioned above, solobev space where Ising model and 
cahn hillard equations are highly related to it. Solobev space is suppoed to be defined on finsler manifold (Antonelli, Ingarden, & 
Matsumoto, 2013; Bao, Chern, & Shen, 1996).Using the  MAIN THEOREM OF LUSTERNIK-SCHNIRBLMANTHEORY,we can write 
the entire thermal content of the system as CT (M) = D(c(m))E(c(n))[See Ref3] 
D(c(m)) is fractal measurement depends on c(m) as defined in main theorem of Lusternik Schnirbl main theory E(c(n)) is dipolar field 
interaction depends on c(n) as defined in main theory of lusternik schinirby main theorem. 
 
We must mention that Mohamed atef work was deeply related with dislocation dynamics and their properties that has been changed after 
magnetic filling Nd2FeB14 in HIPed duplex stainless steel 2205. 
 

 
 

- - -ferritewith high magnification; 
-ferrite with higher magnification 

 
 

 
 
Fig 4:Optical micrographs of the 2205 duplex stainless steel bar after inserting Nd2Fe B14 particles in HIPmanifold.(dislocation 
densities vary considerably) : (a) transverse section of the unaged specimen; (b) longitudinalsection of the unaged specimen; (c) 
transverse section of the aged specimen 
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A new theory of Barkhausen jumps is proposed, which depicts the movement of 180° Bloch walls as due to kinks bounded by Néel lines. 
[See Ref 70]These lines can be pinned on dislocations. Two activation energies are introduced, one of them for small jumps in low fields 
and low temperatures (pinning energy), the other one for line nucleation energy. An expression of the coercive field is given. After -effect 
phenomena can be explained by the same physical processes. Comparison is made with recent experiments .It is suggested that t he 
variation in size of Barkhausen jumps with field partially reflects the short-range order of pinning defects, and also a change in behaviour 
with the density of Néel lines (flexible when they behave independently one from the other, rigid when they interact). [sthe wall. Under 
an applied field H the Néel segmrotates by an angle a. 

 
 

Figure 5:The displacement of the wall segement on the left under the action of applied magnetic fieldH.The line energy increases 
by a quantity of the order.[See Ref 70] 
 
This new theory that is proposed is deeply related with our charachteristic structures for duplexstainless steel 2205 and NdFeB 
and carbonyl iron powders. 
 
So ,We can make a coomon formula for the surface energy that is related to LS category and T3 space that is related with 
bakehausern effect and the fiolation.There is only one partion for T3 Space such that:  
Every Borel set of the first category in T3 space is no where dense and the support of each regular borel measure on T3 is nowhere dense.  
Then we introduce two versions of the tangential category for a measurable lamination.For a spaceXwhich are new evenFis the 
underlying measurable lamination of a (topological)lamination. The first one, simply called its (LS) category, is a direct adaptation 
tomeasurable laminations of the tangential (or even the usual) category. The second one is called the Λ-category because it involves a 
transverse invariant measure Λ, whose existence is a restriction.  
Proposition : 
LetTbe a measurable transversal which meets each leaf at mostin one point. ThenΛ(T)≤Cat(F,Λ) [See Ref 71,72,76] 
. 
Proposition :Let(X,F,Λ)be a measurable lamination with a transverse in-variant measure. If(X,F)is a measurable suspensionfM×hS, 
thenCat(F,Λ)≤Cat(M)·Λ(S) 
. 
Proposition :For a manifold and a standard Borel spaceT, letM×Tbefoliated as a product. Then 
Cat(M×T,Λ) = Cat(M)·Λ(T)for every measureΛonT, considered as an invariant measure ofM×T.[See Ref 71,72,76] 
 
6.Set theoretical model for Landau Levels on torus and probability functions: 
 
Here is an apparent paradox here: infinitesimal translations should be associated to canonical operators[px,py]∝iℏB, and, at the same 
time, live in a Landau levelof finite dimension B= L1L2/(hc/e), which is impossible from Wintner’s theorem. 
 

Let 2 2 2/T  denote the two-torus; we describe it in physical terms by identifying an atlas of four local charts specified as follows: 
1.Uα={0< x < L1,0< y < L2} 
2.Uβ={x < x < L1+ ̄x,0< y < L2}2 
3.Uγ={0< x < L1,y < y < L2+ ̄y} 
4.Uδ={x < x < L1+ ̄x,y < y < L2+ ̄y} 
with some choice of constants ̄xand ̄y. A uniform magnetic field B transverse to the surfaceT2is represented by the translation invariant 
two-formB=B dx∧dy  
 
Aβ(x,y) =Aα(x,y)( ̄x < x < L1)Aγ(x,y) =Aα(x,y)( ̄y < y < L2) 
Aδ(x,y) =Aα(x,y)( ̄x < x< L1,y < y < L2)Aβ(x+L1,y) =Aα(x,y) +d(.5B(L1y-L2x) . Markov processes are stochastic processes that have 
the property that the next value of the process depends on the current value, but it is conditionally independent of the previous values of 
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the stochastic process – in other words, the behavior of the process in the future is stochastically independent of its behavior in the past, 
given the current state of the process. For a stochastic process to be a Markov process, it must have this property, which is  referred to as 
the Markov property. 
It is deeply related with landau levels.When we define the landau levels in torus,we mean that there is a deep meaning of 
convexity. [See Ref90]  
 
So to calaculate the probability of a particle to occupy landau levels,you must calculate it in hitting property . 
Uwe Basel [See 91,92]obtain symmetric formulae for the probabilities that a plane convex body hits exactly 1, 2, 3, 4, 5 or 6 
triangles of a lattice of congruent triangles in the plane. Furthermore,a very simple formula for the expectation of the number of hit 
triangles is derived. 
In the following, we choose as the angle between the direction perpendicular to the sides b and segment   (see Fig. 7). We assume 

that for every angle  ,_ 0 2   , there is a position of the reference point O so that C with angle  denoted as C is entirely 

contained in exactly one triangle T of Ra; b; c.  
 

…………………………………………………………………………………………………..(1) 
 

 
Fig7:Support function s                               Figure8:Trinagle( ) 
 
 
 
 
These triangulation formula and their probabilistic field is deeply related to two things :  
1.Tensor triangulated category approach for magnetic fields on torus conditions. 
2.The propabilty nature of landau levels as they donot related with a specific laws in the case of torus and deeply related with 
probability. [See91] 
The best probalistic interruption when the relation  (1) holds followed by this in the next page .And also we give the randomness of 
particle distribution by Z number related with landau levels. 
If you practice the equations you will find they are deeply related with the uniform distribution in figure 6 even if in the E(Z)formula . 
In figure 6 ,we have partitioned them into N with different scales. 
Also we we have calculated p(1),p(2),…………….,p(6).[See91,92] These triangulation formula and their probabilistic field is 
deeply related to two things :  
1.Tensor triangulated category approach for magnetic fields on torus conditions. 
2.The propabilty nature of landau levels as they donot related with a specific laws in the case of torus and deeply related with 
probability. [See91] 
The best probalistic interruption when the relation  (1) holds followed by this in the next page .And also we give the randomness of 
particle distribution by Z number related with landau levels. 
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If you practice the equations you will find they are deeply related with the uniform distribution in figure 6 even if in the E(Z)formula . 
In figure 6 ,we have partitioned them into N with different scales. 
Also we we have calculated p(1),p(2),…………….,p(6).[See91,92] 
 

 
 
 
Donot forget the probability function related to landau levels in finite dimensions has been solved as follow: 

 
 
 
 

And the denisity matrix with  
So you can partition the density to N=1,2,…………………….,6 
 
 
Also donot forget we define them in torus and it is easy to obtain probability distribution in convex body.  
 In his book ,Gabriele Isberner [See93]described rules for conditional states and  it is also the best way to describe the problem of landau 
levels in torus as we have mentioned it is impossible from Wintner’s theorem.In his work ,he described the conditional functions as a 
solution of the problem of nonmontonicity [See Ref 93]. Donot forget that there is a high monotonic behavior for the charged particles to 
occupy landau levels.Also ,we have proved that magnetic domains have the cardinality of 2 power aleph and we can regulate them to k -
ordinals . Also donot forget we define them in torus and it is easy to obtain probability distribution in convex body.  
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 In his book ,Gabriele Isberner [See93]described rules for conditional states and  it is also the best way to describe the problem of landau 
levels in torus as we have mentioned it is impossible from Wintner’s theorem.In his work ,he described the conditional functions as a 
solution of the problem of nonmontonicity [See Ref 93]. Donot forget that there is a high monotonic behavior for the charged particles to 
occupy landau levels.Also ,we have proved that magnetic domains have the cardinality of 2 power aleph and we can regulate them to k -
ordinals . 
 

 
 
 
 
 

 
[See93]So, we have the mathematical tools like set theory to solve the problem of landau levels on torus as the ordinals for landau levels.  
[See90]  
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