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Abstract

Modelling sophisticated high-dimensional dependence structures for financial assets in a
portfolio framework require flexible dependence models. However, existing high-dimensional
dependence models are rather restrictive on the dependence structure. These restrictions
compromise the realization of sophisticated dependence characteristics such as tail depen-
dence and asymmetry between multivariate variables. In this paper, a regular vine-copula
based model is employed to analyze financial dependencies and co-movements of a six-
dimensional portfolio of currency exchange rates starting from January 2001 to April 2018.
The model employs partial correlations to construct the regular vine structure and offer su-
perior flexibility in the selection of the distributions to model financial dependence structure.
The regular-vine based model also captures the asymmetry between multivariate variables
using bivariate copulas with flexible tail dependence. Empirical evidence suggests that co-
movements in currency markets are most likely to experience a crash and boom together
thus, concluding that currency markets are integrated due to the nature of the global finan-
cial systems. For purposes of comparison, we explore the benefits of using different regular
vine copula specifications. The C-Vine copula specification is favoured over the other regular
vine copula specifications in modeling the dependence dynamics between currency exchange
rates.
Keywords: copula, regular vines, C-Vine, D-Vine, currency exchange rates, tail depen-
dence, pair-copula constructions.

1 Introduction

Many statistical problems and in particular econometrics applications require modelling so-
phisticated dependence structures between multivariate variables. Conventionally, modelling
dependence between multivariate variables has mainly focused on using linear correlation as the
standard measure of dependence. For this purpose multivariate elliptical distributions such as
Gaussian, and Student-t distributions are widely used in modelling the distributions of multivari-
ate variables. However, empirical evidence suggest that most univariate financial variables are
non-normal and usually exhibit stylized characteristics such as volatility clustering, asymmetry,
and heavy tailed distributions. Therefore, using elliptical distributions especially multivariate
Gaussian distribution is limited since it does not account for asymmetry and tail dependencies
usually present between different pairs of financial variables.

Following the 2008 global financial crisis (GFC), regulators, practitioners, academic research
and media acknowledged that the use of unreliable models for dependence as one of the main
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causes of the crisis (Donnelly and Embrechts, 2010). In the aftermath of financial crisis, mod-
elling the dependence structure between financial securities has been a hot topic of research in
econometrics, finance and statistics. This has motivated the application copula-based approaches
in modelling financial assets, such as portfolio asset returns and currency returns. Copulas are
models that describe the dependence structure between random variables. By the theorem of
Sklar (1959), every multivariate distribution can be decomposed into its marginal distribution
and a copula which gives the dependence structure. Patton (2006) extended and proved the
validity of Sklar’s theorem in the conditional case, thus extending the applications of copula in
finance and econometrics. For bivariate copulas, there exists a large class of copula families with
salient statistical properties that are comprehensively explored in Joe (1997) and Nelsen (2006).
However, the number of satisfactory higher-dimensional parametric copulas are still scarce and
some cannot account for features like heavy tails and asymmetry (Genest et al., 2009). The ever-
increasing demand for modelling high-dimensional dependence using hierarchical copula-based
structures has motivated the innovation of more sophisticated structures.

Vine copulas, or pair-copula constructions, have emerged as one of the most promising tools
for building the dependence structure between high-dimensional financial assets (Aas et al.,
2009). Vine copulas decompose complex high-dimensional dependence into unconditional and
conditional bivariate copulas often called pair-copulas. Since the parameters of each pair-copula
can be estimated in a different way, vine copulas permit each pair to have a different structure and
strength of dependence. Hence, vine copula models results in flexible multivariate copula models
which are often superior to other multivariate copula models (Aas and Berg (2009); Fischer et al.
(2009)). In particular, the vine copulas have become popular for modelling dependence between
financial assets due to their simplicity, flexibility in modeling combinations of tail dependencies
and the possibility of sequentially estimating parameters. The class of vine copula is generally
broad and comprises of a large number of probable pair-copula constructions. However, two
particular classes of regular vines namely canonical-Vine (C-Vine) and a drawable vine (D-Vine)
are the most commonly utilized in many applications (Kurowicka and Cooke, 2006). Graphically,
C-Vine follows a star-like structure with a root node in each tree while D-Vine follows a path
structure with the first tree having nodes with degree two or less. This implies that C-Vines are
very practical for multivariate data where the significance of the variables can be ordered. For
more information on the D- and C-Vines see (Czado et al., 2013).

In the last decade, vine copulas and in particular regular vines have gained acceptance in
many fields of research and are used in modelling the dependence structure of multivariate
random variables. The list of references is increasingly growing in statistical modelling problems
and financial applications ever since Aas et al. (2009) inaugurated their inferential insights that
motivated applications of the vine copula in diverse fields. These vine copula models have been
applied to problems in hydrology (Erhardt et al. (2015); Haff and Segers (2015); Killiches and
Czado (2015); Pereira and Veiga (2018)), biology (Barthel et al. (2016); Schellhase and Spanhel
(2018)), sociology (Cooke et al. (2015)), econometrics (Schirmacher and Schirmacher (2008),
Chollete et al. (2009), Dissmann et al. (2013a)) and finance (Maya et al. (2015); Almeida et al.
(2016)); Kraus and Czado (2017), Allen et al. (2017) and Geidosch and Fischer (2016) only to
list a few recent articles. A survey by Aas (2016) gives an extensive review of vine copulas and
their applications in finance.

In this paper, we apply the regular vine-copula based approach to model the multivariate
dependence dynamics among the six currency exchange rates namely; the British Pound (GBP),
European Euro (EUR), Japanese Yen (JPY), Swiss Franc (CHF), Canadian Dollar (CAD),
Australian Dollar (AUD) all against the US Dollar (USD) for the period starting from January
2, 2001, to April 20, 2018. The pair copula construction approach with a regular vine structure
specification is computed following Dissmann et al. (2013a) sequential selection algorithm.

The rest of the paper is structured as follows: Section 2 introduces briefly the measures of
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bivariate dependence measures of association and measures of tail-dependence that are com-
monly used in copula applications. Section 3 gives the definition of copula and describes the
commonly used bivariate copulas and a few two parameter copulas. The regular vine copulas as
well as the regular vine copula specification and the sequential selection procedure are discussed
in Section 4. Section 5 reports empirical results and comparative performance between different
R-Vine copula specifications. Finally, Section 6 gives conclusion of the paper.

2 Bivariate measures of dependence

This section introduces briefly measures of bivariate dependence that are commonly used in
copula applications. The focus is on measures association and tail-dependence that have intuitive
interpretations and are extremely appropriate in many statistical applications.

2.1 Measures of Correlation

Pearson’s ρ. Pearson’s correlation coefficient ρ ∈ [−1, 1] is the most commonly used measure
of dependence. Let (X,Y )T be vector of random variables with nonzero finite variances. The
linear correlation coefficient between X and Y is defined as

ρ(X,Y ) =
Cov(X,Y )√

Var(X)
√

Var(Y )
(1)

Kendall’s τ . Let (X1, Y1) and (X2, Y2) be two independent pairs of random variables with a
joint distribution F and marginal distributions FX and FY . Then Kendall’s τ is defined by

ρτ (X,Y ) = P {(X1 −X2)(Y1 − Y2) > 0} − P {(X1 −X2)(Y1 − Y2) < 0}
= P (X1 < X2, Y1 > Y2)− P (X1 > X2, Y1 < Y2), (2)

Spearman’s ρ. Let (X1, Y1), (X2, Y2) and (X3, Y3) be three independent pairs of random
variables with a common joint distribution F and marginal distributions FX and FY . Then
Spearman’s ρ is defined by

ρS(X,Y ) = 3 (P {(X1 −X2) (Y1 − Y3) > 0} − P {(X1 −X2)(Y1 − Y3) < 0}) , (3)

2.2 Measures of Tail-dependence

The bivariate tail-dependence measures describe the dependence levels between extremal events
in the upper, lower or both quadrant tails of a bivariate distribution. The bivariate tail depen-
dence has been studied extensively in literature, see (Joe, 1997). The extremal tail dependence
of a bivariate distribution can be illustrated by the coefficients of tail dependence parameters
of its copula. Tail dependence measures the joint probability of extreme movements that occur
in the left (lower) quadrant tail or right (upper) quadrant tail or both tails of a 2-dimensional
distribution. The coefficients of tail dependence are limits (if they exist) that are defined as
follow:

λU = lim
u→1

P
(
Y ≥ F−1Y (u)|X ≥ F−1X (u)

)
= lim

u→1

1− 2u+ C(u, u)

1− u
(4)

λL = lim
u→0

P
(
Y ≤ F−1Y (u)|X ≤ F−1X (u)

)
= lim

u→0

C(u, u)

u
. (5)

It is important to note that, when λU exists and λU ∈ (0, 1], then copula C exhibit upper tail
dependence coefficient, and no upper tail dependence coefficient if λU = 0. Also, if λL exists and
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Table 1: The coefficients of tail dependence for different copula families
Copula Lower tail-dependence Upper tail-dependence

Gaussian – –

Student’s t 2tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

)
2tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

)
Clayton 2−1/θ –

Gumbel – 2− 21/θ

Frank – –

Joe – 2− 21/δ

BB1 2−1/(δθ) 2− 21/δ

BB6 – 2− 2
1
θδ

BB7 2−1/δ 2− 21/θ

BB8 – 2− 21/θ, if δ = 1, 0 otherwise

λL ∈ (0, 1], then copula C exhibit lower tail dependence coefficient, and no lower tail dependence
coefficient if λL = 0. The tail dependence depends only upon the underlying copula, not the
marginal distributions. Table 1 illustrates the lower (upper) tail dependence coefficients for
bivariate copula families and selected two parameter copulas.

3 Bivariate Copulas

Copulas describe the intrinsic dependence formation between random variables. By the theo-
rem of Sklar (1959) every multivariate joint distribution function can be disintegrated into its
marginal distribution functions and a copula function that captures the complete dependence
structure between underlying variables. Consider a vector of random variables (x1, . . . , xn)T with
joint distribution functions F (x1, . . . , xn) continuous margins F1(x1), . . . , Fn(xn). In conformity
with Sklar’s theorem, we’ve a copula function C such that:

F (x1, . . . , xn) = C (F1(x1), . . . , Fn(xn)) , x1, . . . , xn ∈ R. (6)

If all the marginal distribution functions, Fi(xi) for i = 1, . . . , n are continuous, then the copula
C is unique and is expressed as:

C(u1, . . . , un) = F
(
F−11 (u1), . . . , F

−1
n (un)

)
, u1, . . . , un ∈ [0, 1], (7)

where F−1i (ui) are inverse distribution functions of the margins.

Bivariate copulas are comprehensively studied in existing literature, for example, see (Joe
(1997), Joe (2014), Nelsen (2006)). A few bivariate copulas are selected from among the el-
liptical, Archimedean and two parameter copula families that support the most important de-
pendence characteristics: independence, positive and negative dependence, lower and upper
tail-dependence, tail independence, symmetry and asymmetry.

Gaussian copula. The Gaussian (or normal) copula is symmetric, has no tail-dependence,
and is defined as:

CN (u1, u2) = Φρ

(
Φ−1(u1),Φ

−1(u2)
)
,

The density function is given by

c(u1, u2; ρ) =
1√

1− ρ2
exp

(
−ρ

2(x21 + x22)− 2ρx1x2
2(1− ρ2)

)
,
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where x1 = Φ−1(u1) and x2 = Φ−1(u2) are the inverse cumulative distribution function of a
standard normal distribution.

Student-t copula. The Student-t copula is symmetric, has both upper and lower tail-dependence,
and is given by

Ct(u1, u2; ρ, ν) = tν,ρ
(
t−1ν (u1), t

−1
ν (u2)

)
Its density function is

c(u1, u2; ρ, ν) =
1

2π
√

1− ρ2
1

dt(x1, ν)dt(x2, ν)

{
1 +

x21 + x22 − 2ρx1x2
ν(1− ρ2)

}− ν+2
2

,

where

dt (xi, ν) =
Γ
(
ν+1
2

)
Γ
(
ν
2

)√
πν

(
1 +

x2i
ν

)− ν+1
2

, i = 1, 2

is the density of the univariate t-distribution with ν degrees of freedom and Γ(·) is the gamma
function, x1 = t−1ν (u1), x2 = t−1ν (u2) and t−1ν (·) is the quantile function of the univariate stan-
dard t-distribution with ν degrees of freedom. The Student-t copula has two parameters ν the
degrees of freedom and ρ ∈ (−1, 1) the coefficient of correlation.

Clayton copula. The Clayton copula is asymmetric, exhibits lower tail-dependence, but no
upper tail-dependence, and its given by

CC(u1, u2) = max

{(
u−θ1 + u−θ2 − 1

)− 1
θ
, 0

}
(8)

Its density function is

c(u1, u2; θ) = (1 + θ) (u1u2)
−1−θ

(
u−θ1 + u−θ2 − 1

)− 1
θ
−2

The Clayton copula has a single parameter θ ≥ 0, and can only characterize negative monotone
dependence. For θ = 1 the Clayton copula reduces to the independence copula; for θ > 0,
the Clayton copula exhibit negative dependence; and as θ → ∞, the Clayton displays perfect
monotone dependence.

Gumbel copula. The Gumbel copula is asymmetric, contains no lower tail-dependence, but
exhibit upper tail-dependence and is defined as:

CG(u1, u2) = exp

[
−
(

(− lnu1)
θ + (− lnu2)

θ
) 1
θ

]
. (9)

Its density function is

c(u1, u2) = C(u1, u2)(u1u2)
−1
(

(− lnu1)
θ + (− lnu2)

θ
)−2+ 2

θ
(lnu1 lnu2)

θ−1

×
(

1 + (θ − 1)
(

(− lnu1)
θ + (− lnu2)

θ
)− 1

θ

)
,

The Gumbel copula has a single parameter θ ≥ 1, and can only characterize positive monotone
dependence. When θ = 1 the Gumbel copula simplifies to the independence copula; for θ > 0,
the Gumbel copula exhibit positive dependence; and as θ → ∞, the Gumbel displays perfect
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monotone dependence.

Frank copula. The Frank copula is symmetric, has no tail-dependence, and is defined as:

CF (u1, u2) = −1

θ
ln

(
1 +

(exp(−θu1)− 1)(exp(−θu2)− 1)

exp(−θ)− 1

)
(10)

Its density function is

c(u1, u2) = θ(1− e−θ)e−θ(u1+u2)
[(

1− e−θ
)
− 1

(
1− e−θu1

)(
1− e−θu2

)]−2
,

The Frank copula has a single parameter θ ∈ (0,∞). For θ = 0, the Frank copula simplifies to
the independence copula; and for θ →∞, the Frank copula achieve maximal dependence.

Joe copula. The Joe copula is asymmetric, contains no lower tail-dependence, but exhibit
upper tail-dependence and is defined as:

C(u1, u2) = 1−
(

(1− u1)θ + (1− u2)θ − (1− u1)θ(1− u2)θ
) 1
θ
. (11)

The copula density is

c(u1, u2) =
(

(1− u1)θ + (1− u2)θ − (1− u1)θ(1− u2)θ
) 1
θ
−2
· (1− u1)θ−1(1− u2)θ−1

·
[
θ − 1 + (1− u1)θ + (1− u2)θ − (1− u1)θ(1− u2)θ

]
.

The Joe copula has a single parameter θ ≥ 1, and can only characterize positive monotone
dependence. For θ = 1 the Joe copula simplifies to the independence copula; for θ > 0, the Joe
copula exhibit positive dependence; and as θ → ∞, the Joe displays perfect monotone depen-
dence.

BB1 (Clayton-Gumbel) copula. The BB1 (Clayton-Gumbel) copula is defined by

C(u, v; θ, δ) =
{

1 + [(u−θ − 1)δ + (v−θ − 1)δ]
1
δ

}− 1
θ

= η(η−1(u) + η−1(v)), θ > 0, δ ≥ 1, (12)

where η(s) = ηθ,δ(s) =
(

1 + s
1
δ

)− 1
θ
.

BB6 (Joe-Gumbel) copula. The BB6 (Joe-Gumbel) copula is given by

C(u1, u2; θ, δ) = 1−

(
1− exp

{
−
[(
− log

(
1− uθ1

))δ
+
(
− log

(
1− uθ2

))δ] 1
δ

}) 1
θ

, (13)

with θ ∈ [1,∞) and δ ∈ [1,∞)

BB7 (Joe-Clayton) copula. The BB7 (Joe-Clayton) copula has the generator φ(s; θ, δ) =
[1− (1− s)θ]−δ − 1 and it is given by

CJC(u, v; θ, δ) = 1−

(
1−

[(
1− (1− u)θ

)−δ
+
[
1− (1− v)θ

]−δ
− 1

]− 1
δ

) 1
θ

,

= η
(
η−1(u) + η−1(v)

)
, θ ≥ 1, δ > 0. (14)
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where η(s) = ηθ,δ(s) = 1−
[
1− (1 + s)−

1
δ

] 1
θ
,

BB8 (Frank-Joe) copula. The BB8 (Frank-Joe) copula is given by

C(u1, u2; θ, δ) =
1

δ

(
1−

[
1− 1

1− (1− δ)θ
(

1− (1− δu1)θ
)(

1− (1− δu2)θ
)] 1

θ

)
, (15)

with θ ∈ [1,∞) and δ ∈ (0, 1].

4 Regular Vine Copulas

A pair copula construction (PCC) is a multivariate copula based on the idea proposed by Joe
(1997). The fundamental idea of PCC is the decomposition of n-dimensional copula density into
a product of n(n − 1)/2 pair-copula densities, which constitute a flexible class of dependence
models. Regular vine copulas are a simplified class of pair copula constructions. Regular vines
are flexible graphical structures for modelling the multi-dimensional dependence using a cascade
of conditional bivariate pair-copulas as building blocks. Therefore, regular vines combine the
flexibility of bivariate copulas and the advantages of separation of marginals and dependence
structure of multivariate copula modelling. This structure was initially proposed by Joe (1997)
and developed further by Bedford and Cooke (2001), Bedford and Cooke (2002)) and Kurowicka
and Cooke (2006) to organize all possible pair-copula decompositions in a hierarchical form. Aas
et al. (2009) developed the statistical inference. A regular vine on n variable is a vine in which
two edges in tree j are connected by an edge in tree j + 1 only if these edges share a common
node, for j = 1, . . . , n − 2. There are n(n − 1)/2 edges on a regular vine on n variables. The
formal definition of a regular vine is as follows.

Definition 4.1. (Regular vine)
V is a regular vine on n elements if the following conditions hold

1. V = (T1, . . . , Tn−1)

2. T1 = (N1, E1) is a connected tree with nodes N1 = {1, . . . , n}, and edges E1; for i =
2, . . . , n− 1, Ti is a connected tree with nodes Ni = Ei−1.

3. For i = 2, . . . , n− 1, if {a, b} are nodes of Ti connected by an edge, where a = {a1, a2} and
b = {b1, b2}, then exactly one of the ai equals one of the bi (proximity condition).

Definition 4.2. (Regular vine copula specification)
A regular vine copula specification on n variables is a multivariate distribution function defined
as C = (V, B(V), θ(B(V)))

(i) V is a vine tree structure on n variables;

(ii) B(V) = {Be|i = 1, . . . , n− 1, e ∈ Ei} is a set of n(n− 1)/2 bivariate copulas; and

(iii) θ(B(V)) =
{
θe(a),e(b)|De |e ∈ Ei, i = 1, . . . , n− 1

}
is the set of parameters corresponding to

the copula family in B(V).

Following the definition of regular vine specification, the full specification of a regular vine
copula has three components: the vine tree structure V, the pair-copula family set B(V), and
the corresponding copula parameters (B(V)) and marginal distribution functions.
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4.1 Regular vine copula model

The statistical inference on regular vines to a given data set involves the implementation of three
tasks: (a) selecting the corresponding vine structure with all its trees, (b) choosing a copula
family for each of the n(n− 1)/2 pair-copulas, and (c) estimating the corresponding parameters
of each copula.

4.1.1 Tree structure construction

The regular vine tree structure is the dependence structure which connects all bivariate copula
together. To determine the appropriate tree structure of the regular vine, the idea is to prioritize
strongest dependencies in the first trees, because pair-copulas specified in first tree often have
the greatest influence and dependence tends to be strongest in Tree 1 (Dissmann et al., 2013a).
For precision of the model, the strongest dependencies are typically the most important and
vice versa (copula distribution functions for parameters close to independence are similar). This
type of modelling has its drawbacks, for example the solution is not necessarily global optimum,
because each tree is analysed separately. This stepwise tree-by tree inference is a sequential
method. However, it is a computationally fast and effective method comparing to alternatives.
More about alternative ways to model with regular vine copulas can be found in Gruber et al.
(2015), where different regular vine copula applications are reviewed and the advantages and
disadvantages of each discussed. The Kendall’s τ is used to measure the dependence and solving
the optimization problem for each tree in order to find the so called maximum spanning tree (a
tree that maximizes cumulative pairwise dependencies. After determining the regular vine tree
structure, the next task is to fit pair-copulas to all edges of the regular vines (edges represent
conditional and unconditional variable pairs).

4.1.2 Copula selection

In order to select an adequate copula for each pair-copula, a variety of bivariate copulas are
considered for selection including; Gaussian (G), Student’s t (t), Clayton (C), Gumbel (G), Frank
(F), Joe (J), BB1 (Clayton-Gumbel), BB6 (Joe-Gumbel), BB7 (Joe-Clayton), BB8 (Frank-Joe,
Survival Clayton, Survival Gumbel, Survival Joe, Survival BB1, Survival BB6, Survival BB7 and
Survival BB8 copulas for every pair of currency exchange rates. The most appropriate copula
model are selected independently for each pair-copula using the AIC selection criteria. This
model selection method rewards goodness-of-fit of a model and penalizes increasing the number
of parameters. Another possibility is to use Bayesian Information Criterion (BIC) instead of
AIC. Both AIC and BIC use maximum likelihood, however, AIC depends on sample size and
BIC does not. There is also the question of whether likelihood based model selection methods
appropriately take into account tail dependence. The problem with maximum likelihood is that
it mostly fits the distribution in the “middle” and its tail has little impact. After choosing the
best fitting copula families for the conditional and unconditional variable pairs determined by
the edges in regular vine, we can proceed to estimating the parameters of the pair-copulas.

4.1.3 Parameter estimation

The estimation of copula parameters and margin specifications is implemented using a two-step
estimation procedure proposed by Joe and Xu (1996), the inference functions for margins (IFM)
method that rely on maximum likelihood estimation (MLE). In the first step, the marginal
parameters are estimated and in the second step the copula parameters are estimated. This
procedure is commonly used in applications of regular vine copula specification and involves the
selection of pair-copula types and estimation of the copula parameters to be done simultaneously
(Aas, 2016).
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5 Data and empirical results

5.1 Data description

The data set consists of a portfolio of six currency exchange rates covering the period from
January 2, 2001 to April 20, 2018, yielding a total of 4511 daily observations (exclusive of public
holidays and weekends). The currency exchange rates considered include: British pound (GBP),
European Euro (EUR), Japanese Yen (JPY), Swiss Franc (CHF), Canadian Dollar (CAD) and
Australian Dollar (AUD) all against the US Dollar (USD). The data were downloaded from
(https://www.investing.com) website. All daily currency exchange rates are transformed
into logarithm returns using the formula rt,i = log(Pt,i/Pt−1,i), where Pt,i denote price at time
t of i-th currency exchange rate. Figure 1 illustrate daily return plots of different currency
exchange rates. Each plot illustrate some instances of high volatility clustering alternating with
periods of relative tranquility. The volatile behaviour exhibited by returns suggests the presence
of volatility clustering and conditional heteroscedasticity in the data.

Table 2 reports the summary statistics of the currency exchange returns and results of sta-
tistical tests over full sample period of data. The mean values of all daily currency returns are
relatively close to zero and high volatility is evident with significantly high standard deviations
for all currency returns. The excess kurtosis values reported suggest that all currency return
series distributions are heavy tailed and exhibit leptokurtic behaviour beyond that of the normal
distribution. Moreover, the values for skewness imply that currency return series for the Euro,
Japanese Yen and Swiss Frank are negatively skewed while other currency return series are posi-
tively skewed. Additionally, the Jarque-Bera (JB) test results reject the normality hypothesis for
each currency return series confirming that all the series are non-normal distributed. The Aug-
mented Dickey Fuller (ADF) test results reject unit root hypothesis for all return series, which
implies that the currency return series are assumed to be stationary, as using logarithm returns
amounts to a variance stabilizing transformation. Ljung-Box (Q) statistic values reported for
squared currency return series are significantly high, thus we reject the null hypothesis of no
serial autocorrelation up to 20th lag at every level of significance for all the currency return
series. Finally, the ARCH-LM test rejects the no ARCH effect hypothesis, thus confirming the
presence of volatility clustering and conditional heteroscedasticity in currency exchange returns
series. The asymmetric conditional heteroscedastic specification may be considered to be more
practical in the presence of leverage effect.

5.2 The results for marginal specifications

In order to account for the stylized facts about financial returns, we employ a GARCH-type
specifications to model volatility dynamics assuming the innovations term follows a skewed-
student-t distribution. Formally, let rt = ln(Pt/Pt−1) the logarithmic return at time t, the E-
GARCH specification originally proposed by Nelson (1991) is utilized to account for asymmetries
in the currency return series. The conditional mean component is given as follows:

rt = φ0 +

m∑
i=1

φirt−i −
n∑
j=1

ϕjεt−j + εt, (16)

where φ0 is a constant, φi and ϕj are the autoregressive (AR) and moving average (MA) param-
eters with m and n lags, respectively. εt = σtzt, is a stochastic process with zt as iid sequence
assumed to follow a skewed-t distribution with ν degrees of freedom and σt is the conditional
volatility. The conditional variance σ2t is given by:

σ2t = ω +

p∑
i=1

αiε
2
t−i +

p∑
i=1

γiψ (εt−i) ε
2
t−i +

q∑
j=1

βjσ
2
t−j , (17)
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Figure 1: Currency exchange returns between January 2, 2001 and April 20, 2018

where ω is a constant, αi and βj are the ARCH and GARCH effect parameters, respectively. γi
captures the leverage effect: ψ(εt) = ψ(zt) = 1 in case zt < 0 and 0 if zt ≥ 0. The specification
for the marginal distribution plays a pivotal role for dependence modelling since they filter
any serial autocorrelation, heteroscedasticity and leverage effects from the return series hence
yielding appropriate input data for the copula estimation.

The parameter estimates of the fitted marginal specifications given by Equations (16) and
(17) for currency exchange returns are estimated by maximum likelihood estimation method.
The parameters m, n, p and q can take different combinations of values starting from zero to
two lags for brevity purposes. To select the most appropriate univariate model for each of the
currency exchange rates series, the Akaike and the Bayesian information criteria were employed.
Table 3 reports full sample estimation results of the most appropriate ARMA-EGARCH(1,1)
specification model assuming skewed Student’s-t distribution for the innovations (with standard
errors enclosed in parenthesis) over the entire sample period from January 2, 2001, to April 20,
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Table 2: Summary statistics of the daily currency exchange returns

GBP EUR JPY CHF CAD AUD

Nobs 4511 4511 4511 4511 4511 4511
Minimum −2.996 −3, 672 −3.772 −17.145 −3.766 −8.187
Maximum 8.400 2.933 5.216 9.239 3.290 7.674
Mean 0.001 −0.006 −0.001 −0.011 −0.004 −0.007
Stdev 0.585 0.619 0.647 0.719 0.573 0.826
Skewness 0.901 −0.023 −0.083 −2.574 0.121 0.439
Kurtosis 11.703 1.664 3.713 78.421 2.829 11.751

Normality and Stationarity Tests

JB 26382.44 522.06 2600.24 1161960.36 1518.55 26129.47
ADF (15) −15.835 −15.719 −16.612 −17.216 −16.685 −15.938

Heteroscedasticity Tests

LBQ (1) 133.79 71.05 73.08 0.017 236.50 344.54
LBQ (5) 234.98 363.41 387.27 4.781 1421.20 2891.90
LBQ (10) 323.31 646.45 592.25 7.869 2640.70 4880.90
LBQ (20) 464.43 1212.1 1171.40 11.456 4884.5 7137.70
LM (10) 282.76 343.18 465.67 281.76 547.27 421.99
LM (20) 646.04 701.62 809.42 547.63 1093.03 847.87

The table presents the summary statistics of the daily returns over the full sample
period from January 2, 2001, to April 20, 2018, for the GBP, EUR, JPY, CHF, CAD
and AUD. Jarque-Bera (JB) test the normality of the unconditional distribution of
currency returns. Augmented Dickey-Fuller (ADF (k)) test for a unit root against
a trend stationary alternative augmented with k lagged difference terms. Ljung-Box
portmanteau Q-test assessing the null hypothesis of no serial autocorrelations in the
squared returns at k lags. Engle’s Lagrange multiplier (LM (k)) test is used for
testing the presence of ARCH effects on k lags. The critical values of Ljung-Box test
and LM test are 18.307 (lag 10), 31.410 (lag 20) and, 67.5048 (lag 50) at 5%.

2018. Based on the results in Table 3, most of the parameter estimates for both the conditional
mean and variance equations are confirmed to be statistically significant at 1% significance level.
In fact, all the α1 parameters are significant except for CHF while the β parameters are found
to be close to one though most of them are not statistically significant except for JPY at 1%.
In addition, most leverage effect parameter γ reported are significant except for the EUR series.
Finally, the values of the degrees of freedom of the skewed Student-t distributions ranges from
the smallest value of 5.8 to a maximum of 13.6 and all are statistically significant. Thus, the
use of heavy-tailed innovations distribution seems to be justified to account for skewness and
excess kurtosis in all currency return series. Ljung-Box portmanteau Q-test assessing the null
hypothesis of no serial autocorrelations for standardized squared residuals fails to detect any
serial correlation. Engle’s Lagrange multiplier (LM (k)) test is used for testing the presence of
ARCH effects up to 20 lags also fails to detect the presence of ARCH effects. Therefore, we
confirm the ARMA-EGARCH(1, 1) specification satisfactorily filters any serial autocorrelation,
heteroscedasticity and leverage effects in each currency return series. In order to analyze the
dependence structure between currency exchange rates in a better way the standardized residuals
are transformed into the unit square normal variates [0, 1] by utilizing the probability integral
transform (PIT), a necessary condition to implement copula estimation.
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Table 3: Parameter estimates for the fitted ARMA-EGARCH(1, 1) specification with skewed
Student’s-t innovations distribution for the entire sample period starting from January 2, 2001
to April 20, 2018

GBP EUR JPY CHF CAD AUD

Conditional mean parameter estimates

µ −0.005 −0.09 0.004 −0.004 −0.004 −0.017
(0.007) (0.009) (0.007) (0.008) (0.007) (0.000)

φ −0.047 −0.030 −0.828
(0.014) (0.015) (0.044)

θ −0.032 −0.032 0.798
(0.015) (0.015) (0.047)

Conditional volatility parameter estimates

ω −0.009 −0.005 −0.017 −0.006 −0.009 −0.007
(0.002) (0.001) (0.005) (0.001) (0.002) (0.002)

α1 0.013 0.011 −0.018 −0.008 0.009 0.027
(0.006) (0.005) (0.009) (0.001) (0.007) (0.008)

β1 0.993 0.996 0.982 0.994 0.993 0.991
(0.002) (0.000) (0.005) (0.000) (0.001) (0.001)

γ1 0.084 0.075 0.143 0.066 0.107 0.117
(0.015) (0.000) (0.016) (0.007) (0.011) (0.013)

λ 9.216 10.133 5.849 6.922 13.593 10.164
(1.160) (1.426) (0.493) (0.650) (2.596) (1.452)

Heteroscedasticity tests

LBQ(10) 0.005 0.916 0.916 1.000 0.584 0.054
LBQ(20) 0.156 0.890 0.981 1.000 0.195 0.052
LM(10) 0.006 0.043 0.195 0.539 0.349 0.174
LM(20) 0.016 0.180 0.053 0.656 0.419 0.181

5.3 The results for dependence models

Following the sequential selection procedure by Dißmann et al. (2013) described in section 3,
we first determine the pairwise dependence dynamics between currency exchange return series
using the Kendall’s τ rank correlation coefficient to select the optimal R-Vine specification.
Figure 2 illustrates the pairwise scatter plots for the resulting copula data on the top-right
side of the figure and their corresponding estimated Kendall’s τ values on the bottom-left side
of the figure for the different exchange rates representing different magnitude and direction
of pair wise dependencies. Similar to the unconditional correlation measures, the conditional
correlation based on Kendall’s τ indicates that some currency returns generally exhibit higher
dependencies than others, for example; EUR, CHF and AUD. Table 4 also shows different
pairwise dependencies based on Kendall’s τ values reported in the correlation matrix between
pairs of uniform-transformed standardized residuals and the total over each row of the currency
exchange rates. The summation of the pairwise correlations over the EUR row gives the highest
value while the EUR-CHF pair records the strongest pairwise correlation.

The regular vine (R-Vine) tree structure specification is selected by tree-wise selection pro-
cedure described in Section 3. The selection algorithm follows a step-wise approach that selects
each tree Ti, i = 1, 2, . . . , n−1 as the maximum spanning tree based on the (empirical) absolute
Kendall’s τ value of the variable pairs as edge weights see (Dissmann et al., 2013a). The first and
second trees (levels) of the estimated R-Vine specification are illustrated in Figure 3. The letters
and numbers reported on the edges in between the nodes represent the bivariate copulas chosen
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Figure 2: Pairs-plots and Kendall’s taus each currency exchange rates; the pairplots (top-right)
and the corresponding Kendall’s τ vslues (bottom-left).

to model the dependence between the currency exchange rates, while the numbers correspond
to subsequent Kendall’s τ correlation value between the two variables. For example in the EUR
and CHF pair, the selected copula is the Student-t, with 0.63 the Kendall’s τ value. The tree
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Table 4: The empirical Kendall’s τ values and the total over each row of the currency exchange
rates.

GBP EUR JPY CHF CAD AUD Sum

GBP 1 0.4568 0.1602 0.3911 0.2733 0.3468 2.6282
EUR 0.4568 1 0.2355 0.6682 0.3037 0.3974 3.0616
JPY 0.1602 0.2355 1 0.3069 0.0482 0.1320 1.8828
CHF 0.3911 0.6682 0.3069 1 0.2296 0.3042 2.9000
CAD 0.2733 0.3037 0.0482 0.2296 1 0.4225 2.2773
AUD 0.3468 0.3974 0.1320 0.3042 0.4225 1 2.6029

Tree 1

t(0.41)

t(0.45)

t(0.31)

t(0.67)

t(0.38)

CAD

GBP

JPY

CHF

EUR
AUD
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t(0.1)

t(0.14)

t(−0.05)

G270(−0.05)

AUD,CAD

EUR,GBP

CHF,JPY

EUR,CHF
AUD,EUR

Figure 3: Tree 1 and Tree 2 for the estimated R-Vine specification of exchange rates data.

structure graph shows a significant positive correlation between the currencies.
In order to determine the C-Vine structure, the root node must be selected in every level

(tree). Analogous to the approach of fitting an R-Vine structure, the root node of the C-Vine
is selected by summing Kendall’s τ ’s values over each row and picking the node that maximizes
the sum of absolute pairwise dependencies to this node which is measured by the Kendall’s τ
coefficient as the root node (Schepsmeier, 2010). For the first (level) tree of the C-Vine, the
EUR currency exchange rate is selected as the root node, since it has the maximum absolute
Kendall’s tau value compared to the other nodes. The root nodes for other (levels) trees of the
C-Vine selected as described in Czado et al. (2012) for the currency exchange returns data are
presented in Table 5.

Table 5: Root nodes for the C-Vine structure of the currency exchange rates

Tree Root-node

Tree 1 EUR
Tree 2 AUD, EUR
Tree 3 AUD, JPY; EUR
Tree 4 JPY, GBP; AUD, EUR
Tree 5 CAD, GBP; JPY, AUD, EUR or GBP, CHF; JPY, AUD, EUR

The first and second (level) tree structure for both the C-Vine and D-Vine specifications are
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Tree 1

t(0.67)

t(0.45)
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Figure 4: Tree 1 and Tree 2 for the C-Vine specification of the currency exchange rates dataset
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Figure 5: Tree 1 and Tree 2 for the D-Vine specification of the exchange rates dataset.

illustrated in Figure 4 and 5 respectively. For T1 of the C-Vine all the other five currencies ex-
change rates are linked to the EUR which is the root node at the center of this tree diagram. The
dependencies for possible pairs among the currency exchange rates in the first tree are positive
and significant. The CHF-EUR pair has the highest absolute value of Kendall’s τ representing
the strongest correlation between the currencies. Other pair currencies that represent significant
correlations are between EUR, GBP, CHF and AUD while JPY and CAD demonstrate lower
dependence with other currency exchange rates.

Having selected the appropriate tree structures, the next step is to choose the appropriate
pair-copula for each currency exchange pair linked to the R-, C- or D-Vine structures. The
bivariate copulas considered in this paper include; Gaussian (G), Student-t (t), Clayton (C),
Gumbel (G), Frank (F), Joe, BB1, BB6, BB7, BB8, Survival Clayton, Survival Gumbel, Survival
Joe, Survival BB1, Survival BB6, Survival BB7 and Survival BB8 copula. The copula parameters
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are estimated using maximum likelihood estimation method. Finally, the most appropriate
copula specification of each pair-copula is selected using the Akaike and the Bayesian information
criteria. The results of the sequential selection procedure provide a tree structure, corresponding
pair-copula types and parameter estimates.

Table 6 reports parameter estimates of the regular vine (R-Vine) copula, AIC, BIC, Log-
likelihood, Kendall’s τ , the upper (λU ) and lower (λL) tail dependence values respectively. The
corresponding p-values for the estimated parameters are enclosed in parentheses. The parameter
estimates of the conditional and unconditional pair-copulas are observed to be significant at 1%
level of significance. The results also demonstrate that all the pair dependencies in the first
tree of the regular vine are modelled by Student-t copula, signifying the presence of symmetric
tail dependence. The degrees of freedom for the Student-t distribution demonstrate presence
of heavy-tailed distribution for the six currency exchange returns. Therefore, in general the
results suggest that movements in currency exchange rates are inclined in the same direction
with different levels of price margins.

Table 6: Parameter estimates for six-dimensional R-Vine copula
Tree Pair Copula ρ̂ ν̂ τ̂ λU λL

1 AUD,CAD t 0.60 (0.01) 10.90 (1.96) 0.41 0.11 0.11
EUR,GBP t 0.65 (0.01) 10.48 (1.69) 0.45 0.15 0.15
CHF,JPY t 0.47 (0.01) 5.52 (0.54) 0.31 0.17 0.17
EUR,CHF t 0.87 (0.00) 2.62 (0.16) 0.67 0.64 0.64
AUD,EUR t 0.56 (0.01) 7.71 (0.94) 0.38 0.15 0.15

2 EUR,CAD;AUD t 0.16 (0.02) 17.56 (4.79) 0.10 0.00 0.00
AUD,GBP;EUR t 0.22 (0.01) 13.72 (2.77) 0.14 0.01 0.01
EUR,JPY;CHF t −0.08 (0.02) 11.21 (1.86) −0.05 0.00 0.00
AUD,CHF;EUR G270 −1.05 (0.01) – 0.05 – –

3 GBP,CAD;EUR,AUD t 0.08 (0.02) 23.40 (8.00) 0.05 0.00 0.00
CHF,GBP;AUD,EUR t 0.07 (0.02) 19.92 (5.57) 0.04 0.00 0.00
AUD,JPY;EUR,AUD t 0.06 (0.02) 8.29 (1.11) 0.04 0.02 0.02

4 CHF,CAD;GBP,EUR,AUD F −0.02 (0.08) – −0.20 – –
JPY,GBP;CHF,AUD,EUR t 0.01 (0.02) 20.93 (6.46) 0.01 0.00 0.00

5 JPY,CAD;CHF,GBP,EUR,AUD F −0.05 (0.08) – −0.05 – –

For the Student’s-t copula, the first and second parameter components are the correlation coef-
ficient and degrees of freedom parameters respectively.

Correspondingly, the C-Vine and D-Vine copula parameter estimates, AIC, BIC, log-likelihood,
Kendall’s τ , the upper (λU ) and lower (λL) tail dependence values are also presented in Tables
7 and 8 respectively. Similar to the first tree of the R-Vine copula, the parameter estimates
of the unconditional and conditional pair-copulas are significant at 1% level of significance and
Student-t copula is again selected as the most appropriate fit for most pairs of currency returns
in the first and subsequent tree of both C-Vine and D-Vine, signifying the presence of symmetric
tail dependence. The Kendall’s τ values are also highest in the first tree and reduces signifi-
cantly in magnitude in the higher levels starting from the third tree. The lower and upper tail
dependence values are also significant for the first two levels of the regular copulas.

5.4 Comparison of the Vine copulas

For purposes of comparison, we explore the benefits of using different regular vine copula speci-
fications (R-Vine, C-Vine and D-Vine), with the pair-copula families chosen independently from
a variety of bivariate copulas and evaluate their overall performance compared to regular vines
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Table 7: Parameter estimates for six-dimensional C-Vine copula
Tree Pair Copula ρ̂ ν̂ τ̂ λU λL

1 EUR,CHF t 0.87 (0.00) 2.62 (0.16) 0.67 0.64 0.64
EUR,GBP t 0.65 (0.01) 10.48 (1.69) 0.45 0.15 0.15
EUR,JPY t 0.37 (0.01) 4.67 (0.39) 0.24 0.16 0.16
EUR,CAD t 0.44 (0.01) 9.77 (1.57) 0.29 0.06 0.06
EUR,AUD t 0.56 (0.01) 7.71 (0.94) 0.38 0.15 0.15

2 AUD,CHF;EUR G270 −1.05 (0.01) – −0.05 – –
AUD,GBP;EUR t 0.22 (0.01) 13.72 (2.77) 0.14 0.01 0.01
AUD,JPY;EUR t 0.04 (0.02) 6.59 (0.71) 0.03 0.03 0.03
AUD,CAD;EUR t 0.47 (0.01) 10.95 (1.92) 0.31 0.06 0.06

3 JPY,CHF;AUD,EUR t 0.32 (0.01) 20.27 (5.68) 0.20 0.00 0.00
JPY,GBP;AUD,EUR t 0.03 (0.02) 14.49 (3.24) 0.02 0.00 0.00
JPY,CAD;AUD,EUR F −0.53 (0.08) – −0.06 – –

4 GBP,CHF;JPY,AUD,EUR F 0.44 (0.08) – 0.05 – –
CAD,GBP;JPY,AUD,EUR t 0.09 (0.02) 23.52 (8.00) 0.05 0.00 0.00

5 CAD,CHF;GBP,JPY,AUD,EUR F −0.06 (0.08) – −0.01 – –

Table 8: Parameter estimates for six-dimensional D-Vine copula
Tree Pair Copula ρ̂ ν̂ τ̂ λU λL

1 CAD,AUD t 0.60 11.02 0.41 0.11 0.11
CHF,CAD t 0.34 8.61 0.22 0.06 0.06
JPY,CHF t 0.47 5.52 0.31 0.17 0.17
EUR,JPY t 0.37 4.67 0.24 0.16 0.16
GBP,EUR t 0.65 10.63 0.45 0.14 0.14

2 CHF,AUD;CAD t 0.32 13.71 0.21 0.01 0.01
JPY,CAD;CHF t −0.06 11.19 −0.04 0.00 0.00
EUR,CHF;JPY t 0.85 3.00 0.64 0.59 0.59
GBP,JPY;EUR t 0.04 9.70 0.02 0.01 0.01

3 JPY,AUD;CHF,CAD t 0.07 11.58 0.04 0.01 0.01
EUR,CAD;JPY,CHF t 0.27 28.52 0.18 0.00 0.00
GBP,CHF;EUR,JPY t 0.04 25.17 0.03 0.00 0.00

4 EUR,AUD;JPY,CHF,CAD F 1.84 0.00 0.20 – –
GBP,CAD;EUR,JPY,CHF t 0.18 15.50 0.11 0.00 0.00

5 GBP,AUD;EUR,JPY,CHF,CAD BB8 2.14 0.52 0.01 – –

fitting all pair-copulas with only Student-t or Gaussian bivariate copulas. The six different
regular vine specifications compared include;

• R-Vine specification with pair-copulas selected independently from a list of bivariate copula
families listed in Section 3.

• R-Vine specification with all pair-copula selected as Student-t copula. The student-t copula
models both the lower and upper tail dependence.

• R-Vine specification with all pair-copula selected as Gaussian copula. This corresponds to
the elliptical multivariate normal copula.

• C-Vine specification with pair-copulas selected independently from a list of bivariate copula
families (as above).
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• D-Vine specification with pair-copulas selected independently from a list of bivariate copula
families (as above).

The Vuong (1989) and Clarke (2007) tests are used to test the hypothesis that the regular vine
copula specification with independently selected pair-copulas compared to the other regular
copula specifications fit the data more appropriately. In particular, we apply AIC, BIC, the log-
likelihood and results of the Vuong and Clarke tests to select among six different regular vine
specifications. Table 9 reports the log-likelihoods, AIC, BIC, numbers of parameters, number
of fitted pair-copulas and goodness-of-fit tests for all regular vine copula specifications. The
first row shows AIC, BIC, the log likelihood of the selected regular vine copula specification and
number of estimated parameters for the selected pair-copulas families. The second rows lists the
number of different pair-copula families selected. The third and fourth rows give the results of
the Vuong and Clarke tests (corresponding p-value in parenthesis), with and exclusive of Akaike
and Schwarz corrections, respectively, testing the regular vine specification with pair-copulas
selected independently against the other specifications represented in the particular columns.

Table 9: AIC, BIC, Log-Likelihoods, numbers of parameters, and of copulas for all regular vine
specifications as well as results of the Vuong and Clarke tests for all copula specifications with
corresponding p-values in parentheses

R-Vine R-Vine R-Vine R-Vine C-Vine D-Vine
mixed all t all Gauss Indep. mixed mixed

AIC −14597.40 −14577.79 −13102.33 −14597.40 −14619.73 −14468.80
BIC −14424.21 −14385.36 −13006.11 −14424.21 −14452.96 −14282.79
Log Likelihood 7325.70 7318.89 6566.16 7325.70 7335.86 7263.40
No. of parameters 27 30 15 27 26 28

Indep 0 0 0 0 0 0
Gaussian 0 0 15 0 0 0
Student t 12 15 0 12 11 13

No. of Frank 2 0 0 2 3 1
copulas G270 1 0 0 1 1 0

BB8 0 0 0 0 0 1
No correction 1.233 10.918 0.000 −1.319 3.820
p-value (0.218) (0.000) (1.000) (0.187) (0.000)

Vuong Akaike corr. 1.776 10.745 0.000 −1.448 3.943
tests p-value (0.076) (0.000) (1.000) (0.148) (0.000)

Schwarz corr. 3.519 10.192 0.000 −1.864 4.336
p-value (0.000) (0.000) (1.000) (0.062) (0.000)
No correction 2149 2885 0.000 2382 2293
p-value (0.002) (0.000) (1.000) (0.000) (0.271)

Clarke Akaike corr. 2184 2874 0.000 2374 2303
tests p-value (0.035) (0.000) (1.000) (0.000) (0.162)

Schwarz corr. 2267 2846 0.000 2350 2320
p-value (0.743) (0.000) (1.000) (0.005) (0.057)

The table presents AIC, BIC, log-likelihoods, numbers of parameters, and of copulas for all models as well as results of the Vuong and
Clarke tests (test statistics and p-values in parentheses) comparing the R-vine model with mixed copulas to all other models. The positive
values of Vuong test statistics indicate that the test favours the R-vine model over the respective alternative model

The different pair-copula families for the fitted regular vine specifications are distributed
as follows; for the R-Vine mixed copula; 12 Student-t, 2 Frank and 1 G270 copulas requiring
27 parameter estimates. The R-Vine (Student-t) has 30 parameters to be estimated for the 15
Student-t copulas while the R-Vine (Gaussian) has 15 parameters for the 15 Gaussian copulas.
When the selection for a pairwise independent pair-copula is permitted, the results remain the
same as regular mixed vine model. For the C-Vine mixed copula there are; 11 Student-t, 3 Frank
and G270 pair-copulas. Finally, for the D-Vine mixed copula there are; 13 Student-t, 1 Frank
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and 1 BB8 pair-copulas. The Student-t copula is selected the highest number of time for all
the regular vine specification. Note that the number of parameters to be estimated can reduce
when using different copulas. The most appropriate regular vine copula specification can be
selected based on the AIC, BIC and the log-likelihood values. From Table 9, the log-likelihood
value of the regular vine (R-Vine) is 7325.70, the log-likelihood value of C-Vine specification
is 7335.86 and the log-likelihood value of D-Vine specification is 7263.40. Thus, the C-Vine
copula specification is the most appropriate fit, with minor discrepancy compared to the R-Vine
copula specification, demonstrating evidence of both upper and lower tail dependence. However,
when comparing an R-Vine specification with independently selected copulas to the other R-
Vine specifications like the C-Vine and D-Vine, the likelihood cannot be used since the models
are non-nested. The Vuong and Clarke’s likelihood-ratio tests are used to compare non-nested
models.

The R-Vine copula specifications are compared here to determine which specification fits
the currency exchange data better compared to the others. The null hypothesis is “The mixed
R-Vine copula specification fits the data more appropriately than all other copula specifications
under consideration”. Based on the Vuong and Clarke tests results it is observed that the regular
vine-copula specification with independently selected pair-copulas is favoured over the D-Vine
specification and the multivariate Gaussian copula. In this cases the hypothesis cannot be
reject given the corresponding high p-value. There is no statistical significant difference between
regular vine copula specification with independently selected pair-copulas to the independent
R-Vine. The negative test statistic values for the Voung tests and the corresponding high p-value
confirms that the C-Vine specification is favoured over the regular vine copula specification with
independently selected pair-copulas. This is as a result of the dependence structure exhibited by
currency markets which are most likely to experience a crash and boom together thus, concluding
that currency markets are integrated due to the nature of the global financial systems.

6 Conclusion

Understanding and modelling high-dimensional dependence behaviour between currency ex-
change rates can be a challenging task. The vine copula-based approach offers superior flexibil-
ity that facilitates modelling complex asymmetric dependence patterns common in multivariate
financial variables. In this paper, a general regular vine copula model selection approach is pro-
vided to choose sequentially the vine tree structure, the copula families for each pair-copula term
from a wide variety of bivariate copula classes and estimating their corresponding parameters.
The selection approach employs Dissmann et al. (2013b) sequential algorithm which determines
a maximum spanning tree and the absolute Kendall’s tau empirical values are used as weights.
The results of the sequential selection procedure provide a tree structure, corresponding pair-
copula types and parameter estimates for all the regular vine-copula specifications. For purposes
of comparison, we explore the benefits of using different regular vine copula specifications using
the Voung and Clarke tests. The C-Vine copula specification is favoured over all the other regu-
lar vine copula specifications in modelling the dependence dynamics between currency exchange
rates. In future research, we propose to implement the matrix representation of an R-vine copula
specification and also investigate further the model selection problem to include the choice of
other weights other than Kendall’s tau. The reular vine-copula based model can also be used
to explore the practical application of R-Vine copulas in estimating portfolio value-at-Risk.
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