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Abstract

In this paper, we implement the fractional complex transform method to convert the nonlinear

fractional Klein-Gordon equation (FKGE) to ordinary differential equation. We use the variational

iteration method (VIM) to solve the resulting ODE. Some numerical examples are presented to validate

the proposed techniques. Finally, a comparison with the numerical solution using Runge-Kutta of order

four is given.
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1. Introduction

Fractional differential equations (FDEs) have recently been applied in various areas of en-

gineering, science, finance, applied mathematics, bio-engineering and others. However, many

researchers remain unaware of this field. FDEs have been the focus of many studies due to their

frequent appearance in various applications in fluid mechanics, viscoelasticity, biology, physics

and engineering [18]. Consequently, considerable attention has been given to the solutions of

FDEs of physical interest. Most FDEs do not have exact solutions, so approximate and nu-

merical techniques ([9]-[13], [24]), must be used. Recently, several numerical methods to solve

fractional differential equations have been given, such as variational iteration method [6], homo-

topy perturbation method [3], Adomian decomposition method [2], homotopy analysis method

[5] and collocation method [23].

The Klein-Gordon equation plays a significant role in mathematical physics and many sci-

entific applications, such as solid-state physics, nonlinear optics, and quantum field theory [25].

The equation has attracted much attention in studying solitons ([21], [22]) and condensed mat-

ter physics, in investigating the interaction of solitons in a collisionless plasma, the recurrence

of initial states, and in examining the nonlinear wave equations [2]. Wazwaz has obtained the
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various exact travelling wave solutions such as, compactons, solitons and periodic solutions by

using the tanh method [25]. The study of numerical solutions of the Klein-Gordon equation has

been investigated considerably in the last few years. In the previous studies, the most papers

have carried out different spatial discretization of the equation ([4], [26]). Where, the numerical

solution using radial basis functions is given in [1], collocation and finite difference-collocation

methods for the solution of proposed problem is introduced in [14], finally, the tension spline

approach for the numerical solution of nonlinear Klein-Gordon equation is implemented in [19].

We describe some necessary definitions and mathematical preliminaries of the fractional calculus

theory which will be used further in this work.

Definition 1.

The Caputo fractional derivative operator Dα of order α is defined in the following form

Dαf(x) =
1

Γ(m− α)

∫ x

0

f (m)(t)

(x− t)α−m+1
dt, α > 0,

where m− 1 < α ≤ m, m ∈ N, x > 0.

Similar to integer-order differentiation, Caputo fractional derivative operator is a linear operation

Dα (λ f(x) + µ g(x)) = λDα f(x) + µDα g(x),

where λ and µ are constants. For the Caputo’s derivative we haveDαC = 0, if C is a constant [18]

and

Dα xn =

{
0, for n ∈ N0 and n < dαe;

Γ(n+1)
Γ(n+1−α)

xn−α, for n ∈ N0 and n ≥ dαe.
(1)

We use the ceiling function dαe to denote the smallest integer greater than or equal to α and

N0 = {0, 1, ...}. Recall that for α ∈ N, the Caputo differential operator coincides with the usual

differential operator of integer order. For more details on fractional derivatives definitions and

theirs properties see ([17], [18]).

2. Chain rule for fractional calculus

In previous papers ([8], [15], [16]), the authors used the following chain rule

∂αu

∂tα
=
∂u

∂s

∂αs

∂tα
,

to convert a fractional differential equation with Jumarie’s modification of Riemann-Liouville

derivative into its classical differential partner. In [7], the authors showed that this chain rule is

invalid by giving a counter example as follows:
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Assume, s = tα, 0 < α < 1 and u = sm, i.e., u = tmα, then

∂αu

∂tα
= Dα

t u = Dα
t t
mα =

Γ(1 +mα)tmα−α

Γ(1 +mα− α)
.

Now we calculate ∂u
∂s

∂αs
∂tα
.

Since ∂u
∂s

= msm−1 = mtαm−α and

∂αs

∂tα
= Dα

t s = Dα
t t
α =

Γ(1 + α)tα−α

Γ(1 + α− α)
=

Γ(1 + α)t0

Γ(1)
= Γ(1 + α).

Then,
∂u

∂s

∂αs

∂tα
= mtmα−αΓ(1 + α) = mΓ(1 + α)tmα−α.

This shows that, ∂αu
∂tα
6= ∂u

∂s
∂αs
∂tα

. In [7] the authors show that

∂αu

∂tα
= σt

∂u

∂s

∂αs

∂tα
,

where σt denotes the sigma index. From the above example we can see that σt = Γ(1+mα)
mΓ(1+mα−α)

.

For more details, see [20].

3. Reducing the nonlinear FKGE to ordinary differential equation

In this section, to demonstrate the effectiveness of our approach, we will apply the complex

transformation of Li and He to construct an approximate solution for the nonlinear fractional

Klein-Gordon equation. Consider the following general form of FKGE

D2α
t u(x, t) + aD2β

x u(x, t) + bu(x, t) + uγ(x, t) = 0, x ∈ (0, 1), t > 0, (2)

where Dα
t denotes the fractional derivative of order α with respect to t, Dα

x denotes the fractional

derivative of order β with respect to x, u(x, t) is unknown function, and a, b, c and γ are known

constants with γ ∈ R, γ 6= ±1. We also assume the following initial conditions

u(x, 0) = g1(x), ut(x, 0) = g2(x), x ∈ (0, 1), (3)

and the following boundary conditions u(0, t) = u(1, t) = 0.

Li and He proposed a fractional complex transform for converting fractional differential equa-

tions into ordinary differential equations, so that all analytical methods for advanced calculus

can be easily applied to fractional calculus. Now, take the following fractional complex transform

u(x, t) = U(ξ), ξ =
Kt2α

Γ(1 + 2α)
+

Lx2β

Γ(1 + 2β)
, (4)

where K and L are constants. By using the fractional chain rule

D2α
t u = σt

d2u

dξ2
D2α
t ξ = σtKU

′′,

D2β
x u = σx

d2u

dξ2
D2β
x ξ = σxLU

′′.
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Without loss of generality we can take σt = σx = ` where ` is a constant. By using the definition

of Caputo derivative and the above modified chain rule, Eq.(2) converts to the following ordinary

differential equation

(K`+ aL`)U ′′ + bU + cUγ = 0,

we can write the above ODE in the form

U ′′(ξ) + χ1U(ξ) + χ2U
γ(ξ) = 0, (5)

where χ1 = b
(K`+aL`)

and χ2 = c
(K`+aL`)

.

4. Procedure of solution with VIM

In this section, we implement VIM for solving nonlinear ODE (5) with suitable boundary

conditions. According to VIM, we construct the following recurrence formula

Un+1(ξ) = Un(ξ) +

∫ ξ

0

λ(τ)
[
U

′′

n (τ) + χ1Ũn(τ) + χ2Ũ
γ
n (τ)

]
dτ, (6)

where λ is a general Lagrange multiplier. Making the above correction functional stationary

δUn+1(ξ) = δUn(ξ) + δ

∫ ξ

0

λ(τ)[U
′′

n (τ)]dτ

= δUn(ξ) +

∫ ξ

0

[λ(τ)δU
′′

n (τ)]dτ

= δUn(ξ) + [δ U
′

nλ− δ Unλ
′
]τ=ξ +

∫ ξ

0

[δ Un(τ)λ
′′
(τ)]dτ = 0,

where δŨn, is considered as restricted variation, i.e., δŨn = 0, yields the following stationary

conditions (by comparison the two sides in the above equation)

λ
′′
(τ) = 0, 1− λ′

(τ)|τ=ξ = 0, λ(τ)|τ=ξ = 0. (7)

Eqs.(7) are called Lagrange-Euler equation and its natural boundary conditions, the Lagrange

multiplier, therefore

λ(τ) = τ − ξ. (8)

Now, by substituting from (8) in (6), the following variational iteration formula can be obtained

Un+1(ξ) = Un(ξ) +

∫ ξ

0

(τ − ξ)
[
U

′′

n (τ) + χ1Un(τ) + χ2U
γ
n (τ)

]
dτ. (9)

Now, we start with initial approximation

U0(ξ) = U(0) +
U ′(0)

1!
ξ = A+Bξ,
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for some constants A = U(0) and B = U ′(0). By using the above iteration formula (9), we can

directly obtain the first components of the solution of (5) as follows

U0(ξ) = A+Bξ,

U1(ξ) = A+Bx+2.1761Ax2+2.1761A3x2+0.7254Bx3+2.1761A2Bx3+1.0881AB2x4+0.21763B3x5, ...,

and so on. The unknown variables A and B are computed if we satisfy the boundary conditions.

5. Numerical simulation

In this section, we solve numerically the nonlinear fractional Klein-Gordon equation where

we use the complex transformation method to reduce it as ODE, then we solve the resulting

ODE using VIM. Some numerical examples are presented to validate the solution scheme. To

achieve this propose we consider the following three cases.

Case study 1:

In this case, we take the values of the constants as follows

a = −1, b = 1, c = 1, γ = 3, K = 0.25, L = 0.50, ` = 1,

with different values of α and β (α = 0.5, 0.7, 1.0 and β = 0.5, 0.7, 1.0). In this case, the values

of A and B are A = 0.0, B = 0.05.

Figure 1. The behavior of the approximate solution using RK4 (Top) and VIM (Bottom)

with different values of α and β.

The obtained numerical results by means of the proposed methods are shown figure 1. In this

figure, we presented a comparison between the numerical solution using Runge-Kutta of order

four (RK4) and the approximate solution using the proposed method, VIM with n = 5.
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Case study 2:

In this case, we take the values of the constants as follows

α = 0.9, β = 0.9, γ = 3, K = 0.25, L = 0.50, ` = 1,

with different values of a, b and c (a = −1, 1,−1, b = 1,−1, 1 and c = 1,−1,−1). In this case,

the values of A and B are A = 0.0, B = 0.05.

The obtained numerical results by means of the proposed methods are shown figure 2. In this

figure, we presented a comparison between the numerical solution using Runge-Kutta of order

four (RK4) and the approximate solution using the proposed method, VIM with n = 5.

Figure 2. The behavior of the approximate solution using RK4 (Top) and VIM (Bottom)

with different values of a, b and c.

Case study 3:

In this case, we take the values of the constants as follows

a = −1, b = 1, c = 1, α = 0.75, β = 0.75, γ = 3, ` = 1,

with different values of K and L (K = 0.25, 0.50, 0.25, and L = 0.50, 0.25, 0.75). In this case,

the values of A and B are A = 0.0, B = 0.05.

The obtained numerical results by means of the proposed methods are shown figure 3. In this

figure, we presented a comparison between the numerical solution using Runge-Kutta of order

four (RK4) and the approximate solution using the proposed method, VIM with n = 5.
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Figure 3. The behavior of the approximate solution using RK4 (Top) and VIM (Bottom)

with different values of K and L.

6. Conclusion and remarks

In this article, the properties of the fractional complex transform method are used to reduce the

nonlinear fractional Klein-Gordon equation to the solution of ordinary differential equation. The result-

ing ODE is solved by using variational iteration method. The obtained approximate solution using the

suggested methods is in excellent agreement with the numerical solution using the forth order Runge-

Kutta method and show that these approaches can be solved the problem effectively and illustrates the

validity and the great potential of the proposed technique. All computations in this paper are done

using Matlab 8.0.
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