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Abstract

In this paper, we have presented a combined trip distribution and stochastic traffic assignment model (abbreviated as CDSAM). In the model, the doubly constrained gravity trip distribution submodel is incorporated with probit-based stochastic user equilibrium assignment model. We have also presented an algorithm which is based on Evan’s algorithm and the method of successive average (MSA). In the algorithm, the k-shortest path composite route cost of each OD pair is used to solve for the optimal solution of the trip distribution submodel. A numerical example has also been presented. It is found that outer iterations do not decrease consistently with the increase of inner iterations, which suggests that it is most efficient to perform a single inner iteration at each outer iteration. Comparison between the model and combined trip distribution and deterministic traffic assignment model (abbreviated as CDDAM) is made in the numerical example. It is also found that the outer iterations needed for convergence of CDDAM is much less than that in CDSAM.
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1. Introduction

It is well known that the traditional travel demand forecasting process includes four stages: trip generation, trip distribution, mode split, and traffic assignment. A combined traffic assignment model incorporates traffic assignment with at least one of the other three stages and can guarantee the consistency of travel choice at different stages. Combined models can be classified into two kinds in the following sense: models combined with deterministic traffic assignment and models combined with stochastic traffic assignment. 

Lots of research on combined models with deterministic traffic assignment has been documented. These include modeling combine trip distribution with traffic assignment (Evans, 1973, 1976), models combing modal split and equilibrium assignment (Abdulaal and LcBlanc, 1979; Florian, 1977; LcBlanc and Farhangian, 1981; LeBlanc and Abdulaal, 1982), combined distribution-assignment of traffic (William, Lam and Huang, 1992; Rorian, Nguyen and Fcrland, 1975; Frank, 1978), combined trip distribution modal split and trip assignment model (Florian and Nguyen, 1978; Friesz, 1981; LeBlanc and Abdulaal, 1982), combined trip generation, trip distribution, modal split, and trip assignment model (Safwat and Magnanti, 1988), combined location, mode, and route choice problem (Boyce et al., 1984; Chon, 1982). Boyce and Janson (1980) reformulated doubly-constrained trip distribution problem. Meng et al. (2008) studied the origin-based algorithm for solving combined trip distribution and user-equilibrium assignment (CDA) model. 
Lots research on combined stochastic model has been reported. These include Continuous Dispersed Equilibrium model (Erlander, 1990), combined modal split and stochastic assignment model for congested networks (Wu and Lam, 2003), combined distribution and stochastic traffic assignment model (Jan and Patriksson, 1998),  combined model that integrates trip generation, trip distribution, modal split, and traffic assignment (Zhou et al., 2009), simultaneous estimation of the trip distribution and logit-based Stochastic User Equilibrium (SUE) traffic assignment (Sung and Rakha, 2009),  combined distribution and two logit assignment models (Yao et al., 2014), combined distribution and assignment model based on the multi-nominal logit probability function (Ryu et al., 2014), combined doubly-constrained gravity-based trip distribution and paired-combinatorial-logit stochastic user equilibrium assignment model (Karoonsoontawong and Lin,  2015).
In this paper, a different combined trip distribution and stochastic assignment model (abbreviated as CDSAM) is presented. In the model, the doubly constrained gravity trip distribution submodel is incorporated with probit-based stochastic user equilibrium assignment model. An algorithm which is based on Evan’s algorithm and the method of successive average (MSA) is presented to solve the model. The efficiency of the algorithm is analyzed. Comparison between the model and combined trip distribution and deterministic traffic assignment model (abbreviated as CDDAM) is made. 
The paper is organized as follows. In section 2, the formulation of the model is presented. In section 3, an algorithm is presented to solve the model. In section 4, a numerical example is presented, the efficiency of the algorithm analyzed, comparison between CDSAM and CDDAM made. Section 5 concludes the paper. 

2. Model formulations

Let us first introduce the following necessary notations:
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      the vector of fixed OD pair demands, 
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    the set of paths between OD pair 
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      the vector of path flows, 
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      the vector of equilibrium link flows, 
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      the vector of upper bound for link capacity expansions, 
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      the vector of link travel times, 
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     the link-path incidence matrix, 
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The model presented in this paper is as follows:
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Subject to (2), (3), (4), (5), and (6), as follows:
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   where
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where 
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In our model, the link flow and OD demand are variables. 

THEOREM. The solution of 
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 will correspond to a gravity-type trip distribution and stochastic user equilibrium assignment. 

Proof. The Kuhn-Tucker conditions for this problem can be shown to be:
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Assuming that the link performance functions are strictly increasing (i.e., 
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Based on (10) and (5), it holds that 
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The following equation can be derived from equation (9):
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Let 
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 are Lagrange multipliers for the constraints (3) and (4) , (11) is equivalent to a gravity-type trip distribution model.  

We have shown the solution of 
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 corresponds to a gravity-type trip distribution and stochastic user equilibrium assignment. This completes the proof. 

3. Solution algorithm 

In this section, we present an algorithm to solve problem (1) constrained by (2), (3), (4), (5), and (6). The algorithm is based on Evan’s method modified by Horowitz (1989) and the method of successive average (MSA). Evan’s algorithm and the modified algorithm are for solving deterministic combined trip distribution and assignment model. MSA is for solving stochastic user equilibrium assignment. When solving a combined trip distribution and deterministic assignment model, a given minimum cost route between each OD pair can be decided at each iteration and the trip distribution sub-model is thus solved based on the minimum cost route, as is done in Evan’s algorithm. However, in a combined trip distribution and stochastic assignment model, trips of each OD pair is dependent upon a set of routes being used of the OD pair and a different method to calculate the travel cost of each OD is needed. In our algorithm, the k-shortest path composite route cost of each OD pair is used to solved for the optimal solution of the trip distribution sub-model. 

The algorithm is described as follows:
Step 1. Initialization. Select an initial feasible solution 
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Step 2. Compute link cost 
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Step 3. Find k-shortest paths and calculate the composite travel cost 
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Step 4. Find a new set of trip demand
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Step 5. Perform probit-based stochastic loading based on 
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Step 6.  Move. Find the new flow pattern by setting
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Step 7. Convergence criterion. If 
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The probit-based stochastic loading procedure is as follows:

Step 1. Initialization. Set 
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Step 2. Sampling. Sample 
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Step 3 All-or-nothing assignment. Based on 
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Step 4. Flow averaging. Let  
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Step 5. Stopping test 

            (a) Let 
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The k-shortest path problem in this paper is to find the k shortest paths between a node pair in a network. The shortest path problem is a special case of k-shortest path problem when k is set as 1. At each iteration of the algorithm, after the k shortest paths are found of each OD pair, the composite travel cost is calculated based on equation (15). Method based on Furness iterations is then used to solve the doubly constrained gravity model (16) - (19) to find trip demand of each OD pair. The descending direction is found by performing probit-based stochastic network loading. A predetermined step size related to the iteration number 
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 is used in updating link volume. 

Similar to MSA, the algorithm involves two types of iterations. The first type are the sampling/assignment iterations associated with the stochastic network loading algorithm, which can be termed ‘inner iterations’. The second type are the equilibrium iterations, which can be termed ‘outer iterations’ (Sheffi, 1985).  The computational costs of traffic assignment over a realistic-size network are a function of the number of all-or-nothing assignments executed and are proportional to the total number of  (inner
[image: image122.wmf]×

outer) iterations. It is interesting to know what is the number of inner iterations that should be used per outer iteration so that the algorithm will be the most efficient. Section 4 compare the efficiency of the algorithm when different number of inner iterations is used per outer iteration through a numerical example. 

4. A numerical example
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Figure1. Simulation network

In order to illustrate the applications of the algorithm we will apply the algorithm to the simulation network shown in Fig.1. The network has 60 links and 13 nodes. Nodes highlighted are both origin and destination zones (labeled as 1, 5, 9, and 11, respectively). The capacity 
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and free flow travel time 
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of each link is given in Table 1. The base trip distribution matrix and trip-end totals for the doubly constrained gravity model is given in Table 2. The travel time function of each link is defined as 
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 is set as 0.15 in this example. 
In this example, the k-shortest path problem is set to find 3 shortest paths of each OD pair. Method based on Dijkstra’s algorithm is used to find k-shortest paths. Parameter 
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 is set as 0.2 in equation (16). Only interzonal trip demand is considered in this example. When solving doubly constrained gravity model, a matrix of the values 
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 needs to be built. The element of the matrix is set as zero if 
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. Method based on Furness iterations is used to solve the doubly constrained gravity model. The same base matrix is used at all iterations to solve the doubly constrained gravity trip distribution model. 
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 is set as 0.1 in probit-based stochastic network loading.
  The initial feasible solution is found based on the following procedure. Find k-shortest paths for each OD pair based on free flow travel time. Calculate the composite travel cost of each OD pair based on equation (15). Solve doubly constrained gravity model (16) constrained by (17)-(19) to get 
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. Perform probit-based stochastic network loading based on 
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To compare the application of our algorithm on combined trip distribution and stochastic traffic assignment model (abbreviated as CDSAM) and combined trip distribution and deterministic traffic assignment model (abbreviated as CDDAM), the numerical example also includes calculation of CDDAM. CDDAM is a special case of CDSAM when 
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 in CDSAM  is zero . 
Table 1. Network parameters

	link #
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	link #
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	link #
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	1
	6
	10
	
	16
	1
	9
	
	31
	4.5
	9
	
	46
	1
	9

	2
	6
	10
	
	17
	0.5
	9
	
	32
	4.5
	9
	
	47
	6
	10

	3
	5
	9
	
	18
	0.5
	9
	
	33
	9.5
	11
	
	48
	6
	10

	4
	5
	9
	
	19
	4
	8
	
	34
	9.5
	11
	
	49
	5.5
	10

	5
	4.5
	9
	
	20
	4
	8
	
	35
	4
	9
	
	50
	5.5
	10

	6
	4.5
	9
	
	21
	4
	8
	
	36
	4
	9
	
	51
	4
	9

	7
	9.5
	10
	
	22
	4
	8
	
	37
	5
	10
	
	52
	4
	9

	8
	9.5
	10
	
	23
	0.5
	9
	
	38
	5
	10
	
	53
	9.5
	11

	9
	4
	9
	
	24
	0.5
	9
	
	39
	6
	10
	
	54
	9.5
	11

	10
	4
	9
	
	25
	1
	9
	
	40
	6
	10
	
	55
	4
	9

	11
	5.5
	10
	
	26
	1
	9
	
	41
	4
	8
	
	56
	4
	9

	12
	5.5
	10
	
	27
	5
	10
	
	42
	4
	8
	
	57
	5.5
	10

	13
	5
	10
	
	28
	5
	10
	
	43
	0.5
	9
	
	58
	5.5
	10

	14
	5
	10
	
	29
	5.5
	11
	
	44
	0.5
	9
	
	59
	5
	10

	15
	1
	9
	
	30
	5.5
	11
	
	45
	1
	9
	
	60
	5
	10


 Table 2. Base trip distribution matrix and trip-end totals

	Base trip distribution matrix

	
	1
	5
	9
	11
	Target
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	1
	0
	5
	10
	20
	40

	5
	5
	0
	10
	30
	46

	9
	5
	10
	0
	10
	40

	11
	10
	20
	25
	0
	70
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Target
	26
	40
	50
	80
	196


Table 3. Iterations needed for convergence

	
	CDSAM


	CDDAM

	Inner iterations 
	1
	5
	10
	20
	1

	Outer iterations 
	25
	17
	20
	21
	13


Note: The convergence criterion is 0.005. 

Table 4. Resultant link volume and link travel time

	Link #
	Link volume
	Link travel time

	
	CDSAM

Inner iterations
	CDDAM
	CDSAM

Inner iterations
	CDDAM

	
	1
	5
	10
	20
	
	1
	5
	10
	20
	

	     1

     2

     3

     4

     5

     6

     7

     8

     9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

   29

    30

    31

    32

    33

    34

    35

    36

    37

    38

    39

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

      60
	0.3825
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6.0000
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0.5006
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Table 5. Resultant trip demand 

	Demand #
	CDSAM

Inner iterations
	CDDAM

	
	1
	5
	10
	20
	

	Q1,5
	6.9844
	7.0830
	7.0477
	7.0132
	7.0060

	Q1,9
	9.0659
	9.0315
	9.3012
	9.1282
	9.0170

	Q1,11
	23.9497
	23.8855
	23.6511
	23.8585
	23.9771

	Q5,1
	5.5603
	5.6374
	5.3718
	5.4949
	5.5845

	Q5,9
	11.1702
	11.1593
	10.8511
	11.0397
	11.1107

	Q5,11
	29.2695
	29.2033
	29.7771
	29.4653
	29.3048

	Q9,1
	5.0637
	5.0032
	5.1808
	5.1139
	5.0837

	Q9,5
	8.3257
	8.2550
	8.4164
	8.3793
	8.3678

	Q9,11
	26.6106
	26.7419
	26.4029
	26.5068
	26.5485

	Q11,1
	15.4104
	15.3935
	15.4816
	15.4254
	15.3658

	Q11,5
	24.7521
	24.7235
	24.5975
	24.6692
	24.6879

	Q11,9
	29.8375
	29.8830
	29.9209
	29.9055
	29.9463


  Four different inner iterations are used in this example. The convergence criteria is set as 0.005 for all cases.
[image: image146.wmf]m

is set as 3 in step 7.  The outer iterations needed to converge given inner iterations are shown in Table 3. It is interesting to note that outer iterations do not decrease consistently with the increase of inner iterations. This is quite similar to MSA which is used to solve stochastic user equilibrium traffic assignment. This suggests that it is most efficient to perform a single sampling of perceived travel time from each link, coupled with a single all-or-nothing assignment, at each outer iteration. The outer iterations needed for convergence of CDDAM (which is 13 in this example) is much less than that in CDSAM. The link flow volumes and link travel times in each case are shown in Table 4. The resultant trip demands in each case are shown in Table 5. It can be seen that trip demands in four cases are very alike for CDSAM, again indicating a single inner iteration is good enough at every outer iteration. The difference between solutions of CDSAM and CDDAM is due to the randomness of perceived link travel time in stochastic traffic assignment process. 

5. Conclusion
In this paper, we have presented a combined trip distribution and stochastic traffic assignment model. In the model, the doubly constrained gravity trip distribution submodel is incorporated with probit-based stochastic user equilibrium assignment model. 

A theorem has been proposed to show the solution of the model corresponds to a gravity-type trip distribution and stochastic user equilibrium assignment. We have also presented an algorithm which is based on Evan’s algorithm and the method of successive average (MSA). In the algorithm, the k-shortest path composite route cost of each OD pair is used to solve for the optimal solution of the trip distribution submodel. A numerical example has also been presented. The example shows that it is most efficient to perform a single inner iteration at each outer iteration. The comparison of CDDAM and CDSAM shows that the outer iterations needed for convergence of CDDAM is much less than that in CDSAM. 

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article. 

References

Abdulaal M. and LcBlanc L. J. (1979) Methods for combining modal split and     

equilibrium assignment models. Transpn. Sci., 13, 292-314.

Evans S. P. (1973) Some Applications of Optimization Theory in Transportation  

Planning. PhD thesis, Research Group in Traffic Studies. University College,  

        University of London, London.

Evans S. P. (1976) Derivation and analysis of some models for combining trip  

        distribution and assignment. Transpn. Res., 10, 37-57.

Boyce D. E. (1986) Urban transportation network-equilibrium and design models: recent 

        achievements and future prospects. Environment and Planning A., 16, 1445-1474.

Chon K. S., (1982) Testing of Combined Urban Location and Travel Choice Models PhD 

 thesis, Department of Civil Engineering, University of Illinois at Urbana-Champaign, Urbana,IL.

D. E. Boyce and B. N. Janson. (1980) A discrete transportation network design problem with combined trip distribution and assignment. Transportation Research. Part B:  Methodological. ISSN：0191-2615.  Vol.14 NO.1-2 page：147-154 doi：10.1016/0191-2615(80)90040-5
Erlander, S. (1990) Efficient population behavior and the simultaneous choices of origins, destinations and routes. Transportation Research. Part B: Methodological.  ISSN：0191-2615. Vol.24. NO.5 page：363-373. doi：10.1016/0191-2615(90)90009-N
Florian M. (1977) A traffic equilibrium model of travel by car and public transit modes.  

        Transpn. Sci., 11(2), 166-179.

Florian M., Nguyen S., and Ferland J. (1975) On the Combined Distribution-Assignment 

        of Traffic, Transportation Science, 9, 43-53.

Florian M. and Nguyen S. (1978) A combined trip distribution modal split and trip 

        assignment model. Transpn. Res., 12, 241-246.

Frank C. (1978) A Study of Alternative Approaches to Combined Trip Distribution-

Assignment Modeling. PhD thesis, Department of Regional Science, University of 

Pennsylvania, Philadelphia, PA.

Friesz T. L. (1981) An equivalent optimization problem for combined multiclass 

distribution, assignment, and modal split which obviates symmetry restrictions. 

 Transpn. Res., 15B, 361-369.

HAI-JUN HUANG and WILLIAM H. K. LAM. (1992) MODIFIED EVANS 

ALGORITHMS FOR SOLVING THE COMBINED TRIP DISTRIBUTION AND 

        ASSIGNMENT PROBLEM, Transpn. Res., 26B, 325-337. 

Jia Yao; Anthony Chen; Seungkyu Ryu; Feng Shi. (2014) A general unconstrained optimization formulation for the combined distribution and assignment problem. Transportation Research Part B: Methodological. ISSN:0191-2615. Vol.59. page: 137-160. doi:10.1016 /j.trb.2013.11.007
Jan T. Lundgren and Michael Patriksson. (1998) The combined distribution and stochastic assignment problem, Annals of Operations Research 82, 309 – 329. 

Karoonsoontawong, Ampol; Lin, Dung-Ying. (2015) Combined Gravity Model Trip Distribution and Paired Combinatorial Logit Stochastic User Equilibrium Problem

(Article). Networks and Spatial Economics. ISSN：1566-113X. No.4 pages：1011-1048
LcBlanc L. J. and Farhangian K. (1981) Efficient algorithms for solving elastic demand 

        traffic assignment problems and mode split-assignment problems. Transpn. Sci., 15, 

        306-317.

LeBlanc L. J. and Abdulaal A. (1982) Combined mode split-assignment and distribution-

mode split-assignment models with multiple groups of travelers. Transpn. Sci., 16(4). 

430-442.

Ryu, Seungkyu; Chen, Anthony; Xu, Xiangdong; Choi, Keechoo. (2014) A Dual Approach for Solving the Combined Distribution and Assignment Problem with Link Capacity Constraints. Networks and Spatial Economics. ISSN: 1566-113X. Vol.14. No.2. page: 245-270. doi:10.1007/s11067-013-9218-2
Safwat K. N. A. and Magnanti T. L. (1988) A combined trip generation, trip distribution, 

modal split, and trip assignment model. Transpn. Sci., 18, 14-30.

Sheffi, Y. (1985) Urban Transportation Networks: Equilibrium Analysis with  

        Mathematical Programming Methods. Prentice-Hall, Englewood Cliffs, NJ.

Sung, Ki-Seok;Rakha, Hesham. (2009) A Genetic Algorithm for Trip Distribution and Traffic Assignment from Traffic Counts in a Stochastic User Equilibrium. Management Science and Financial Engineering. ISSN：2287-2043  No.1 page：51-69.
WILLIAM H. K. LAM and HAI-JUN HUANG. (1992) A COMBINED TRIP 

DISTRIBUTION AND ASSIGNMENT MODEL FOR MULTIPLE USER CLASSES, Transpn. Res., 26B, 275-287. 

Wu ZX, Lam WHK. (2003) Combined modal split and stochastic assignment model for 

        congested networks with motorized and nonmotorized transport modes, TRAVEL 

        DEMAND AND LAND USE 2003 TRANSPORTATION RESEARCH RECORD, 

        (1831)57-64. 

Xu, Meng; Chen, Anthony; Gao, Ziyou. (2008) An improved origin-based algorithm for solving the combined distribution and assignment problem. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH. ISSN: 0377-2217. Vol.188. No.2. page: 354-369. doi: 10.1016/j.ejor.2007.04.047
Zhou, Zhong; Chen, Anthony; Wong, S. C. (2009) Alternative formulations of a combined trip generation, trip distribution, modal split, and trip assignment model. 

EUROPEAN JOURNAL OF OPERATIONAL RESEARCH ISSN：0377-2217. Vol.198 No.1 page：129-138 doi：10.1016/j.ejor.2008.07.041
10

_1245436128.unknown

_1245481551.unknown

_1245566839.unknown

_1246010803.unknown

_1246085954.unknown

_1246086036.unknown

_1246086092.unknown

_1246103507.unknown

_1246103508.unknown

_1246086103.unknown

_1246086050.unknown

_1246086026.unknown

_1246085965.unknown

_1246024275.unknown

_1246085603.unknown

_1246085421.unknown

_1246011863.unknown

_1246021768.unknown

_1245956862.unknown

_1245998435.unknown

_1245999472.unknown

_1245999503.unknown

_1245998811.unknown

_1245998467.unknown

_1245998780.unknown

_1245998455.unknown

_1245995164.unknown

_1245568403.unknown

_1245748864

_1245954244.unknown

_1245954395.unknown

_1245568555.unknown

_1245568128.unknown

_1245509115.unknown

_1245509622.unknown

_1245510353.unknown

_1245524990.unknown

_1245566064.unknown

_1245524688.unknown

_1245510469.unknown

_1245510066.unknown

_1245510186.unknown

_1245509710.unknown

_1245509258.unknown

_1245509354.unknown

_1245509174.unknown

_1245508644.unknown

_1245508870.unknown

_1245508986.unknown

_1245508704.unknown

_1245481998.unknown

_1245508455.unknown

_1245481884.unknown

_1245481862.unknown

_1245437287.unknown

_1245441185.unknown

_1245479844.unknown

_1245480340.unknown

_1245480735.unknown

_1245480758.unknown

_1245480351.unknown

_1245480198.unknown

_1245478972.unknown

_1245479825.unknown

_1245478185.unknown

_1245439416.unknown

_1245439436.unknown

_1245439367.unknown

_1245436735.unknown

_1245437128.unknown

_1245437256.unknown

_1245437000.unknown

_1245436485.unknown

_1245436697.unknown

_1245436394.unknown

_1245334512.unknown

_1245392046.unknown

_1245434532.unknown

_1245435905.unknown

_1245435954.unknown

_1245434555.unknown

_1245400563.unknown

_1245400878.unknown

_1245399134.unknown

_1245399641.unknown

_1245399665.unknown

_1245392047.unknown

_1245354143.unknown

_1245354397.unknown

_1245354702.unknown

_1245354584.unknown

_1245354237.unknown

_1245354350.unknown

_1245334842.unknown

_1245334880.unknown

_1245334689.unknown

_1241986039.unknown

_1241986710.unknown

_1241987261.unknown

_1241987402.unknown

_1241989139.unknown

_1241989175.unknown

_1241988287.unknown

_1241987312.unknown

_1241986806.unknown

_1241986462.unknown

_1241986463.unknown

_1241986348.unknown

_1241986227.unknown

_1241985852.unknown

_1241985994.unknown

_1241986010.unknown

_1241985895.unknown

_1241985466.unknown

_1241985603.unknown

_1241985670.unknown

_1241985562.unknown

_1227595740.unknown

_1227610616.unknown

_1227595604.unknown

_1227595615.unknown

_1227595651.unknown

_1227592383.unknown

_1227592877.unknown

_1227592079.unknown

