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Abstract: In this paper we propose a changepoint detection procedure based on a
skew normal distribution from the view of point of model selection. The detection
procedure is constructed based on Schwarz information criterion (SIC) combined
with the binary segmentation method for multiple changepoints detection purpose.
Simulations are conducted to illustrate the performance of the proposed test. We
apply the method to detect change points in the array Comparative Genomic Hy-
bridization (aCGH) data set.
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1 Introduction

The skew normal distribution family is an extension of the normal distribution allow-
ing the presence of skewness. Since Azzalini (1985) first studied various properties of
this distribution family, it has been extensively investigated by many researchers in
the past decades. Henze (1986) provided a probabilistic representation of the skew
normal distribution family in terms of a normal random variable and a truncated
normal random variable. Azzalini and Dalla Valle (1996) extended the univariate
case to the multivariate case. Gupta and Chen (2004) gave another possible ex-
tension of the univariate skew normal model into the vector skew normal models.
Recently, Ning and Gupta (2012) generalized the univariate extended skew normal
distribution family to the matrix variate case by adopting the ideas from Chen and
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Gupta (2005) and Harrar and Gupta (2008). Ning (2013) extended the probabilis-
tic representation of the univariate skew normal model to the matrix variate skew
normal model, to name a few. Skew normal distribution is also applied widely in
different fields such as finance and medical research due to its flexibility in model-
ing skewed data, for example, Chen et al. (2003), Figueiredo et al. (2010), Guolo
(2013). The univariate standard skew normal distribution density is defined as

fZ(z; λ) = 2φ(z)Φ(λz), (1.1)

where φ(·) and Φ(·) are the probability density function and the cumulative function
of a standard normal distribution respectively. λ is called the shape parameter which
is used to model the skewness of the data. We denote the random variable Z ∼
SN(λ). The corresponding general skew normal density function cooperating with
the location and scale parameter is defined as

fX(x; µ, σ, λ) =
2

σ
φ(

x− µ

σ
)Φ(λ(

x− µ

σ
)), (1.2)

where x ∈ <, µ is the location, σ is the scale and λ ∈ < is the shape parameter.
We denote the random variable X ∼ SN(µ, σ, λ).

Changepoint problems have been received numerous attentions since Page (1954,
1955) who introduced a simple process to detect a single change (Chernoff and
Zacks (1964), Gardner (1969), Hawkins (1992), Sen and Srivastava (1975), and
Worsley (1979), Hsu (1977), Inclán (1993), Chen and Gupta (2012)). Csörgó and
Horváth (1997) provided more details on parametric and nonparametric changepoint
analysis. However, few work has been done in the direction of changepoint analysis
for skew normal distribution family. Arellano-Valle et al. (2013) proposed a Bayesian
approach for the changepoint detection but for at most one change in parameters of
a skew normal distribution. In this paper, we will propose an information approach
based on Schwarz information criterion (SIC) to detect possible multiple change
points in the data. This paper is organized as follows. In Section 2, the method
based on the SIC for the detection of the changes in location and scale parameters
while holding shape parameter constant is proposed with corresponding adjustment
to make the results more statistically convincing. Simulations are conducted in
Section 3 to illustrate the performance of the proposed procedure under different
settings with various sample sizes. The proposed method is applied to an array
Comparative Genomic Hybridization (aCGH) data set for possible change point
detection in Section 4. Discussion is provided in Section 5.

2 Skew normal changepoint model

Let x1, · · ·xn be a sequence of independent observations from a skew normal dis-
tribution SN(µ, σ, λ) with parameters (µ1, σ1, λ), (µ2, σ2, λ), · · · , (µn, σn, λ), respec-
tively. Assume that the shape parameter is constant but unknown and needs to be
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estimated. Consider testing the following hypotheses,

H0 : µ1 = µ2 = · · · = µn = µ; σ1 = σ2 = · · · = σn = σ, (2.1)

where µ and σ are unknown, versus the alternative:

H1 : µ1 = · · · = µk1 6= µk1+1 = · · · = µk2 6= · · · 6= µkq+1 = · · · = µn,

σ1 = · · · = σk1 6= σk1+1 = · · · = σk2 6= · · · 6= σkq+1 = · · · = σn,

where 1 < k1 < k2 < · · · < kq < n are the unknown change point positions to be
estimated and there are q unknown change points. In changepoint analysis, multiple
change points detection can be dealt with the binary segmentation method proposed
by Vostrikova (1981). Therefore, without loss of generality, we consider at most one
change in the distribution. That is, we will test the following hypotheses: (2.1)
versus

H1 : µ1 = µ2 = · · · = µk︸ ︷︷ ︸
µ1

6= µk+1 = µk+2 = · · · = µn︸ ︷︷ ︸
µn

(2.2)

σ1 = σ2 · · · = σk︸ ︷︷ ︸
σ1

6= σk+1 = σk+2 = · · · = σn︸ ︷︷ ︸
σn

(2.3)

where 1 < k < n , and k is the unknown position of the change point. The likelihood
function for the above hypothesis is given as:

LH0(µ, σ, λ) =
n∏

i=1

2

σ
φ(

xi − µ

σ
)Φ(λ

xi − µ

σ
),

LH1(µ1, µn, σ1, σn, λ) =
k∏

i=1

2

σ1

φ(
xi − µ1

σ1

)Φ(λ
xi − µ1

σ1

)
n∏

i=k+1

2

σn

φ(
xi − µn

σn

)Φ(λ
xi − µn

σn

).

The log-likelihood functions are:

lH0(µ, σ, λ)) = n log 2− n log(σ) +
n∑

i=1

(
log φ(

xi − µ

σ
) + log Φ(λ

xi − µ

σ
)

)
,

lH1(µ1, µn, σ1, σn, λ) = n log 2− k log(σ1) +
k∑

i=1

(
log φ(

xi − µ1

σ1

) + log Φ(λ
xi − µ1

σ1

)

)

− (n− k) log(σn) +
n∑

i=k+1

(
log φ(

xi − µn

σn

) + log Φ(λ
xi − µn

σn

)

)
.

To obtain the MLEs for µ, µ1, µn, σ, σ1, σn and λ, we take the derivative of the
log-likelihood functions with respect to the parameters and set the equations equal
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to zero.

∂lH0(µ, σ, λ)

∂µ
=

n∑
i=1

(
− 1

σ

φ′(xi−µ
σ

)

φ(xi−µ
σ

)
− λ

σ

φ(λxi−µ
σ

)

Φ(λxi−µ
σ

)

)

=
n∑

i=1

(
(xi − µ)

σ2
− λ

σ

φ(λxi−µ
σ

)

Φ(λxi−µ
σ

)

)
= 0,

(2.4)

∂lH0(µ, σ, λ)

∂σ
=

n∑
i=1

(
−x− µ

σ2

φ′(xi−µ
σ

)

φ(xi−µ
σ

)
− λ(x− µ)

σ2

φ(λxi−µ
σ

)

Φ(λxi−µ
σ

)

)

=
n∑

i=1

(
(xi − µ)2

σ3
− λ(x− µ)

σ2

φ(λxi−µ
σ

)

Φ(λxi−µ
σ

)

)
= 0,

(2.5)

∂lH0(µ, σ, λ)

∂λ
=

n∑
i=1

(
(x− µ)

σ

φ(λxi−µ
σ

)

Φ(λxi−µ
σ

)

)
= 0. (2.6)

Similarly we have

∂lH1

∂µ1

=
k∑

i=1

(
−(xi − µ1)

σ2
1

− λ

σ1

φ(λxi−µ1

σ1
)

Φ(λxi−µ1

σ1
)

)
= 0, (2.7)

∂lH1

∂µn

=
n∑

i=1

(
−(xi − µn)

σ2
n

− λ

σn

φ(λxi−µn

σn
)

Φ(λxi−µn

σn
)

)
= 0, (2.8)

∂lH1(µ1, µ2, σ1, σ2, λ)

∂σ1

=
k∑

i=1

(
(xi − µ1)

2

σ3
1

− λ(x− µ1)

σ2
1

φ(λxi−µ1

σ1
)

Φ(λxi−µ1

σ1
)

)
= 0, (2.9)

∂lH1(µ1, µ2, σ1, σ2, λ)

∂σn

=
n∑

i=k+1

(
(xi − µn)2

σ3
n

− λ(x− µn)

σ2
n

φ(λxi−µn

σn
)

Φ(λxi−µn

σn
)

)
= 0, (2.10)

∂lH1(µ1, µ2, σ1, σ2, λ)

∂λ
=

k∑
i=1

(
(x− µ1)

σ1

φ(λxi−µ1

σ1
)

Φ(λxi−µ1

σ1
)

)

+
n∑

i=k+1

(
(x− µn)

σn

φ(λxi−µn

σn
)

Φ(λxi−µn

σn
)

)
= 0.

(2.11)

4



We solve equations (2.4) to (2.11) to obtain the MLEs for µ, σ, µ1, µn, σ1, σn

and λ. However, there are no explicit forms for the solutions to these equations,
thus the numerical approach (R package sn, version 0.4-7 by Azzalini, 2011) will
be applied to obtain the MLEs for these parameters. Let µ̂, σ̂, µ̂1, µ̂n, σ̂1, σ̂n λ̂
represent the MLE for µ, σ, µ1, µn, σ1, σn and λ respectively. Under the null
hypothesis, the SIC model is given by,

SICt(n) = −2 log L(µ̂, σ̂, λ̂) + t log n, (2.12)

where t = 3 is the number of parameters in the model under H0. Under the alter-
native hypothesis, the SIC model is given by

SICt(k) = −2 log L(µ̂1, µ̂2, σ̂1, σ̂n, λ̂) + t log n, (2.13)

where t = 5 is the number of parameters in the model under H1. We choose [log n] ≤
k ≤ n− [log n] so that we have sufficient number of observations to obtain MLEs of
parameters. Thus we reject the null hypothesis if

SICt(n) > min
[log n]≤k≤n−[log n]

SICt(k),

and k̂ is the estimated change point location such that

SICt(k̂) = min
[log n]≤k≤n−[log n]

SICt(k).

Theorem 2.1. Under the null hypothesis, for all x ∈ R,

lim
n→∞

P [a(log n)λn − b(log n) ≤ x] = exp{−2e−x}, (2.14)

where a(log n) = (2 log log n)1/2 , b(log n) = 2 log log n + log log log n, and

λ2
n = max

[log n]≤k≤n−[log n]

{
2 log L(µ̂1, µ̂2, σ̂1, σ̂2, λ̂)− 2 log L(µ̂, σ̂, λ̂)

}
.

As pointed by Chen and Gupta (2012), the small difference between min
k

SICt(k) and

SICt(n) may be resulted from data fluctuation and in fact there is no change point.
Therefore, we follow the idea by Chen and Gupta (2012) to introduce a significance
level α and the corresponding critical value cα. We conclude there is a change point
if

SICt(n) > min
[log n]≤k≤n−[log n]

SICt(k) + cα, (2.15)

where cα can be computed by

1− α = P

[
SICt(n) < min

[log n]≤k≤n−[log n]
SICt(k) + cα|H0

]
. (2.16)
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Thus, from (2.15) we have,

1− α = P

[
SIC(n) < min

[log n]≤k≤n−[log n]
SIC(k) + cα|H0

]

= P

[
SIC(n)− min

[log n]≤k≤n−[log n]
SIC(k) < cα|H0

]

= P

[
max

[log n]≤k≤n−[log n]
(SIC(n)− SIC(k)) < cα|H0

]

= P

[
max

[log n]≤k≤n−[log n]

(
−2(log L(µ̂, σ̂, λ̂)− log L(µ̂1, µ̂n, σ̂1, σ̂n, λ̂))− 2 log n

)
< cα|H0

]

= P
[
λ2

n < 2 log n + cα|H0

]

= P
[
0 < λ2

n < 2 log n + cα|H0

]

= P
[
0 < λn < (2 log n + cα)

1
2 |H0

]

= P
[
−b(log n) < a(log n)λn − b(log n) < a(log n)(2 log n + cα)

1
2 − b(log n)|H0

]

= P
[
(a(log n)λn − b(log n) < a(log n)(2 log n + cα)

1
2 − b(log n)

]

− P [a(log n)λn − b(log n) < −b(log n)] .

Now with the approximation in Theorem 2.1. we solve cα as follows.

1− α ∼= exp
{
−2 exp

{
a(log n)(2 log n + cα)

1
2 − b(log n)

}}
− exp {−2 exp {b(log n)}}

⇒ 1− α + exp {−2 exp {b(log n)}} ∼= exp
{
−2 exp

{
a(log n)(2 log n + cα)

1
2 − b(log n)

}}

⇒ log log [1− α + exp {−2 exp {b(log n)}}]− 1
2 ∼= a(log n)(2 log n + cα)

1
2 − b(log n)

⇒ cα
∼=

[ −1

a(log n)
log log [1− α + exp {−2 exp {b(log n)}}]− 1

2 +
b(log n)

a(log n)

]2

− 2 log n

Adjusted critical values for different value of sample size with given nominal values
are given in Table 1 in Appendix.

3 Simulations

In this section, simulations are conducted to illustrate the performance of the pro-
posed testing procedure for different changes in location and scale parameters.
We perform 1000 simulations under SN(µ, σ, 1) with different change point lo-
cation k, sample sizes, n = 100, 150 and 200 and location and scale parameters
(µ1 = σ1) = 1, 2, 3 and (µn = σn) = 2, 3, 4, 5, 6. We notice that as the difference
between the parameters increases, the power of the test also increases. For example,
with sample size n = 100, k = 20, the power is 0.597 for (µ1, σ1/µn, σn) = (1, 2) ,
while the power is 0.917 for (µ1, σ1/µn, σn) = (1, 4). Through all simulations, Type
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I error is well controlled within a give significance level α = 0.05. The results are
listed in Table 2 in Appendix.

4 Application to Biomedical Data

We applied the proposed detection procedure to detect the change points in “the ar-
ray Comparative Genomic Hybridization” (aCGH) data set, see Snijders et al.(2001)
for more details. We consider the Chromosome 4 of the fibroblast cell line GM13330.
This chromosome consists of 167 genomic positions on which log base 2 ratio of the
intensities were recorded. Using the test criteria in (2.15), we compute the SIC for all
the genomic positions. The values of SICt(n) = −55.86854 and min

6≤k≤163
SICt(k) =

SICt(150) = −301.2888. We observe that SICt(n) is larger than min SICt(k),
even larger that min SICt(k) + cα after adjustment. Therefore we reject the null
hypothesis and conclude that there is a change point. The estimated changepoint
position is k = 150. Binary segmentation method is applied for possible multiple
change points and it turns out that there is no more change point. The graphs of
the SIC values and the log base 2 ratio of the fibroblast cell are given in Figure 1.
We observe that the change point is visible in Figure 1 at the 150th position. This
result matches the one obtained by Chen and Gupta (2012).
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Figure 1: Left: The SIC values for every locus on chromosome 4 of the fibroblast
cell line GM13330; Right: Chromosome 4 of the fibroblast cell line GM13330.
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5 Discussion

Skew normal distribution family is an important distribution family which is an
extension of normal distribution family and is more flexible in fitting data espe-
cially for skewed data. In this paper, we investigate changeppoint problem for this
distribution family. We propose a testing procedure based on Schwarz information
criterion (SIC) to avoid possible complicated derivation of asymptotic properties of
test statistic such as likelihood ratio test statistic. Multiple change points scenario
is dealt with the binary segmentation method. Another advantage of using informa-
tion approach based procedure is that we can estimate the change point locations
simultaneously while concluding the existence of change points. Simulation results
under different settings indicate the good performance of the proposed method. A
biomedical data has been used to illustrate the detection procedure. The extension
of this method to the multivariate case with changes in a fraction of parameters will
be studied in our future work.
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Appendix

Table 1: Critical values with α and Sample size n

n α=0.01 α=0.025 α=0.05 α= 0.1
10 23.07060 15.99423 11.31283 7.168499
11 22.52369 15.69148 11.13858 7.087391
12 22.10831 15.44547 10.98893 7.010367
13 21.76289 15.23288 10.85445 6.935751
14 21.46347 15.04386 10.73120 6.863355
15 21.19818 14.87308 10.61709 6.793235
16 20.95987 14.71714 10.51070 6.725433
17 20.74363 14.57361 10.41098 6.659935
18 20.54582 14.44062 10.31712 6.596686
19 20.36366 14.31671 10.22843 6.535604
20 20.19494 14.20073 10.14437 6.476595
21 20.03788 14.09171 10.06445 6.419556
22 19.89103 13.98886 9.988275 6.364386
23 19.75319 13.89152 9.915503 6.310986
24 19.62336 13.79911 9.845834 6.259258
25 19.50068 13.71117 9.779008 6.209112
26 19.38444 13.62728 9.714797 6.209112
27 19.27401 13.54708 9.652998 6.113227
28 19.16885 13.47026 9.593433 6.067332
29 19.06850 13.39655 9.535943 6.022706
30 18.97255 13.32569 9.480385 5.979285
35 18.54758 13.00757 9.227490 5.778242
40 18.19266 12.73666 9.007971 5.599685
45 17.88832 12.50071 8.813923 5.439112
50 17.62215 12.29170 8.639973 5.293224
55 17.38579 12.10408 8.482294 5.159545
60 17.17331 11.93387 8.338068 5.036173
65 16.98042 11.77811 8.205151 4.921615
70 16.80384 11.63453 8.081879 4.814683
80 16.49016 11.37717 7.859242 4.620012
90 16.21778 11.15145 7.662302 4.446292
100 15.97721 10.95041 7.485684 4.289397
120 15.56699 10.60421 7.179053 4.014778
140 15.22548 10.31289 6.918813 3.779721
150 15.07403 10.18286 6.802049 3.673718
160 14.93309 10.06140 6.692662 3.574131
180 14.67758 9.840132 6.492633 3.391355
200 14.45073 9.642588 6.313270 3.226777
300 13.59074 8.885006 5.619338 2.584701
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Table 2: Power Simulation for SN(µ, σ, λ) with n = 100, 150, 200

n=100 µ1 = σ1/µn = σn 2 3 4 5 6
k=20 1 0.597 0.783 0.917 0.930 0.933

2 0.050 0.240 0.530 0.740 0.780
3 0.250 0.050 0.353 0.760 0.653

k=50 1 0.597 0.820 0.927 0.967 0.957
2 0.050 0.300 0.643 0.757 0.830
3 0.433 0.050 0.220 0.407 0.603

k=75 1 0.723 0.923 0.933 0.987 0.977
2 0.050 0.397 0.693 0.883 0.883
3 0.038 0.050 0.693 0.543 0.570

n=150 k=50 1 0.603 0.860 0.907 0.930 0.960
2 0.050 0.435 0.790 0.753 0.840
3 0.300 0.050 0.593 0.437 0.697

k=75 1 0.690 0.787 0.940 0.953 0.970
2 0.050 0.443 0.623 0.737 0.827
3 0.293 0.050 0.257 0.487 0.617

k=120 1 0.650 0.867 0.930 0.967 0.970
2 0.050 0.200 0.630 0.800 0.867
3 0.180 0.050 0.300 0.480 0.603

n=200 k=20 1 0.490 0.810 0.903 0.940 0.950
2 0.050 0.307 0.597 0.710 0.813
3 0.423 0.050 0.177 0.477 0.760

k=50 1 0.603 0.860 0.907 0.930 0.960
2 0.050 0.443 0.790 0.753 0.840
3 0.250 0.050 0.593 0.437 0.697

k=100 1 0.600 0.790 0.890 0.950 0.970
2 0.050 0.397 0.680 0.800 0.893
3 0.278 0.050 0.516 0.677 0.780
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