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Abstract

Relationship between two popular modeling frameworks of causal inference from
observational data, namely, causal graphical model and potential outcome causal
model is discussed. How some popular causal effect estimators found in applications of
the potential outcome causal model, such as inverse probability of treatment weighted
estimator and doubly robust estimator can be obtained by using the causal graphical
model is shown. We confine to the simple case of binary outcome and treatment
variables with discrete confounders and it is shown how to generalize results to cases
of continuous variables.

Keywords: causal graphical models, potential outcome causal model, confounders, causal
effect estimates.

1 Introduction

In many real world situations it is of interest the estimation of causal effect of some treat-
ment on a certain outcome. The causal effect of taking a certain medicine for a certain
disease by the patients and that of participation in a certain job training program by un-
employed individuals in order to find employment in the future are two examples among
many in medical and socio-economic contexts respectively, among many others in a lot of
disciplines. Sometimes it may be unethical or infeasible to assign each subject either to
the treatment or to the control randomly in order to perform a randomized study that
is considered as the gold standard to estimate the causal effect of the treatment. How-
ever it may be of interest of socio-economic policy makers, medical professional, etc., to
evaluate the causal effect of their treatments of interest in order to plan for the future.
In the absence of the randomized assignment of the treatments they may only have ob-
served data on collection of subjects who either have taken the treatment or not. When
the effect of a treatment on an outcome needs to be identified from such observational
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data sample it needs to control for (condition on) the confounders, i.e., subgroups with
the same confounder values in the treatment group and those in the control group should
be compared through their empirical mean values of the outcome and then it should be
taken the weighted average of them where weights are observed proportions of sizes of the
subgroups in the data sample to evaluate the average causal effect of the treatment. For
simplicity assume all confounders are discrete. Note that the confounders are factors that
affect the subjects to take the treatment or not while simultaneously affecting the sub-
jects’ outcome in some way, therefore the effect of the treatment is confounded with the
effects of these confounding factors when they are present. So, these unnecessary effects
should be removed otherwise the estimate of the average treatment effect is biased. One
can see that here the implicit assumption is that within each subgroup of confounder value
the treatment assignments are assumed to be randomized, therefore comparisons are done
subgroup-wise. But this assumption is true when a ’sufficient’ set of confounders, perhaps
not all of them are considered.

However sometimes controlling for the confounders can be difficult, for example, if they
are high dimensional then it may be difficult to find treatment and control subgroups
of subjects of sufficient sizes with same confounder values. A popular way to increase
the sizes of these treatment and control subgroups that should be compared is to use so-
called propensity scores [1]. The propensity score is the conditional probability of receiving
the treatment given the values of observed pre-treatment confounding covariates of the
treatment and the outcome. Among others, they are used in the causal inference method
of potential outcome framework [2,3] for matching subgroups of treated subjects with those
with untreated, usually called stratification of data sample, for estimating the causal effects
of the treatments.

Finding a ’sufficient’ set of condounders on which the comparison should be done is
somewhat problematic and the potential outcome framework offers no clear way to do it
even when all pretreatment confounders of the treatment and the outcome are available.
Note that one does not need to control for all the confounders since when some of the them
are considered then some of the others may become redundant. However causal graphical
modeling framework of Pearl and his colleagues (see [4] and references therein) offers one
called ’back door criterion’ to choose a set of sufficient covariates in order to identify
the causal effect, i.e., to estimate without bias. When a graphical model is done on the
treatment variable and outcome variable and all their assumed causal factors, both direct
and indirect, the criterion can find a sufficient set of covariates on which one should control
for estimation of the causal effect. Then such a set is called ’admissible’ or ’deconfounding’
set. However the selected set is only sufficient for all the causal factors that are assumed
but may not be sufficient if some causal factors of treatment and outcome are omitted.
And considering some covariates as confounders by ignoring such criterion or similar one
can cause introduction of further bias (p. 351 of [4]). So, in our analysis we confine to the
case of that taken confounders make a superset of an admissible set and stated otherwise.

Often these two camps of causal inference methods have a lot of disagreements between
them, especially the applied users of them. However developers of the two frameworks, if
not theoreticians in them have remarked the relationship between them. One such instance
is reported in the journal ”NeuroImage” under the section ”Comments and Controversies”
about applying two modeling frameworks for brain image data [5–9]. Therein Pearl argues
that his group (in his words) has proved that two frameworks are logically equivalent in
the sense that a theorem in one is a theorem in the other and an assumption in one has a
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parallel interpretation in the other. And Glymour argues that (in his words) the potential
outcome model is an special case of the causal graphical model but with twists that make
causal estimation impossible except in restricted contexts. And others in the debate are
of the opinion that the two frameworks are close to each other. Though such arguements
are around among the theoreticians of the two frameworks, the applied users still seem to
be unconvinced about it, and therefore they treat that they are very different frameworks
and often one is supeiror than the other. Or even worst, one gives wrong answers while
only the other gives correct answers. It is rare that both frameworks are applied for same
data. Furthermore due to different numerical estimation methods one may obtain two
numerically different causal effect estimates when the two frameworks are used.

Here we show that two frameworks are equivalent in most contexts in the sense that
both give same analytical expressions for causal effect estimates or rather any causal effect
estimate in one modeling framework can be obtained from the other. Since causal effect
estimates are dependent on estimated probabilities because they are functions of statistical
conditional expectations of outcome variable there can be differences in causal effect esti-
mates numerically if the used probabilities are estimated differently. But there are reasons,
at least operationally, to favor the graphical modeling framework over the other, for exam-
ple, it can be computationally efficient, for example, through controlling for a sufficient set
of confounders rather than doing so for all the assumed confounders. We show their equiv-
alence at the basic level of their application. Furthermore since the potential outcomes
model has many forms causal effect estimators we show how they can be derived through
the graphical modeling framework, thus providing some insight into the estimators. So,
our discussion here can be useful not only for researchers in these two modeling frameworks
but also especially for the users of them to understand each other.

2 Observational Studies

We consider the simple situation where one is interested in evaluating the effect of some
exposure or treatment on a certain outcome that can either be a success or a failure.
Let us denote the treatment by a binary variable Z where Z = 1 when the treatment is
implemented and Z = 0 when it is not and the outcome by a binary variable Y where
Y = 1 when a success is observed and Y = 0 when a failure is observed for each subject
concerned. In the potential outcome framework for causal inference it is accepted existence
of pair of potential outcome variables, say, (Y1, Y0) where Yi is the outcome that would have
been observed had the treatment Z = i for i = 1, 0. Note that then the observable outcome
Y satisfies the relation Y = ZY1 + (1− Z)Y0. Then a randomized experiment is when the
potential outcomes are independent of treatment assignment, written as (Y0, Y1) ⊥ Z; each
subject receives treatment without considering its future outcome. Then average causal
effect for the population τ is defined as follows.

τ = E[Y1]− E[Y0]

= E[Y1|Z = 1]− E[Y0|Z = 0] since (Y0, Y1) ⊥ Z

= E[Y |Z = 1]− E[Y |Z = 0]

Here we assume that 0 < P (Z = 1) < 1, i.e., in our sample of data we have both treated
and untreated subjects. If it is not the case then we are not able to estimate τ since then
only one of quantities in the expression is known.
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But in observational data the independence assumption (Y1, Y0) ⊥ Z may not hold be-
cause subjects do not receive the treatment independent of their future outcomes, therefore
characteristics of subjects in the treatment group may differ from those of the control group.
This is a situation where the treatment effect is confounded with some external factors, i.e.,
the treatment and the outcome are confounded. Therefore the treatment group and control
group cannot be compared directly to evaluate the effect of the treatment. Then the as-
sumption is modified and it says that the potential outcomes are conditionally independent
of the treatment assignment given some confounding factors that makes (a superset of) an
admissible set for confounding. When this set of confounders are denoted by multivariate
variable X then the assumption is written as (Y1, Y0) ⊥ Z|X and it is sometimes called
the assumption of no unmeasured confounders to mean that all the confounding effects are
removed by X. In addition, for inference, similar to randomized experiment it needs to
have 0 < P (Z = 1|X) < 1, which is called assumption of common support. That is, for
each configuration (stratum) of X, we should have both treated and untreated subjects
otherwise, say for example, if P (Z = 1|X = x1) = 1 in our data sample then the causal
effect for the subgroup with X = x1 may not be calculated. Recall that we assume that X
is discrete, therefore any continuous covariate is discretized. That is, in each stratum of X
the treatment assignments are as if they are randomized and we have data on both treated
and untreated subjects. This is to say that in observational data our objective is to mimic
the randomization within each stratum of X. Therefore, firstly one should find a sufficient
set of confounders X. However this assumption cannot be tested even if all the potential
confounders are found.

Now let us define that individual causal effect for an individual, say, j with X = x is
τ j(x) = Y j

1 − Y j
0 . The jth individual is the jth data case of the sample and throughout

any quantity referring to it is denoted with the superscript j attached to the respective
quantity. But it is clear that no subject has both the values of Y1 and Y0 observed therefore
we cannot have τ j(x) numerically. So we need a mechanism to get it but it is right at our
hands; the randomization of the treatment assignments within each stratum of X, the
assumption of no unmeasured confounders (this is also called the assumption of strong
ignorable treatment assignment [1]). That is, within any stratum X = x if we know a
subject is treated (Z = 1) we observe Y1 = Y but Y0 is not known, but the latter can be
known by any other subject in the stratum who is not treated (Z = 0); two quantities
are conditionally exchangeable. Here the word ’conditionally’ is to mean that within the
stratum. And similarly for any subject that is not treated (Z = 0). Therefore, as if the
observed data are from randomizations within each level x of X, we can calculate the
average causal effect for the subpopulation of all individuals with X = x, say, τ(x) by

τ(x) = E[Y1|X = x]− E[Y0|X = x]

= E[Y1|X = x, Z = 1]− E[Y0|X = x, Z = 0] since (Y1, Y2) ⊥ Z|X
= E[Y |X = x, Z = 1]− E[Y |X = x, Z = 0]

where the expectation E should be taken over whole subpopulation with X = x. Since
this mechanism applies for all the strata of X, we can calculate the average causal effect
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for the whole population, say, τ

τ = Ex[E[Y |Z = 1, X = x]− E[Y |Z = 0, X = x]]

=
∑
x

∑
y

yp(Y = y|X = x, Z = 1)p(X = x)

−
∑
x

∑
y

yp(Y = y|X = x, Z = 0)p(X = x)

It is sufficient to estimate accurately the probabilities p(Y = y|X = x, Z = z) and p(X = x)
for Z = 0, 1 and for all values of X in order to estimate τ accurately but due to its definition
it is not necessity. For example, if some forms of errors have been introduced in calculation
of p(Y = 1|X = x, Z = 1) then similar errors in calculation of p(Y = 1|X = x, Z = 0) may
make sure that the correct value for τ is obtained. For these types of reasons or similar
ones sometimes researchers claim that even models, for example, those for conditional
probabilities, are misspecified correct estimates for causal effects can be obtained. But
here we avoid discussion on this topic.

The above estimate for τ is analytically equal to that we get by the estimation of the
causal effects using interventions in causal graphical models (also called do-calculus) [4,10],
that is another popular framework for the task, therefore two frameworks are equivalent
in this case. To recall the reader with this calculus, first define the distribution with
conditioning by intervention or action; if we have observed a random sample of data on a
set of variable, say, X1, ..., Xn, we can find the probability distribution of the set of variables,
say, p(x1, ..., xn). We can have a factorization of probability distribution p(x1, ..., xn); let
it be that p(x1, ..., xn) =

∏n
i p(xi|pai) where pai ⊆ {x1, ..., xi−1} with the exception of

pa1 = Φ (empty set) using some conditional independence assumptions within X1, ..., Xn.
Note that to have a causal representation in the factorization one can use, for example, the
time order to index the variables such that cause variables have higher indices than those
of effect variables’. Then, for i = 1, ..., n the probability distribution of {X1, ..., Xn}\{Xi}
when Xi is intervened to a particular value of it, say, xi, written as do(Xi = xi), denoted
by p({x1, ..., xn}\{xi}|do(Xi = xi)) is defined as follows;

p({x1, ..., xn}\{xi}|do(Xi = xi)) =
p(x1, ..., xn)

p(xi|pai)
=

n∏
k=1:k 6=i

p(xk|pak)

6= p(x1, ..., xn)

p(xi)
=

1

p(xi)

n∏
k=1

p(xk|pak)

= p({x1, ..., xn}\{xi}|Xi = xi)

where the last expression is corresponding conditional probability distribution when we have
observed Xi = xi, which is generally different from that of conditioning by intervention.

The causal relationships between X, Y and Z in our context can be represented as a
causal network model p(y, z, x) = p(x)p(z|x)p(y|x, z) as shown in the Figure 1. And if we
intervene on Z as do(Z = z) for z = 0, 1, then the intervention distribution

p(Y = y,X = x|do(Z = z) =
p(X = x)p(Z = z|X = x)p(Y = y|Z = z,X = x)

p(Z = z|X = x)
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p(y, z, x) = p(x)p(z|x)p(y|x, z)

Figure 1: Bayesian network for causal model

So we have p(Y = y|do(Z = z)) =
∑

x p(Y = y|Z = z,X = x)p(X = x). The causal effect
of the treatment option Z = 1 compared to the control option Z = 0 is defined as

ρ =
∑
y

yp(Y = y|do(Z = 1))−
∑
y

yp(Y = y|do(Z = 0))

=
∑
y

y
∑
x

p(Y = y|Z = 1, X = x)p(X = x)−
∑
y

y
∑
x

p(Y = y|Z = 1, X = x)p(X = x)

= τ

So we have seen that strong ignorable treatment assignment assumption in potential out-
come model is equivalent to implementing intervention operations in probability distribu-
tions when the confounding factors are the same in both cases, i.e., they yield analytically
the same causal effect estimates. In fact, for the above one can see that the probability
distribution of the potential outcome of a hypothetical treatment assignment under the
strong ignorability assumption and that of the outcome of the intervention of same value
are the same. For i, j = 0, 1,

p(Yi = y) =
∑
x

p(Yi = y|x)p(x) =
∑
x

p(Yi = y|Z = j, x)p(x)

=
∑
x

p(Y = y|Z = i, x)p(x) = p(Y = y|do(Z = i))

Now suppose the case where treatment has also an indirect effect on the outcome in
addition to its direct effect. Suppose effect of Z on Y is also mediated through Z ′ and a set
of confounders among causal relationships between them is denoted by X such that X is
the union of distinct sets of confounders X1, X2, X3 and X4 where X1 and X4 are the set of
all direct confounders for direct causal relation between Z and Z ′, Z, X2 and X4 are those
between direct causal relation between Z ′ and Y , and X3 and X4 together complete the set
of all confounders for the indirect causal relation between Z and Y . Here we have taken
all the confounders rather than respective admissible sets for simplicity. Let us define the
potential outcome Yij the outcome that would have observed had Z = i and Z ′ = j and
then Yi = Z ′Yi1 + (1−Z ′)Yi0 for i, j = 0, 1 and Y = ZY1 + (1−Z)Y0. Then we have strong
ignorability assumptions Z ′1, Z

′
0 ⊥ Z|{X1, X4} and Yi1, Yi0 ⊥ Z ′|{Z = i,X2, X4} for i = 0, 1

for the direct causal relationships between Z → Z ′ and Z ′ → Y respectively. But they do
not imply ignorability assumption for (Y1, Y0) and Z. So we need to assume, for example,
safely that Y1, Y0 ⊥ Z|X. Note that there is no obvious way to take a subset of X as the
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conditioning set. In this case also we get, for i = 0, 1, p(Yi = y) =
∑

x p(Y = y|Z = i, x)p(x)
for i = 0, 1. And in the causal graphical model

p(x1, ..., x4, z, z
′, y) = p(x1, ..., x4)p(z|x1, x3, x4)p(z′|z, x1, x2, x4)p(y|z′, z, x2, x3, x4)

p(x1, ..., x4, z
′, y|do(z)) = p(x1, ..., x4)p(z

′|z, x1, x2, x4)p(y|z′, z, x1, x2, x3, x4)
p(y|do(z)) =

∑
x1,..,x4,z′

p(x1, ..., x4)p(z
′|z, x1, x2, x4)p(y|z′, z, x1, x2, x3, x4)

=
∑

x1,x2,x3,x4

p(x1, x2, x3, x4)p(y|z, x1, x2, x3, x4)

Therefore, p(Yi = y) = p(y|do(Z = i)) for i = 0, 1. So we have seen the two frameworks
are yielding same causal effect estimates, therefore two frameworks are equivalent in this
case too. However, since p(y|do(z)) =

∑
x2,x3,x4

p(x2, x3, x4)p(y|z, x2, x3, x4) using graphical
model is more efficient compared to doing so the potential outcome framework.

Since one can encounter situations where the causal structures of the phenomena are
complex, it is advisable to use the causal graph interventions for estimation of desired
causal effect. If the confounding factors taken into consideration in the potential outcome
model and the graphical model are the same then both models yield analytically the same
causal effect estimates.

3 Some Differences in Two Modeling Frameworks

As seen earlier, in order to have same numerical causal effect estimates in both frameworks
they should include supersets of similar admissible sets of confounders and same probabil-
ity density estimates. However, researchers who use the potential outcome model tend to
include pretreatment covariates that are associative but not causal with both Z and Y too
as confounders. This can induce spurious bias as shown in literature using the graphical
modeling framework. Such factors may not be direct confounders but they are said to
be inducing so-called M-bias in casual effect estimation. Therefore researchers argue that
they should be neglected in causal effect estimation [11–14]. However when a pretreatment
covariate that is associative with both treatment and outcome is found this may indicate
that either there is another unmeasured confounder or two dependent unmeasured con-
founders in the system, not necessarily two independent confounders as considered in the
above debate. If former two are the cases (either single unmeasured confounder or two
dependent confounders) whether conditioned on associative confounder or not causal effect
estimates are biased. In a forthcoming paper [15] it is shown that in these two cases it is
more beneficial to condition on the associative confounder than not doing so. We avoid
discussion on this topic here.

Another difference is caused by discriminative and generative estimation of probabil-
ities where in the potential outcome model often individual conditional probabilities are
estimated discriminatively, for example, using logistic regression for propensity score es-
timation whereas in the graphical model often joint likelihood is maximized to obtain
component conditional probabilities of the factorization of joint density of Z,X and Y .
The factorization p(X = x, Z = z, Y = y) = p(X = x)p(Z = z|X = x)p(Y |Z = z,X = x)
includes propensity scores and therefore if two estimation methods yield two numerically
different estimates for propensity scores then it can result in two different causal effect
estimates. See below for further comments.
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4 Some Causal Effect Estimators

Let us see how the graphical model estimator can be used to derive the causal effect estima-
tors such as inverse probability of treatment weighted estimator, stratified estimator and
doubly robust estimator commonly found in the potential outcome model applications. In
the following we avoid direct definition of those estimators but derive them by manipulation
of the graphical model estimator.

4.1 Inverse Probability of Treatment Weighted Estimator

The graphical model causal effect estimator ρ is equivalent to inverse probability of treat-
ment weighted estimator (IPTW ) described [16].

ρ =
∑
y

yp(Y = y|do(Z = 1))−
∑
y

yp(Y = y|do(Z = 0))

=
∑
y

y
∑
x

p(Y = y|Z = 1, X = x)p(X = x)

−
∑
y

y
∑
x

p(Y = y|Z = 0, X = x)p(X = x)

=
∑
y

y
∑
x

p(Y = y, Z = 1, X = x)

p(Z = 1|X = x)
−
∑
y

y
∑
x

p(Y = y, Z = 0, X = x)

p(Z = 0|X = x)

=
∑
x

p(Y = 1, Z = 1, X = x)

p(Z = 1|X = x)
−

∑
x

p(Y = 1, Z = 0, X = x)

p(Z = 0|X = x)

=
∑
x

1

e(x)

N(Y = 1, Z = 1, X = x)

N
−

∑
x

1

1− e(x)

N(Y = 1, Z = 0, X = x)

N

=
∑
i

1

e(xi)

I(Y i = 1)I(Zi = 1)I(X i = xi)

N
−
∑
x

1

1− e(xi)
I(Y i = 1)I(Zi = 0)I(X i = xi)

N

=
1

N

∑
i

ZiY i

ei
− 1

N

∑
i

(1− Zi)Y i

1− ei
= IPTW

where N(.) denotes the number of data cases satisfying its arguments, I(.) = 1 when its
argument is true and I(.) = 0 otherwise and p(Zi = 1|X i = xi) = e(xi) = ei. Therefore,
analytically the graphical model intervention estimator is the IPTW estimator. However
often they can be different numerically, for example, when the propensity score estimates,
e(x) for all x, differ in the two contexts as discussed in Section 3.

4.2 Stratified Estimator

Essentially we can obtain the propensity score stratified estimator [17] from IPTW since it
is just a stratification of range of propensity score values into several bins where within each
bin it is assumed the propensity scores are approximately the same. In fact it is an algebraic
simplicity (summing up fractions by assuming some of them have equal denominators) but
what it is important to note is that in the stratified estimator those common propensity
scores for corresponding sets of approximately equal propensity scores are estimated by
the sample proportions of treated subjects related to those propensity scores. In fact, the
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estimates are maximum likelihood estimates for P (Z|X ′) from the likelihood for the joint
density where X ′ obtained from X through a ’new’ definition on the state space of X.
For clarity we can see how stratified estimator is related with IPTW estimator. Note
that since it is emplicit that common propensity score values are in fact used in stratified
estimator, for most applied researchers it is not clear about it. Suppose we write propensity
score estimates in increasing order for all the subjects, say, e(1), ..., e(N) in the sample, and
we stratify the sequence into K number of bins such that the bin s has Nrs number of
propensity scores (corresponding subjects) where vector (r1, ..., rK) satisfies

∑
s rs = 1.

And for each subject define the variable S ∈ {1, ..., K} to denote its propensity score bin,
i.e., ei is related with some S = s. Then the bin s has many different propensity score
values but in the stratification we assume that they can be represented by a single score,
say, es, for s = 1, ..., K. Then by estimating unknown es with the proportion of treated
subjects in the bin s, i.e., es = N1s/Nrs where N1s and N0s are number of treated and
untreated subjects that belong to the bin s, so Nrs = N1s +N0s. Then

ρ =
1

N

∑
i

ZiY i

ei
− 1

N

∑
i

(1− Zi)Y i

1− ei

≈ 1

N

∑
s

∑
i

ZiY i

es
I(Si = s)−

∑
s

1

N

∑
i

(1− Zi)Y i

1− es
I(Si = s)

=
∑
s

rs
∑
i

ZiY i

N1s

I(Si = s)−
∑
s

rs
∑
i

(1− Zi)Y i

N0s

I(Si = s) = ρs

which is the stratified estimator. Due to these approximations stratified estimator may not
be equal to IPTW estimator. Usually in practice K = 5, therefore in the estimator there
are only 5 possible values of propensity scores are used even though there should be N
number of propensity scores.

4.3 Doubly Robust Estimator

So called doubly robust (DR) estimator (see [18] and references therein) is a popular one
in potential outcome framework. To understand how it is related to graphical model
estimator let us suppose the case that in the causal network we use predicted outcome, say,
Ŷ instead of what is really observed Y ; that is we can use two separate regression model,
say, Ŷ1 := E{Y |Z = 1, X} and Ŷ0 := E{Y |Z = 0, X} to predict possible outcomes for
each subject. By this task which is done external to the causal graphical model, we have
data for a pair of variables Ŷ0 and Ŷ1 for Z = 0 and Z = 1 respectively for each subject
even though each subject has either Z = 0 or Z = 1. Firstly for simplicity let us assume
that both Ŷ0 and Ŷ1 take only values from the set {0, 1} (as if the regression functions are
classifiers). Then, the average causal effect estimate based on predicted outcome, say, ρp;
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ρp =
∑
y

yp(Ŷ = y|do(Z = 1))−
∑
y

yp(Ŷ = y|do(Z = 0))

=
∑
y

y
∑
x

p(Ŷ = y|Z = 1, X = x)p(X = x)−
∑
y

y
∑
x

p(Ŷ = y|Z = 0, X = x)p(X = x)

=
1

N

∑
i

ZiŶ i
1

ei
− 1

N

∑
i

(1− Zi)Ŷ i
0

1− ei

Note that the above estimator is dependent of the used regression models. One drawback
of the ρp is that it is not using both predictions for each subject even though both are
available. So, let us consider the following modification to it to get another estimate, say,
ρ′p;

ρ′p = ρp −

{
1

N

∑
i

Ŷ i
1 −

1

N

∑
i

Ŷ i
0

}

=
1

N

∑
i

{
ZiŶ i

1

ei
− Ŷ i

1

}
− 1

N

∑
i

{
(1− Zi)Ŷ i

0

1− ei
− Ŷ i

0

}

=
1

N

∑
i

(Zi − ei)Ŷ i
1

ei
+

1

N

∑
i

(Zi − ei)Ŷ i
0

1− ei

Now

ρ− ρ′p =
1

N

∑
i

{
ZiY i

ei
− (Zi − ei)Ŷ i

1

ei

}
− 1

N

∑
i

{
(1− Zi)Y i

1− ei
+

(Zi − ei)Ŷ i
0

1− ei

}
= DR

which is called the doubly robust estimator (DR). That is, we can have the DR estimator
from the graphical model estimator if we use both the observed outcome and some predicted
outcome in the graphical model. Note that ρ′p can be effectively zero if our propensity
score estimates are equal to respective sample proportions i.e., the maximum likelihood
estimates from the joint likelihood for p(y, z, x). Then we get the DR and the IPTW the
same in this case. Furthermore numerically the IPTW is just the maximum likelihood
parameter estimate based graphical model estimate when the propensity scores are sample
proportions. So we have that the DR is numerically equal to the basic graphical model
estimator in this case.

Often researchers estimate propensity scores through a model, for example, a logistic
regression with independent variables X (as a linear or/and non-linear combination of
them). But generally no one knows the true model in a given empirical context therefore
DR estimate may be affected by the propensity model specification. When propensity
scores are consistently estimated the IPTW estimator is a consistent to the average causal
effect, therefore so does the DR estimator. Note that the result is true irrespective of
specification of the two regression models E{Y |Z = 1, X} and E{Y |Z = 0, X} -whether
they are true or not. However for small samples, DR estimate may depend on the used
regression models if estimated propensity scores are different from corresponding sample
proportions.
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Likewise it may be of interest to see that what can the DR estimator be if we have true
outcome regression models. First consider the following writing of the DR estimator.

DR =
1

N

∑
i

{
(Y i − Ŷ i

1 )
Zi

ei
− (Y i − Ŷ i

0 )
(1− Zi)

1− ei

}
+

{
1

N

∑
i

Ŷ i
1 −

1

N

∑
i

Ŷ i
0

}
And from the above we know that ExEy{Y |Z = 1, X} =

∑
x,y yp(y|Z = 1, x)p(x) =

1
N

∑
i
Y iZi

ei
and therefore ExEŷ{Ŷ |Z = 1, X} =

∑
x,ŷ ŷp(ŷ|Z = 1, x)p(x) = 1

N

∑
i
Ŷ iZi

ei
. Now

consider the case of Z = 1. Since for each X = x, Ŷ is a single value, say, ŷ(Z = 1, x)
then we have

∑
x,ŷ ŷp(ŷ|Z = 1, x)p(x) =

∑
x ŷ(Z = 1, x)p(x). If we take ŷ(Z = 1, x) =∑

y yp(y|Z = 1, x) for each x, i.e., if we let our regression function at X = x to be the

empirical mean of Y values at X = x then we get
∑

i
Y iZi

ei
=

∑
i
Ŷ iZi

ei
. And in the similar

way, for the case of Z = 0 we get
∑

i
Y i(1−Zi)

1−ei =
∑

i
Ŷ i(1−Zi)

1−ei . Both of them imply that

DR =
1

N

∑
i

Ŷ i
1 −

1

N

∑
i

Ŷ i
0

=
1

N

∑
x

NxŶ (Z = 1, x)− 1

N

∑
x

NxŶ (Z = 0, x)

=
∑
x

Ŷ (Z = 1, x)p(x)−
∑
x

Ŷ (Z = 0, x)p(x)

That is, if the outcome regression model Ŷ (Z = z,X = x) has its value at X = x as the
mean of the observed Y values at X = x for Z = z, for z = 0, 1 or in other words when
our two regression models are the true models then the DR estimator has the above simple
form, that is independent of propesity score model -whether it is correct or not.

In fact we do not need to have above restriction on values of Ŷ0 and Ŷ1 for the validity
of the above discussion. Generally a regression model predicts a continuous variable and
for any continuous random variable Y when we have a random sample of n observations,
say {y1, ..., yn},

∫
y
yp(y) is estimated by

∑n
i=1 yi/n. In general when Y is continuous and

X is mixture of discrete and continuous then writing all summations of X as integration,
if any, we have that∫

x

∫
y

yp(y|z, x)p(x)dydx =

∫
x

1

N(z, x)

∑
j

yjI(Z = z)I(X = x)

=
1

N

∑
x

N(x)

N(z, x)

∑
j

yjI(Zj = z)I(Xj = x)

=
1

N

∑
j

yj
∑
x

I(Zj = z)I(Xj = x)

N(z, x)/N(x)

=
1

N

∑
j

yj
I(Zj = z)I(Xj = xj)

P (Zj = z|Xj = xj)

Therefore
∫
x

∫
y
yp(y|Z = 1, x)p(x) = 1

N

∑
j
yjzi

ej
and

∫
x

∫
y
yp(y|Z = 0, x)p(x) = 1

N

∑
j
yj(1−zi)
1−ej .

So, when Ŷ0 and Ŷ1 are continuous random variables then ρp =
∫
y
yP (Ŷ = y|do(Z =

1))−
∫
y
yP (Ŷ = y|do(Z = 0)) that can be estimated with summations, thus above formu-

las can be obtained. From above it is clear all the discussion can be generalized to the case
of when Y and X have any finite state spaces.
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