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Abstract 

This paper develops a model for estimating Value-at-Risk (VaR) from the historical return series. 

The proposed method uses spline interpolation to represent the empirical probability distribution 

of the return series. The approach developed in this paper is easy to implement using available 

programming platforms, and it can be generalized to other applications that involve estimating 

empirical distribution. In order to check the validity of the model, I use established back-testing 

methods and show that the model is robust to the changes in sample size and significance levels 

used to estimate VaR. I test the model against some similar distribution-based models using 

historical data from S&P500 index. I show that Value-at-Risk estimation based on the proposed 

method can outperform common historical, parametric, and kernel-based methods. As a result, the 

method can be useful in the context of validation of market risk models. 

Keywords: Value at Risk, cubic spline, probability distribution, Back-testing. 

Introduction 

Value-at-risk (VaR) is a widely used measure in risk management. It is defined as the highest 

possible loss over a certain period of time at a given significance level, which is typically chosen 

to be 1% or 5%. Establishment of VaR as a practical methodology in risk measurement got 

initiated back in 1994, when J.P. Morgan published RiskMetrics as its first systematically 

developed risk-measurement procedure. According to the Basle Committee on Banking 

Supervision, banks are allowed to calculate their risks based on a VaR concept (Basle (1995), 

Basle (1996)). VaR has been increasingly adopted in various contexts with significant 

improvements on its calculation techniques; (see Jorion (2007)). However, VaR models suffer 

from some inefficiencies in risk measurement. 

In order to satisfy the Basle requirements, banks and financial institutions were computing their 

VaR using either historical simulation, Variance-Covariance technique (Parametric) or Monte 

Carlo simulation (See more detailed VaR methodologies in Dowd (2002) and Alexander (2009)). 

With the emergence of the 2008 financial crisis, modifying the VaR methodology has become an 

essential requirement. VaR has already received lots of attention in the literature (see Jorion 

(2007)) and the literature dealing with different modeling issues is large enough, but few studies 
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have been specifically concentrated on quantifying the uncertainty: Jorion (1996), Chritoffersen & 

Gonclaves (2005) and Chan et al. (2007). Inefficiency of the VaR estimates may have different 

reasons: The major one is due to data, such as lack of sufficient data; Further, uncertainty due to 

poorly characterized parameters in a specified mathematical model which are reflected in the VaR 

calculation (Dowd (1998)). A considerable amount of research has been devoted to exploring the 

VaR limitations (Krause (2003) and Danielsson (2002)) and producing more accurate VaR 

estimates, Khindanova et al. (2001), Sun et al. (2009), Lonnbark (2010), Huang (2010), Shaker-

Akhtekhane and Mohammadi (2012), and Shaker-Akhtekhane et al. (2018) among others. 

In this paper, a non-parametric approach using historical data based on cubic spline smoothing 

(CSS) is proposed to calculate VaR. I will use three widely used tests to examine the validity of 

the proposed method; Binomial, unconditional coverage and conditional coverage tests. 

Additionally, I will compare the performance of the proposed method to that of some popular 

Value-at-Risk measurement methods. I will use models with characteristics similar to that of the 

proposed method. The models include parametric (Normal and student’s t), plain historical 

simulation and Epanechnikov kernel estimation method. Some other popular kernel estimators are: 

Epanechnikov, Biweight, Triweight, Triangular, Normal and Uniform kernels. It is noteworthy 

that unimodal densities have the same performance when used as a kernel. Also, uniform kernels 

are not very popular in practice since the corresponding density estimation is piecewise constant 

(Wand & Jones (1995)). Considering all aspects and the similarities between these kernels, the 

Epanechnikov kernel is chosen to be examined and compared in this paper. It should also be noted 

that, I have used all the kernels and obtained the results, but I have decided not to report all kernel 

methods because they produce very similar results. 

The rest of the paper is organized as follows. Section 2 provides a brief explanation of cubic 

splines. In Section 3, cubic smoothing spline VaR estimation method is discussed, and Section 4 

explains the statistical testing procedures and examines the reliability of the model. Finally, section 

5 provides concluding remarks. 

Cubic Splines 

Cubic splines are powerful mathematical tools for interpolating discrete data using a reasonably 

smooth curve. Given data points across two-dimensional space {(𝑥ଵ, 𝑦ଵ), . . . , (𝑥, 𝑦)} with 𝑥ଵ <

⋯ < 𝑥, a cubic spline for these data points is defined as  the following piecewise function 

 𝑆(𝑥) = 𝑠(𝑥)     if     𝑥 ≤ 𝑥 < 𝑥ାଵ,     𝑖 ∈ {1, . . . , 𝑛 − 1} (1) 

where the 𝑠’s are cubic polynomials, i.e. polynomials of degree three, defined by 

 𝑠(𝑥) = 𝑎(𝑥 − 𝑥)
ଷ + 𝑏(𝑥 − 𝑥)

ଶ + 𝑐(𝑥 − 𝑥) + 𝑑 ,     𝑖 ∈ {1, . . . , 𝑛 − 1} (2) 

and where the following conditions hold: 

1. 𝑆(𝑥) interpolates the data points 𝑠(𝑥) = 𝑦  and 𝑠(𝑥ାଵ) = 𝑦ାଵ for 𝑖 ∈ {1, . . . , 𝑛 − 1}. 

2. 𝑆(𝑥) is twice continuously differentiable in the interval (𝑥ଵ, 𝑥) 

The choice of degree three offers a compromise between simplicity and flexibility. In order to 

uniquely determine a cubic spline, one needs to introduce additional conditions. For example, one 
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can demand that the limit of the second derivative is zero in both endpoints 𝑥ଵ and 𝑥. Cubic 

splines for which this condition holds are called natural. For detailed information on cubic splines 

the reader is referred to textbooks on numerical analysis, e.g. (Stoer et al. 2010). 

There is another type of cubic splines which is called “cubic smoothing spline” (CSS). The 

smoothing spline 𝑓 minimizes 

 𝑝∑ 𝛾

ୀଵ |𝑦 − 𝑓(𝑥)|

ଶ + (1 − 𝑝) ∫ 𝜆(𝑡)|𝐷ଶ𝑓(𝑡)|
ଶ
𝑑𝑡 (3) 

where, |𝑧|ଶ stands for the sum of the squares of all the entries of 𝑧. 𝑛 is the number of the points, 

and the integral is over the smallest interval containing all the entries of 𝑥. Also, 𝛾 is the weight 

vector in the error measure, and 𝜆 is the piecewise constant weight function in the roughness 

measure. 𝐷ଶ𝑓 denotes the second derivative of the function 𝑓, and 𝑝 is the smoothing parameter. 

For 𝑝 = 0, 𝑓 is the least-squares straight line fit to the data, while, at the other extreme, i.e., for 

𝑝 = 1, 𝑓 is the natural cubic spline interpolant. As 𝑝 moves from 0 to 1, the smoothing spline 

changes from one extreme to the other. In the following, cubic smoothing spline (CSS) with 𝑝 =

0.5 (to compromise between smoothness and interpolation) and equal weights(𝜆 = 1, 𝛾 =

1, for 𝑖 = 1, . . . , 𝑛()) will be employed. I do this to keep things simple as well as to provide proper 

insights on how this simple, non-optimized version of the model works compared to other popular 

counterparts. Then one can think of calibrating these parameters according to the case at hand. 

Value-at-Risk Model 

Let {𝑥௧} be a sequence of prices, then, corresponding returns sequence is 

𝑟௧ = 100 𝑙𝑜𝑔
𝑥௧
𝑥௧ିଵ

 

The Value-at-Risk for 𝑑 days ahead at 𝛼 significance level, 𝑉𝑎𝑅ௗ,ఈ, is defined as 

 𝐹(𝑉𝑎𝑅ௗ(𝛼)) = 𝑃(𝑟௧ < 𝑉𝑎𝑅(𝛼)) = 𝛼 (4) 

or 

 𝑉𝑎𝑅ௗ(𝛼) = 𝑖𝑛𝑓{𝜈|𝑃(𝑟௧ < 𝜈) = 𝛼} = 𝐹ିଵ(𝛼) (5) 

where 𝐹(𝑟௧) is the cumulative distribution function of the returns. This function can be estimated 

either parametrically and/or non-parametrically. In the next subsection, I describe the cubic 

smoothing spline (CSS VaR) method, which is of importance here. 

Estimating Value-at-Risk using CSS 

Suppose that we want to calculate 1-day ahead VaR at 𝛼 significant level, i.e., 𝑉𝑎𝑅ଵ,ఈ. Let 𝒙 =

{𝑥ଵ, 𝑥ଶ, . . . , 𝑥ே} be the return series, (where 𝑁 is the sample size). In an algorithmic manner, I 

perform the following steps to obtain the empirical cumulative distribution of the data: 

 Assign the weights of {𝑤, 𝑤ଵ, 𝑤ଶ, . . . , 𝑤ே , 𝑤ேାଵ} to each data-point {𝑥, 𝑥ଵ, 𝑥ଶ, . . . , 𝑥ே , 𝑥ேାଵ}. 

Where, 𝑥 = 𝑚𝑖𝑛( 𝑥) − 𝜎 and 𝑥ேାଵ = 𝑚𝑎𝑥( 𝑥) + 𝜎,    𝑖 = 1,2, . . . , 𝑁. 𝜎 is the standard 

deviation of 𝒙. 
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 The assigned weights can be either equal, (
ଵ

ேାଵ
) or exponentially declining or any other 

desired weights which can vary depending on the data and our estimation goals. 

Here, I use equal weights, and I set 𝑤 = 0,   𝑤 =
ଵ

ேାଵ
,   𝑗 = 1,2, . . . , 𝑁 + 1. 

 Next, sort the data from the lowest to the highest to obtain ordered data, 

{𝑥
ᇱ , 𝑥ଵ

ᇱ , 𝑥ଶ
ᇱ , . . . , 𝑥ே

ᇱ , 𝑥ேାଵ
ᇱ }. 

 Assign the cumulative weights to the ordered data such that the weights 

𝑤
ᇱ , 𝑤ଵ

ᇱ , 𝑤ଶ
ᇱ , . . . , 𝑤ே

ᇱ , 𝑤ேାଵ
ᇱ  are assigned to 𝑥

ᇱ , 𝑥ଵ
ᇱ , 𝑥ଶ

ᇱ , . . . , 𝑥ே
ᇱ , 𝑥ேାଵ

ᇱ , respectively, where 

𝑤
ᇱ = 𝑤



ୀ

   𝑖 = 0,1, . . . , 𝑁 + 1 

For example, in our case (equal weights), the cumulative weight corresponding to 𝑖௧ ordered 

return is (𝑤 =


ேାଵ
). 

By implementing these steps and making use of the assigned weights and data series at hand, one 

can obtain the empirical cumulative distribution shown in Figure1-(a). Now, I smoothly interpolate 

the cumulative distribution function 𝐹 using CSS (See Figure1-(b)). Then, the empirical density 

function can be derived as the first derivative of 𝐹, i.e., 𝑓 = 𝐹ᇱ. Finally, 𝑉𝑎𝑅ఈ is calculated using 

𝑓, or it can be calculated directly using 𝐹, see Figure1-(c) and Figure1-(d). The results are not 

affected by two extra points, 𝑥 and 𝑥ேାଵ. These points are added to make the end slopes of the 

smoothed curve zero. This is clear in Figure 1. 

The main strength of the proposed method is that it provides the empirical cumulative distribution 

function and density function without imposing distributional assumptions on the data. As a result, 

it can be considered as a non-parametric attempt to estimate the distributional shape of the data. In 

order to check the validity of the proposed approach in the context of VaR measurement, I have 

selected some benchmark VaR estimation models to compare against my model. As the proposed 

spline smoothing method estimates the empirical distribution of the data, it would be appropriate 

to select other distribution-fitting methods (parametric normal and t, and kernel fitting). Also, 

since the proposed method just uses historical data to estimate the empirical distribution, I have 

included the historical simulation method which basically uses quantiles of the data in the left tail. 

As described above, I estimate the cumulative distribution instead of density function, and as a 

result, I don’t impose restrictive distributional assumptions on the data, e.g., histograms and bins 

which are needed if we try to estimate the density function directly using splines. Our technique 

just uses the data at hand and all the available data are involved in creating the cumulative function 

and the density function. Next section is devoted to back-testing and examining the model’s 

validity and comparing it with four other simple but popular methods. 
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Fig. 1  VaR measurement Procedure using CSS. Panel (a) illustrates the cumulative distribution of the data; 

panel (b) shows the interpolated and smoothed cumulative distribution function; panels (c) and (d) display the 

VaR calculation using density function and cumulative distribution function, respectively. 

Validity of the CSS VaR model 

This section discusses reliability of the proposed model using three back-testing approaches. I also 

apply the same tests to other competing methods in order to get an understanding of how well the 

CSS VaR model works compared to the other similar, widely used models. Here, I introduce the 

back-testing methods briefly followed by implementation of the back-testings on the VaR models 

in the next subsections. 

Back-testing is based on a rolling window for sub-samples data selection. The estimation sample is 

held constant, and it is rolled over the entire sample starting at the first data point. The length of 

the risk horizon is kept constant (here I take it equal to 1 day), and the test sample starts at the end 

of the estimation sample. We roll the estimation and test periods forward 1 day and keep rolling 

the estimation and test samples over the entire sample until we reach the last observation. Then we 

record the calculated VaR and the realized value for the entire period of window movement. The 

result of this procedure will provide two time series covering all the consecutive rolling test 

periods. One series contains the 1-day VaR estimates and the other contains the 1-day realized 

returns. The Back-test is performed based on these two series. Note that this rolling window 

approach is standard in risk literature which can easily be found in any VaR related textbook, e.g. 

see Alexander (2009). 

Binomial back-testing 

Most Back-tests on daily VaR are based on the assumption that the daily returns are generated by 

an i.i.d. Bernoulli process. A Bernoulli variable may take only two values, i.e., 1 and 0, or 

’success’ and ’failure’. Here, we will call ’success’ an exceedance of the VaR on the return. That 

is, the calculated VaR exceeds the corresponding realized return value. The exceedances are 

(d) 

(a) (b) 

(c) 
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assigned value of 1. We can define an indicator function 𝐼ఈ,௧ over the time series of daily returns 

relative to the 100𝛼% daily VaR by: 

 𝐼ఈ,௧ାଵ = ൜
1,   if   𝑌௧ାଵ < −𝑉𝑎𝑅ଵ,ఈ,௧ ,

0,               otherwise.
 (6) 

Where 𝑌௧ାଵ is the ’realized’ daily return on the portfolio from the time t, when the VaR is 

estimated, to the time (t+1). If the VaR model is accurate and 𝐼ఈ,௧ follows an i.i.d. Bernoulli 

process, the probability of ’success’ at any time t is α. Thus, the expected number of successes in a 

test sample with n observations is 𝑛𝛼. Let’s denote the number of successes by the random 

variable 𝑋,ఈ. These assumptions imply that 𝑋,ఈ follows a binomial distribution with parameters n 

and α. Therefore we have the following: 

 𝐸൫𝑋,ఈ൯ = 𝑛𝛼 (7) 

 𝑉൫𝑋,ఈ൯ = 𝑛𝛼(1 − 𝛼) (8) 

It is obvious that if the number of exceedances is closer to the mean, nα, then the model can be 

regarded as more accurate. We can also use confidence intervals instead of exact values to assess 

the validity of the model. When n is very large the distribution of 𝑋,ఈ is approximately normal, so 

a two-sided 1 − 𝜌 confidence interval for 𝑋,ఈ under the null hypothesis that the VaR model is 

accurate is given by the following: 

 ቀ𝑛𝛼 − 𝑧ଵିഐ
మ
ඥ𝑛𝛼(1 − 𝛼), 𝑛𝛼 + 𝑧ଵିഐ

మ
ඥ𝑛𝛼(1 − 𝛼)ቁ. (9) 

Unconditional and conditional coverage Back-testing 

In addition to the basic binomial test, I use unconditional coverage (UCC) and conditional 

coverage (CC) tests introduced by Kupiec (1995) and Christoffersen (1998) to further examine the 

validity of the VaR models. The unconditional coverage test is a likelihood ratio statistic which is 

given by 

 𝐿𝑅௨ =
గ

௫భబೣ

ഏobs
భ(భషഏobs)

బ
,

 (10) 

where 𝜋௫ is the expected proportion of exceedances, 𝜋obs is the observed proportion of 

exceedances from VaR, 𝑛ଵ is the observed number of exceedances from VaR and 𝑛 = 𝑛 − 𝑛ଵ is 

total cases which the indicator function of returns is zero, where 𝑛 stands for total sample size. The 

asymptotic distribution of −2 𝑙𝑛 𝐿 𝑅௨ is chi-square with one degree of freedom, and the null 

hypothesis is that the VaR estimation method is accurate in the sense that the total number of 

exceedances is close to the expected number. The hypothesis is rejected if computed −2 𝑙𝑛 𝐿 𝑅௨ 

is greater than the corresponding critical value. 

In a similar way the conditional coverage test statistic is given by 

 𝐿𝑅 =
గ

௫భబೣ

ഏ01
బభ(భషഏ01)

బబഏభభ
భభ(భషഏ11)

భబ
,

 (11) 
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where 𝜋௫ is the expected proportion of exceedances, 𝑛ଵ is the observed number of exceedances 

from VaR and 𝑛 = 𝑛 − 𝑛ଵ in which 𝑛 stands for total sample size, therefore 𝑛 is total cases 

which the indicator function of returns equals zero and 𝑛 is the number of returns with indicator 

value 𝑖 followed by indicator value 𝑗. Also 

𝜋ଵ =
𝑛ଵ

𝑛 + 𝑛ଵ
        and        𝜋ଵଵ =

𝑛ଵଵ
𝑛ଵ + 𝑛ଵଵ

. 

The asymptotic distribution of −2 𝑙𝑛 𝐿 𝑅 is chi-square with two degrees of freedom. 

Back-testing Results 

For back-testing, I use S&P500 index’s daily observations from Jun 1990 to Dec 2006. I have not 

included the period leading to 2008’s financial crisis as that period represents a different market 

regime which would not be appropriate for testing simple parametric and non-parametric 

approaches. It can be noted that, the proposed method can be coupled with different weighting 

schemes or with some modern volatility models in order to capture varying market regimes, which 

would be beyond the scope of this paper. The whole sample size is 4287 which is enough to have 

several sizes for the estimation sample as well as enough estimated VaR’s and realized return 

values to perform reliable tests on the models. I run the back-testing at two significance levels 

(0.05 and 0.01) and four Rolling Window Sizes, denoted by RWSs, (1, 2, 3 and 4 years of length, 

respectively 250, 500, 750 and 1000 daily observations). Table 1 contains the binomial back-

testing results of the methods. According to Table 1, assuming a 5% rejection rate for the accuracy 

of the methods, (i.e., reject the null hypothesis of the model being accurate if the p-value is less 

than 0.05), the proposed model passes the binomial test under all significance levels and sample 

sizes (all 8 cases) while all other models fail at least once. 

Table 2 reports the test results for the unconditional and conditional coverage back-testing 

methods. According to Table 2, again assuming 5% rejection rate for our hypothesis testing, the 

proposed model passes the unconditional coverage test for all eight cases. For this test historical 

simulation and epanechnikov kernel methods also pass the test for all cases while parametric t fails 

two and parametric normal fails four out of eight cases. For conditional coverage test also our 

model outperforms the others. Although this time our model fails the test in two out of eight cases, 

the second best model is the epanechnikov kernel which fails in four out of eight cases. Table 3 

summarizes the failures of the models under 1% and 5% rejection rates for the null hypothesis that 

the model is accurate. If we take a look at the overall performance of the models in all three back-

tests, i.e. add the failures under the 5% rejection rate, we can rank the models as1: 1. Cubic 

smoothing spline, 2. Epanechnikov kernel, 3. Plain historical simulation, 4. Parametric t, and 5. 

Parametric normal. 

 

 

 
1 Note that this method is not a conventional ranking approach and is merely used to provide 

a better understanding of which models fails in fewer/more tests compared to others. 
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TABLE 1 Binomial back-testing results of the VaR models, (ρ=0.05). 

VaR model α RWS 
Expected  

value 

Number of  

exceedances 
Difference p-value 

Cubic  

smoothing  

spline 

0.05 

250 202 190 12 0.3921 

500 189 182 7 0.5837 

750 177 181 4 0.7488 

1000 164 188 24 0.0584 

0.01 

250 40 33 7 0.2437 

500 38 36 2 0.7601 

750 35 39 4 0.5396 

1000 33 38 5 0.3685 

Epanechnikov  

kernel 

0.05 

250 202 179 23 0.0989 

500 189 179 10 0.4403 

750 177 182 5 0.6911 

1000 164 189 25 0.0485 

0.01 

250 40 38 2 0.7077 

500 38 40 2 0.7279 

750 35 42 7 0.2625 

1000 33 41 8 0.1541 

Parametric 

normal 

0.05 

250 202 183 19 0.1734 

500 189 169 20 0.1292 

750 177 173 4 0.7664 

1000 164 172 8 0.5404 

0.01 

250 40 62 22 0.0006 

500 38 60 22 0.0003 

750 35 68 33 0.0000 

1000 33 66 33 0.0000 

Parametric 

student’s t 

0.05 

250 202 170 32 0.0214 

500 189 162 27 0.0414 

750 177 168 9 0.4947 

1000 164 170 6 0.6511 

0.01 

250 40 41 1 0.9206 

500 38 41 3 0.6092 

750 35 34 1 0.8169 

1000 33 36 3 0.5832 

Plain HS 

0.05 

250 202 196 6 0.6727 

500 189 183 6 0.6359 

750 177 183 6 0.6352 

1000 164 182 18 0.1578 

0.01 

250 40 50 10 0.1277 

500 38 48 10 0.0980 

750 35 46 12 0.0724 

1000 33 45 12 0.0335 

Note:  RWS: rolling window size. α is the significance level of VaR, (VaRα). 
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TABLE 2 Coverage back-testing results of the VaR models. 

VaR model α RWS -2lnLRuc p-value(UCC) -2lnLRcc p-value(CC) 

Cubic 

 smoothing  

spline 

0.05 

250 0.7463 0.3877 5.7366 0.0568 

500 0.3041 0.5813 7.1087 0.0286 

750 0.1018 0.7497 5.9034 0.0523 

1000 3.7201 0.0538 12.2097 0.0023 

0.01 

250 1.4493 0.2286 2.5977 0.2728 

500 0.0948 0.7581 0.9116 0.6339 

750 0.3642 0.5462 3.4201 0.1809 

1000 0.7701 0.3802 3.7594 0.1526 

Epanechnikov  

kernel 

0.05 

250 2.8261 0.0927 8.3132 0.0157 

500 0.6061 0.4363 11.4991 0.0032 

750 0.1564 0.6925 5.7675 0.0559 

1000 3.7201 0.0538 12.2097 0.0022 

0.01 

250 0.1433 0.7050 0.9030 0.6367 

500 0.1188 0.7303 6.9359 0.0312 

750 1.1842 0.2765 3.7743 0.1515 

1000 1.8833 0.1700 4.3979 0.1109 

Parametric 

normal 

0.05 

250 1.9103 0.1669 8.1333 0.0171 

500 2.3848 0.1225 7.2399 0.0268 

750 0.0888 0.7657 4.6426 0.0981 

1000 0.3694 0.5433 9.9169 0.0070 

0.01 

250 10.0592 0.0015 15.6548 0.0004 

500 11.0931 0.0009 20.0254 0.0000 

750 23.9406 0.0000 30.2755 0.0000 

1000 26.0949 0.0000 29.7245 0.0000 

Parametric 

student’s t 

0.05 

250 5.5768 0.0182 16.4111 0.0003 

500 4.3631 0.0367 12.1515 0.0023 

750 0.4737 0.4913 5.9148 0.0520 

1000 0.2023 0.6529 6.9682 0.0307 

0.01 

250 0.0099 0.9208 11.4134 0.0033 

500 0.2545 0.6140 6.8083 0.0332 

750 0.0534 0.8157 4.0226 0.1338 

1000 0.2920 0.5889 3.6321 0.1627 

Plain HS 

0.05 

250 0.1801 0.6713 5.4790 0.0646 

500 0.2266 0.6341 5.4109 0.0668 

750 0.2227 0.6370 7.0570 0.0293 

1000 1.9310 0.1647 10.5802 0.0050 

0.01 

250 2.1568 0.1419 6.9983 0.0302 

500 2.5234 0.1122 11.1581 0.0038 

750 2.9478 0.0860 7.9703 0.0186 

1000 3.9415 0.0636 8.5478 0.0139 

Note: RWS: rolling window size, α is the significance level of VaR, (VaRα). 

UCC: unconditional coverage, CC: conditional coverage. 
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TABLE 3 Summary of accuracy hypothesis rejection 

VaR model 
BB UCC CC 

0.01 0.05 0.01 0.05 0.01 0.05 

Cubic smoothing spline 0 0 0 0 1 2 

Parametric normal 4 4 4 4 5 7 

Parametric student’s t 0 2 0 2 3 5 

Plain historical 0 1 0 0 2 6 

Epanechnikov kernel 0 1 0 0 2 4 

Note: BB: binomial back-testing. UCC: unconditional coverage. CC: conditional coverage. 
0.01 and 0.05 stand for rejection rate of hypothesis testing, ρ. 

 

Conclusion 

In this paper, I have proposed a cubic smoothing spline procedure to approximate the empirical 

distribution of a given series and have applied this approach to estimate Value-at-Risk. The 

approach presented in this paper provides an innovative way of estimating PDF and CDF functions 

without relying on kernels or histogram-based methods. The proposed method uses historical data 

to approximate the distribution of the data and calculates the VaR using the density function or 

cumulative function estimation using cubic splines. Conventional approaches of estimating Value-

at-Risk rely heavily on accurate estimation of the probability distribution of returns and that’s why 

I have used the cubic smoothing splice approach to estimate Value-at-Risk. I compared the 

accuracy of several VaR approaches with similar characteristics to that of the proposed method. I 

have used the following models as benchmarks for comparison against the Cubic smoothing 

spline: (1) Parametric normal with unconditional mean and variance, (2) Parametric student’s t 

with unconditional mean and variance, (3) Plain historical simulation, and (4) Epanechnikov 

kernel method. 

I have used three different back-testing methods to test the validity of the proposed model. The 

back-testing methods used in this paper are: binomial, unconditional coverage and conditional 

coverage tests. Also, in order to perform a better evaluation of the models, I have used back-tests 

for different sample sizes and VaR significance levels, making a total of eight different cases for 

each model. The proposed model passes binomial test and unconditional coverage test for all eight 

cases under a 5% rejection rate. It fails the conditional coverage test only twice for the same 

rejection rate. Despite failing the conditional coverage test twice, our proposed method still 

outperforms the other competing models in all three tests. If we rank the models used in this paper 

in terms of their performance in back-tests across all eight cases, we find that the proposed method 

performs the best whereas the parametric normal model performs the worst amongst the models 

used in this paper. Epanechnikov kernel method as well as other kernel methods in general 

(because all kernel methods produce very similar results) show a satisfactory degree of accuracy 

compared to other models and ranks second. 

As discussed earlier in the paper, I have used a very simple version of the cubic smoothing splines 
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in order to evaluate the model in its simplest form. One can obtain optimal parameter values for 

the model such as weights and the smoothing parameter depending on the data, to improve on our 

results. 
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