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Abstract.
Breast cancer is the most common form of cancer among women. Since 1945 the number of cases has almost doubled. However, since 1990 the survival rate has improved significantly.  

The literature discusses models of the age distribution of breast cancer mortality developed on the basis of a two-disease theory of breast cancer incidence called Clemmensen’s hook.

On the basis of Danish data on the death rate from breast cancer the existence of Clemmensen’s hook is discussed critically. 
A model encompassing five discussed studies on the subject is developed. When the cohort effects are included in the model, the two-disease theory for breast cancer disappears.

The paper concludes that Clemmensen’s hook does not exist as the overlapping of two curves corresponding to pre- and post-menopausal tumors for breast cancer, respectively.
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1  Introduction
Breast cancer is the most common form of cancer among women. Since 1945 the number of cases has doubled in Denmark. However, since 1990 the survival rate has improved significantly in the western world. Today, in summary, about 85% of the breast cancer patients are still free from breast cancer five years after treatment.  
The purpose of this article is to create an econometric model to make a prognosis for the development in the death rate from breast cancer. In that context, the  literature has argued for the existence of a Clemmensen’s hook in the modeling of death rates from breast cancer over lifetime. The model developed here questions its existence. 

Manton and Stallard [10] interpret Clemmensen’s hook as a result of breast cancer being two separate diseases. The curve indicating the death rate for breast cancer is thus interpreted as the overlapping of two curves corresponding to pre- and post-menopausal tumors, respectively.
Clayton and Schifflers [3, 4] talk about Clemmensen’s hook as follows: “The age curve [of death rates] shows the phenomenon of Clemmensen’s hook; rates increase to a maximum at 50-54 then fall back slightly before continuing their upward trend from the age of 65 onwards”. 
Likewise, Cayuela et al. [2] mention that Clemmensen’s hook “has been observed in different countries with reference to both incidence and mortality and is interpreted as the overlapping of two curves corresponding to pre- and post-menopausal tumors, respectively.
However, in more recent studies we see that Clemmensen’s hook disappears.

Bouchardy et al. [1] write that “the typical age incidence curve of breast cancer described a progressive increase of risk with age, with a slope down around the menopause age, called Clemmensen’s hook. This typical curve by age is no longer observed in Geneva …”. 
Similarly, Fuglede et al. [5] conclude that “important changes over the past decade in the age-specific incidence pattern of breast cancer in particular around the time of menopause [commonly denoted Clemmensen’s hook] were indicated.”

For a better description of the development of breast cancer over the lifecycle of women this article will present an econometric age-period-cohort model to test the existence of a Clemmensen’s hook in the death rate from breast cancer based on Danish data. The method is based on Kristensen [9] including secular cohort effects. For a discussion of the age-period-cohort models see also Clayton and Schifflers [3, 4], Holford [7], Osmond and Gardner [11], and Rostgaard et al. [12].
2  Data

The Danish data on the death rate from breast cancer are obtained from: The Danish Health and Medicines Authority (Statens Serum Institut): “Cancer in breast”, B-020. In principle, the present article is based on the total dataset for deaths from breast cancer in Denmark 1977-2012. The explanatory variables are: 


T
 period (or year), 1960 = 1


Age
 age at death


Dbc
 actual death rate from breast cancer. Dbc is shown in Figure 1.


CohBorn
 cohort indicated by the year of birth of the youngest person(s) in 

an age group. The cohort is followed by a dummy equal to one 

following an age group diagonal over period and age.

B
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vector for age specific cohort coefficients that express protective 

and detrimental effects according to year of birth. This vector can 

with good reason be seen as the “susceptibility parameter s as 

systematically varying with birth cohorts” as mentioned by 

Manton and Stallard [10].
The article applies 5-year age groups. From the age group 30-34 to the age group 85+ there are no years in which the death rate is zero in the Danish data. Simplified, 30 indicates the age group 30-34, and similarly 35 indicates the age group 35-39, etc. In the empirical estimations the youngest included cohort 30-34 (where the youngest member was 30 years old) started in 1977. The age-specific death rate from breast cancer is shown in Figure 1.

 [image: image2.emf]0

40

80

120

160

200

240

280

320

360

30     35     40     45     50     55     60     65     70     75    80     85+

Death rate from breast cancer in Denmark, 1977-2012.

Age group


Figure 1.  Death rate from breast cancer in Denmark 1977-2012 distributed into 5-year age 
groups from 30-34 to 85+.

Looking back, the death rate was increasing from 1945 onwards. For women in the age group 55-59 the highest death rate was reached in 1992. That is, the death rate in that age group was (in the data set) increasing in the period 1977-1992 and declining from 1992. For women in the age group 65-69 the highest death rate was reached in 2000 and started declining after 2000. No real decline is seen in the age groups above 80.
3  Model for death rates
The above- mentioned articles talk about the death rate from breast cancer being exponentially increasing with age. Simplified and in the present notation that is:


Dbc = αe
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The “new mortality trend” (Gavrilova and Gavrilov, [6]), which lets the death rate curve at all ages decline with almost the same percentage, was added to equation (1) in a semi- logarithmic version:


Log(Dbc) = α
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This formula was the basis for developing equation (3).

The equation for the death rate from breast cancer including the cohort effects is:


Log(Dbc) =  α
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There is no constant element (origo regression), and therefore we can use dummies for the entire period 1892-1982. The equation was estimated by WLS using Age as weight.


Log(Dbc)*Age =   α
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A new time series, formed by the beta coefficients in (4) from β
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, in total 91 observations, is shown in Figure 2. B Є{ β
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The cohort coefficients relating to earlier and recent periods are based on fewer age-specific rates and are hence less reliable than in the central period. Thus, we see the central period 1932-1952 as having the lowest variance.  
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Figure 2. The estimated beta coefficients from equation (4) seen as a time series.
The beta coefficients (the cohort effects) can be seen as related to age groups as shown below in Table 1. Applied for forecasting, the middle of Table 1 shows in the estimated 
	Table 1. The β coefficients seen as time series variables
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beta coefficients. Above “Ex post fc” shows the estimated coefficients as applied in ex post forecasts. Below “Ex ante fc” shows the estimated coefficients applied in ex ante forecasts. 

We cannot say anything for β
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. However, for the individual age groups we can, within limits, make ex ante and ex post forecasts. 

The origo (English: origin) for the cohort coefficients is age group 85+ in 1977. For simplicity, we treat it as an age group 85-89. 

From origo you can go back in time: 

1977- 85 = 1892 (the oldest born 1888).

From 2012 the age group 30-34 reaches back to: 
2012- 85 = 1927 (the oldest born 1922).  

From origo you can go forward in time:   
1977+85 = 2062 (the oldest born 2066).

Figure 3 shows the estimated data distributed on age groups, the middle group in Table 1. When ex post and ex ante beta values are included for the individual age groups, all curves are identical for the individual age groups and equal to the beta coefficient curve in Figure 2.
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Figure 3. The estimated beta coefficients related to age groups.
4  Ex post and ex ante forecast 

Forecasts become increasingly unsure when moving away from actual data. The ex-post forecast is therefore limited to 1972, and the ex-ante forecast is limited to 2022. Likewise, it is not convenient to apply very high (e.g. 2022) or negative values of T because T
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 will then get different signs. Consequently, T=1 for 1960 was applied.
An irreversible decline in the death rate from breast cancer is estimated to start in 2014 for the age group 80-84, and in 2015 for the age group 85+. 
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Figure 4.  The calculated death rate 1977-2022.
4.1  The disappearance of Clemmensen’s hook

 In order to show more clearly the disappearance of  Clemmensen’s hook the curves in Figure 4 are smoothed out by only including every fifth year from1972 and forward to 2022. The outcome is shown in Figure 5.
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Figure 5. Stylistic calculation of the end of “Clemmensen’s hook” 1972-2022. 

Following the *’s in 1972 and the o’s in 2022 we see the disappearance of Clemmensen’s hook. It is seen that the model result from equation (4) is in accordance with all the above- mentioned models in literature from 1980 to 2006. However, there are not two diseases. Clemmensen’s hook is a result of the (former) lifestyle until 1932, where the beta-coefficient curve has its kink. 
5  Conclusion
The cases of breast cancer increased rapidly after the Second World War. However, from 1990 the progress in treatment was accelerating, and the death rate started to decline, first for the younger age groups, and will from 2015 include all age groups. 

Clemmensen’s hook (according to this study) mirrors a shift in lifestyle among different generations or cohorts modeled by the cohort coefficients. The changing lifestyle forms a beta coefficient curve with a kink in 1932 that creates the impression of a “Clemmensen’s hook”.

Thus, Clemmensen’s hook does not indicate the existence of two diseases in breast cancer.
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Appendix. Residual  analysis

The error structure

This appendix gives an overview of the residual in a model which include a cohort effect,  with special focus on the residual autocorrelation. This demonstrated pattern is seen not only in death rate from breast cancer but also in death rate from: malnutrition, lung cancer, COLD, stroke, and heart attack.
Let us start with the simplest case: First order autocorrelation
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 is not normal independent but has negative autocorrelation we e.g. have
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Therefore the estimation must be made in two rounds where in first round is
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The residual is used as an estimator (substitute) for v
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, and applied as an extra explaining variable to e
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a and b, the estimates for ρ and r can both become bigger than one although  ρ and r both are smaller than one.

Empirical evidence

Above, initially, a WLS estimation of equation (4) was made without including the dummies for the cohort effects, that is:


Log(Dbc)*Age =   α
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The classical test values became
R
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 = .986

DW = .46
            Obs. = 432
The DW statistic seems to indicate highly significant positive autocorrelation. However, the DW statistic only test for first order autocorrelation, and is not suitably but highly misleading in this case as shown below.
Instead of removing the autocorrelation in (1a) by the cohort dummies we include the lagged residual, actually we use WGLS estimation: 
Log(Dbc)*Age =    α
[image: image235.wmf]1

  + α
[image: image236.wmf]2

Age
[image: image237.wmf]2

  + α
[image: image238.wmf]3

Age
[image: image239.wmf]3

  


+ α
[image: image240.wmf]4

Age/T + α
[image: image241.wmf]5

Age
[image: image242.wmf]2

/T
[image: image243.wmf]2

 + α
[image: image244.wmf]6

Age
[image: image245.wmf]3

/T
[image: image246.wmf]3

 

+  ρ
[image: image247.wmf]1

e(-1)
[image: image248.wmf] 
                                


 (6a)

The estimated residual coefficient became:


ρ
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 = .766


t      (24.61)

The classical test values became
R
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 = .994

DW = 2.80                 Obs. = 420
We see that ρ
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 is highly significant; however, the DW statistic (for the remaining residual) now indicates significant negative autocorrelation, indicating that the residual in (1a) was not first order autocorrelated. 

We now repeat the procedure – and repeat it again until the remaining residual is white noise.

Log(Dbc)*Age =    α
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(7a)

Estimated residuals coefficients became:

+ 1.022*e(-1) - .644*ee(-1)

t      
  (29.478)          (-11.56)       

and the classical test values became
R
[image: image269.wmf]2

 = .996

DW = 2.32                 Obs. = 408
Now there is no significant autocorrelation in the residuals. Monte Carlo experiments show that DW in cases like this is upward biased.
The autocorrelation pattern found in (1a) must in principle be equal to the autocorrelation in the variable B Є{ β
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, β
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} shown above in Figure 2 and in Table 1 for the individual age groups.

The autocorrelation in the B-variable
Estimating the entire function the formula
Log(Dbc)*Age =    α
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Coh1982                                         (8a)      
gives the classical test values: 

R
[image: image289.wmf]2

 = .997

DW = 2.01
            Obs. = 424
Here the DW statistic shows no autocorrelation at all. As the residual is white noise the DW test is “feasible”.

As mentioned above, the inclusion of the cohort dummies removed the autocorrelation in (5a). Consequently, the variable B must include (or have similarities to) “e” in (4a). Treating “B” as “e” we get:



B =  γ
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         (9a)



B =  1.0052* B(-1) 


t
       (252.26)

R
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 = .965

DW = 2.80                 Obs. = 90
Including the lagged residual gives:


B =  1.0058* B(-1) - .4266*eb(-1)


t
        (276.02)
           (-4.37)

R
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 = .971

DW = 2.18                 Obs. = 89
The confusing outcome here is that the coefficients to e(-1) and B(-1) are bigger than one although both theoretically are smaller than one. However, that this is not a problem can be demonstrated by a Monte Carlo experiment. 
Creating second order negative autocorrelation

For simulation purposes (1a) can be rewritten as

ε
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However, when v
[image: image306.wmf]t

 is not normal independent but has negative autocorrelation we have
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, which inserted in (10a) gives
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Therefore the estimation must be made in two rounds as shown in (3a) and (4a). 
ρ and r are e.g. given the values: ρ  = .90;  r  = -.55 (inserted as .55), and an  e
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 is calculated as a proxy for ε
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, here based on 30 lag.  
A first order autocorrelation coefficient is calculated as: 
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The residual is called v
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. Second step is calculated as:
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We see that a Monte Carlo experiment based on 10.000 random numbers can produce the same result as the empirical data for breast cancer.
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