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Abstract

In this paper, we propose a method to estimate the change-point of a two phases
regression based on the shift of parameter estimates. For the uniform design,
we show that the change-point and the parameter estimates converge almost
surely to the true values. Some simulations show that our proposed method is
more effective than the others.
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1 Introduction

The change-point problem in regression model is increasingly attracted the
attention in statistical journals as well as its applications. We can mention some
researches using the information criteria BIC in [1], the CUSUM procedure in
[2], [3]. Kim and Siegmund [4] proposed likelihood ratio tests for a change in
the intercept with the same slope, and a change in both the intercept and slope.
The power of tests were surveyed in [3], [4], [5]. Applying empirical likelihood
in the change-point problem has been studied in [6], [7], [8]. The outstanding
advantage of the empirical likelihood is that the test is little dependent on the
distribution of errors.

Normally, after concluding that the change-point exists, we have to consider
how to estimate it. Bai [9] studied the robustness, the rate of the convergence
and the asymptotic distribution of the change-point estimate based on the least
squares method for multiple linear regression model. The asymptotic of the
maximum likelihood estimator and of M-estimator were considered in [10], [11].
Diniz and Brochi [12] studied the robustness of some likelihood ratios for the
simple linear regression model. Comparison four methods for estimating as
Bayesian, Julious’, grid-search and the segmented methods was carried out in
[13]. In [7], when calculating the residuals, Liu and Qian used the fitting yi at
xi with swapped least square estimates of the regression parameters, that is the
parameter estimates of the first (the last) phase used to calculate the residuals
of the last (the first) phase. By this way, the residuals are exaggerated and
then this makes the rate of the convergence of estimates increase. However, Liu
and Qian [7], Zhao, Wu and Chen [14] used the empirical likehood method to
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study these residuals and they took care of the robustness of the change-point
estimate as well as parameter estimates by simulation only.

In this paper, we will use the shift of parameter estimates to calculate the
residuals proposed by Liu and Qian in [7]. However, another method is pro-
posed to estimate the change-point, from that the almost sure convergence of
the change-point estimate and the parameter ones to the true values are ob-
tained. The present paper is organized in the following way. In Section 2, the
main results are given including the almost sure convergence of the change-point
estimate and the parameter estimates of the model. Some simulations are pre-
sented in Section 3 where we compare the effect of the estimate of the time of
the change using the proposed method with using Liu and Qian’s one and with
some others. The detailed proofs are presented in Section 4.

2 Main results

Consider a two-phases regression model

yi =

{
α0 + α1xi + εi if 1 ≤ i ≤ k∗,
β0 + β1xi + εi if k∗ < i ≤ n

(1)

where {xi, i = 1, . . . , n} belong to a closed interval I = [a, b] and without loss
of generality we can assume a ≤ x1 < . . . < xn ≤ b, {εi} is a sequence of
independent errors with mean zero and E(ε2i ) = σ2

1 for i = 1, . . . , k∗, E(ε2i ) = σ2
2

for i = k∗ + 1, . . . , n, the parameters α0, α1, β0, β1, σ1, σ2, k
∗ are unknown.

If (α0, α1) = (β0, β1) then the model (1) is called no change. Otherwise,
the model is said to have a change and k∗ is called the time of the change. In
this case, if two lines y = α0 + α1x and y = β0 + β1x meet at τ in [xk∗ , xk∗+1)
that is α0 + α1τ = β0 + β1τ, τ ∈ [xk∗ , xk∗+1), then the model function is called
the continuous segmented one, the model is called continuous and τ is called
the change-point. Otherwise, the model is called the discontinuous one. In this
paper, we only consider the continuous model. Let h = β1 − α1, the model (1)
is rewritten as yi = f(xi) + εi, i = 1, . . . , n, where f(x) is defined by

f(x) = α0 + α1x+ h(x− τ)I(x > τ) (2)

and I(.) is the indicator function.
There are a lot of methods have been proposed to test the null hypothesis

H0 : (α0, α1) = (β0, β1) (see [3], [4], [9]). If the null hypothesis is rejected, we
need to estimate the time of the change k∗ and the change-point τ .

We divide the observations into two groups. The first one contains k obser-
vations (xi, yi), i = 1, . . . , k and let α̂0k, α̂1k denote the least squares estimators
of the parameters of the simple linear regression through the set of them. The
last one contains the rest n − k observations and the least squares estimators
are β̂0k, β̂1k. Each group has to contain enough observations. Following [7], [9]
the restricted range of k is k0 ≤ k ≤ n− k0, where k0 is large enough. Follows
[7], we put

ẽik =

{
yi − (β̂0k + β̂1kxi) if 1 ≤ i ≤ k,
yi − (α̂0k + α̂1kxi) if k < i ≤ n.

(3)

It should be noted that the residuals ẽik are not the ordinary least squares
fitting residuals but the residuals of fitting yi at xi with swapped least squares
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estimates of the regression parameters. The advantage of these residuals is that
they should be close to ordinary residuals under null hypothesis, but they are
exaggerated under alternative hypothesis H1 : (α0, α1) 6= (β0, β1). The time of
the change k∗ is estimated by

k̂n = arg max
k0≤k≤n−k0

n∑
i=1

ẽ2ik. (4)

We will need the following assumptions:

A1. x1 < x2 < . . . < xn.

A2. xk∗ ≤ τ < xk∗+1 that is the model function (2) is continuous and has a
break at τ : α0 + α1τ = β0 + β1τ, (α0, α1) 6= (β0, β1).

A3. Exist k0 : 1 < k0 < n/2 such as k0 < k∗ < n− k0 and k0 →∞ as n→∞.

A4. xk∗ → τ as n→∞.

A5. Errors εi are independent, zero mean and E(ε2i ) = σ2
1 <∞ for 1 ≤ i ≤ k∗

and E(ε2i ) = σ2
2 <∞ for k∗ < i ≤ n.

From A1, the design points xi are ordered. For random design, such as xi are
i.i.d., we work with a fixed realization of the xi’s then they can be assumed to
be in [a, b] and reordered. Assumption A2 shows that xk∗ is on the left of τ and
as near it as possible. With A3, we only consider the times of the change from
k0 to n−k0. Following Bai [9], k0 is chosen such that k0/n ≈ C0 ∈ (0, 0.5). The
assumption A4 will be need to guarantee for the convergence of change-point
estimates.

The rest of this Section is concentrated on surveying the convergence of k̂n/n.
To simplify presentation, we consider the case of [a, b] = [0, 1], uniform designs,
furthermore, τ and xk∗ are coincident. Hence, the following assumptions are
made instead of A1−A3:

A′1. The designs xi is uniform in [0, 1] : xi = i/n, i = 1, . . . , n.

A′2. The model function can be written as

f(x) = α0 + α1x+ h(x− xk∗)I(x > xk∗), h 6= 0.

A′3. There exists τ0 ∈ (0, 1/2) such that for k0 = bnτ0c+1, where bac is integer
part of a, k0 < k∗ < n− k0.
From A′3 it is clear that k0 →∞ if and only if n→∞.

Theorem 2.1. If A′1 − A′3, A4, A5 hold, then
k̂n
n

a.s−→ τ , where k̂n is defined

by (4).

We note that h = β1 − α1 in Theorem 2.1 is fixed. In the case that h
depends on n, we get the following theorem.

Theorem 2.2. The assertion of Theorem 2.1 still holds if h = hn, as long as

exist C,D > 0 and 0 < p <
1

2
such as

C

np
≤ hn ≤ D,∀n.

3



Moreover, if lim
n→∞

hn = h∞ 6= 0 then estimates α̂0k̂n
, α̂1k̂n

and β̂0k̂n
, β̂1k̂n

of

the parameters of the simple linear regression through the set of the first k̂n
observations and the last (n − k̂n) ones converge almost surely to α0, α1 and
α0 − h∞τ, α1 + h∞, respectively.

In the case h 6= 0 is fixed then {α̂0k̂n
}, {α̂1k̂n

}, {β̂0k̂n
}, {β̂1k̂n

} converge al-
most surely to α0, α1, α0 − hτ, α1 + h, respectively.

3 Some simulations

Following to Liu and Qian [7] we consider the model yi = h(xi− xk∗)I(xi >
xk∗) + εi, where h = 2, h = 4 represent moderate and large slope changes and
all are under two error settings N(0, 0.52) and centered log N(0, 0.12). In [7]
the effectiveness of methods is evaluated through the relative frequency RF of
the deviation d = |k̂−k∗| less than or equal the fine tuned acceptable deviation
D = [(U − L)/A], where U = n− L, L = log2 n, A is the range of xi.

Table 1: Simulation results using the ERL method and the proposed one (PR) based
on 1,000 replications and uniform design on [−3, 3], random design Xi ∼ N(0, 1)

d εi ∼ N(0, 0.52) εi ∼ logN(0, 0.12)
h=2 h=4 h=2 h=4

Uniform Normal Uniform Normal Uniform Normal Uniform Normal
ELR PR ELR PR ELR PR ELR PR ELR PR ELR PR ELR PR ELR PR

0 88 208 85 87 167 429 99 161 322 525 171 316 330 494 233 362
1 174 211 124 151 295 391 186 260 361 472 249 380 396 506 330 489
2 132 103 105 101 145 95 126 137 83 3 164 156 63 0 136 95
3 121 80 86 72 83 33 97 95 59 0 94 60 40 0 91 34
4 76 51 91 72 59 16 73 65 33 0 68 38 42 0 51 14
5 73 51 82 84 53 6 87 52 32 0 60 17 34 0 39 3
6 67 41 78 93 47 3 69 42 24 0 44 14 19 0 27 2
≤ 7 269 255 349 340 151 27 263 188 86 0 150 19 76 0 93 1
RF(h) 515 602 400 411 690 948 508 653 825 1000 678 912 829 1000 790 980

For the design xi ∼ i.i.d. N(0, 1) as in [7] as well as xi = −3 + 6i/n, i =
1, 2, . . . , n spread evenly in [−3, 3], we take n = 50, A = 6, L = 16, U = 34 and
D = 3. Using R software, the results of estimator by ERL and by our proposed
method based on 1,000 replications are displayed in Table 1. These show that
our proposed method is more effective than ELR. If εi ∼ N(0, 0.12) then the
similar results are deduced.

Now we reconsider the model (2) in the continuous case that the parameters
of the model (2) are constrained so that α0 + α1τ = β0 + β1τ, τ ∈ [xk∗ , xk∗+1)

and need to estimate the change point τ . First, we estimate k̂n for k∗ by our
proposed method, from this the parameter estimates α̂0k̂n

, α̂1k̂n
, β̂0k̂n

, β̂1k̂n
are

obtained. The abscissa of the intersect of two lines y = α̂0k̂n
+ α̂1k̂n

x and

y = β̂0k̂n
+ β̂1k̂n

x is τ∗ = (β̂0k̂n
− α̂0k̂n

)/(α̂1k̂n
− β̂1k̂n

). Now, the estimate of τ
is chosen by

τ̂ = xk̂n
I(τ∗ ≤ xk̂n

) + τ∗I(xk̂n
< τ∗ < xk̂n+1) + xk̂n+1I(τ∗ ≥ xk̂n+1).

We use the parameter estimates of the model (2) constrained by α0 + α1τ̂ =
β0 + β1τ̂ to be the final estimates for parameters.

For the model yi = 3.5+0.5xi+1.0(xi−10)I(xi > 10)+εi in [13], where εi are
independent, εi ∼ N(0, 1.0) if xi ≤ 10, εi ∼ N(0, 0.25) if xi > 10, the covariate x
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is generated according to the autoregressive model xi = 2.0 + 0.8xi−1 +vi, x0 ∼
N(0, 81), vi ∼ N(0, 100). It is run for 120 iterations, after which the first 40
iterations are discarded to avoid the influence of the choice of x0; 500 replicated
data sets were generated.

By our proposed method, the mean of estimates of τ is τ = 9.777 which is
nearer τ = 10 than 9.640 obtained in [13] by grid-seach method that was highly
evaluated.

4 Proofs

Proof for Theorem 2.1

Without loss of generality we only consider the case of h > 0. Moreover, we
can assume that k∗ = bnτc. In order to prove the theorem, we only need to
show that for a given small enough ε > 0 then

P
{

inf
n>N

k̂n
n
> τ − ε

}
→ 1, P

{
sup
n>N

k̂n
n
< τ + ε

}
→ 1 as N →∞. (5)

Let k1 = b(τ − ε)nc, it is clear that

{
max

k0≤k≤k1

n∑
i=1

ẽ2ik <

n∑
i=1

ẽ2ik∗

}
⊂
{ k̂n
n
> τ − ε

}
. (6)

To evaluate the probability of the left-hand side of (6), we need some lemmas.
For k0 ≤ k ≤ n− k0, put

εk =
1

k
(ε1 + . . .+ εk), Ek =

1

k2
(1ε1 + . . .+ kεk),

δk =
1

n− k
(εk+1 + . . .+ εn), 4k =

1

(n− k)2
((k + 1)εk+1 + . . .+ nεn).

(7)

First, using formulas to find estimates for the parameters of the simple linear
regression model (see [15]), by some algebraic calculations, we get

Lemma 4.1. For k0 ≤ k ≤ n − k0, the estimates α̂0k, α̂1k and β̂0k, β̂1k of the
parameters of the simple linear regression model (1) through the set of the first
k observations and the last (n− k) ones, respectively, are defined by

α̂0k = α0 +A0k + K̂0k, α̂1k = α1 +A1k + K̂1k,

β̂0k = α0 +B0k + L̂0k, β̂1k = α1 +B1k + L̂1k,
(8)

where

A0k = −hk
∗(k − k∗)(k − k∗ + 1)

nk(k − 1)
I(k∗ < k ≤ n− k0),

A1k =
h(k − k∗)(k − k∗ + 1)

k(k2 − 1)
(2k∗ + k − 1)I(k∗ < k ≤ n− k0);

(9)
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B0k = h
(n− k∗)(n− k∗ + 1)

n(n− k)
(
(n− k)2 − 1

)(2k(k + 1)− (n+ k + 1)k∗
)
I(k < k∗)

− hk∗

n
I(k ≥ k∗),

B1k = h
(n− k∗)(n− k∗ + 1)

(n− k)
(
(n− k)2 − 1

) (n+ 2k∗ − 3k − 1)I(k < k∗) + hI(k ≥ k∗);

(10)

K̂0k =
4k + 2

k − 1
εk −

6k

k − 1
Ek, K̂1k = − 6n

k − 1
εk +

12nk

k2 − 1
Ek,

L̂0k =
(

1 + 3
(n+ k + 1)2

(n− k)2 − 1

)
εk − 6

(n− k)(n+ k + 1)

(n− k)2 − 1
Ek,

L̂1k = −6
n(n+ k + 1)

(n− k)2 − 1
δk + 12

n(n− k)

(n− k)2 − 1
4k.

(11)

Lemma 4.2. The components of parameter estimates in Lemma 4.1 have fol-
lowing properties:

i) 0 > A0k ↓, 0 < A1k ↑ for k∗ ≤ k ≤ n− k0,
0 > B0k ↓, 0 < B1k ↑ for k0 ≤ k ≤ k∗;

ii)

k∑
i=1

(B0k∗ +B1k∗xi) =
hk

2n
(−2k∗ + k + 1),

k∗∑
i=1

(B0k∗ +B1k∗xi) =
hk∗

2n
(1− k∗),

n∑
i=k∗+1

(B0k∗ +B1k∗xi) =
h(n− k∗)(n− k∗ + 1)

2n
.

(12)

Proof. For k0 ≤ k < k∗ − 1 then

B0k −B0k+1 =
2h(2n+ k + 2)(n− k∗)(n− k∗ + 1)

n(n− k − 2)(n− k − 1)(n− k)(n− k + 1)
(k∗ − k − 1) > 0,

B1k+1 −B1k = 6h
(n− k∗)(n− k∗ + 1)

(n− k − 2)(n− k − 1)(n− k)(n− k + 1)
(k∗ − k − 1) > 0,

and the monotony of B0k, B1k follows. The monotony of Aik, i = 0, 1 is obtained
by a similar argument. By some calculations, we have (ii).

Lemma 4.3. For k0 ≤ k < k1, a given small enough ε, all large enough n’s,
Bij defined by (10) satisfy the following inequalities:

0 > B0k +B1kxk ≥ B0k +B1kxi > B0k1
+B1k1

xi for 1 ≤ i ≤ k, (13)

− (B0k1
+B1k1

xi) ≥ −
7

8
(B0k∗ +B1k∗xi) > 0 for 1 ≤ i ≤ k1, (14)

k∗∑
i=1

(B0k∗ +B1k∗xi)
2 −

k∑
i=1

(B0k +B1kxi)
2 ≥ 3

2
nh2ε2

τ2

1− τ
. (15)
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Proof. Applying (i) in Lemma 4.2, (13) is easy to be deduced.

Clearly, B0k1B1k∗ ≥ B0k∗B1k1
then

−(B0k1
+B1k1

xi)

−(B0k∗ +B1k∗xi)
≥ −(B0k1

+B1k1
xk1

)

−(B0k∗ +B1k∗xk1)
.

Using (10), the right-hand side of this inequality becomes

n

h(k∗ − k1)
× h

n

(n− k∗)(n− k∗ + 1)

(n− k1)(n− k1 + 1)
(k∗ − k1) =

(n− k∗)(n− k∗ + 1)

(n− k1)(n− k1 + 1)
>

7

8

for a given small enough ε and all large enough n’s. Hence (14) follows.
From (13),

k∗∑
i=1

(B0k∗ +B1k∗xi)
2 −

k∑
i=1

(B0k +B1kxi)
2 ≥

k∗∑
i=1

(B0k∗ +B1k∗xi)
2

−
k∑

i=1

(B0k1
+B1k1

xi)
2 >

k1∑
i=1

(
(B0k∗ +B1k∗xi)

2 − (B0k1
+B1k1

xi)
2
)

≥
(

(B0k1
+B1k1

xk1
)− (B0k∗ +B1k∗xk1

)
)
×

×
k1∑
i=1

(
− (B0k1

+B1k1
xi)− (B0k∗ +B1k∗xi)

)
. (16)

To evaluate the right-hand side of (16), we first have

B0k1
−B0k∗ + (B1k1

−B1k∗)xk1
=
h

n
(k∗ − k1)

[
1− (n− k∗)(n− k∗ + 1)

(n− k1)(n− k1 + 1)

]
≥ h

n
(k∗ − k1)

[
1− (n− k∗ + 1)2

(n− k1 + 1)2

]
≥ 7h(k∗ − k1)2

4n(n− k1 + 1)
. (17)

On the other hand, from (12), (14) yields

k1∑
i=1

(
− (B0k1

+B1k1
xi)− (B0k∗ +B1k∗xi)

)
≥ 15

8

k1∑
i=1

(
− (B0k∗ +B1k∗xi)

)
=

15

8

hk1
2n

(k∗ + k∗ − k1 − 1) ≥ 15hk1k
∗

16n
. (18)

From (16)-(18), we get

k∗∑
i=1

(B0k∗ +B1k∗xi)
2 −

k∑
i=1

(B0k +B1kxi)
2

>
7h(k∗ − k1)2

4n(n− k1 + 1)

15hk1k
∗

16n
≥ 3

2
nh2ε2

τ2

1− τ

for the given small enough ε, large enough n’s, so (15) follows.

Now, let {φi} and {γj} be centered, independent, φi and γj be independent,
E(φ2i ) = σ2

1 , E(γ2j ) = σ2
2 such as φi = εi, 1 ≤ i ≤ k∗, γj = εn−j+1, 1 ≤ j ≤

n− k∗. Put

φk =
1

k
(φ1 + . . .+ φk), Φk =

1

k2
(1φ1 + . . .+ kφk),

γk =
1

k
(γ1 + . . .+ γk), Γk =

1

k2
(1γ1 + . . .+ kγk).

(19)
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Lemma 4.4. If A5 holds and k0 →∞ iff n→∞ then

Tn = max
k0≤k≤n−k0

max
(
|φk|, |Φk|, |γk|, |Γk|

) a.s.−→ 0 as n→∞.

Proof. By the strong law of large numbers, φk, Φk, γk, Γk
a.s.−→ 0 as k → ∞,

hence max
k0≤k

max
(
|φk|, |Φk|, |γk|, |Γk|

) a.s.−→ 0 as k0 →∞.
The assertion is clear from the fact that

0 ≤ Tn ≤ max
k0≤k

max
(
|φk|, |Φk|, |γk|, |Γk|

)
.

Lemma 4.5. Let

ε(n) = max
k0≤k≤n−k0

|εk|, E(n) = max
k0≤k≤n−k0

|Ek|,

δ(n) = max
k0≤k≤n−k0

|δk|, 4(n) = max
k0≤k≤n−k0

|4k|,

where εk, Ek, δk, 4k are defined by (7). If A5 holds and k0 → ∞ iff n → ∞
then

Gn = max
(
ε(n), E(n), δ(n),4(n)

) a.s.−→ 0.

Proof. First, note that εk = φk for k0 ≤ k ≤ k∗, so |εk| ≤ Tn. For k∗ < k ≤
n− k0,

εk =
k∗

k
φk∗ +

n− k∗

k
γn−k∗ −

n− k
k

γn−k.

Hence |εk| ≤ |φk∗ |+
n− k∗

k∗
(
|γn−k∗ |+ |γn−k|

)
≤
(
1 + 2

n− k∗

k∗
)
Tn.

It follows that the ε(n) converges almost surely.

Similarly, to prove the convergence of E(n), we first have Ek = Φk for

k0 ≤ k ≤ k∗ then |Ek| ≤ Tn. For k∗ < k ≤ n− k0 then n− k ≥ k0 and then

Ek =
1

k2
(
1ε1 + . . .+ k∗εk∗ + (k∗ + 1)εk∗+1 + . . .+ kεk

)
=
k∗2

k2
Ek∗ +

(n+ 1)(n− k∗)
k2

γn−k∗ −
(n+ 1)(n− k)

k2
γn−k

− (n− k∗)2

k2
Γn−k∗ +

(n− k)2

k2
Γn−k.

So |Ek| ≤ |Ek∗ |+ n(n− k∗)
k∗2

(
|γn−k∗ |+ |γn−k|

)
+

(n− k∗)2

k∗2
(
|Γn−k∗ |+ |Γn−k|

)
.

Hence |Ek| ≤
(

1 + 2
n(n− k∗)

k∗2
+ 2

(n− k∗)2

k∗2

)
Tn.

From that we obtain the convergence of E(n).

To consider the convergence of δ(n), note that δk = γn−k for k∗ < k ≤ n−k0
then |δk| ≤ Tn. For k0 ≤ k ≤ k∗,

δk =
1

n− k
(εk+1 + . . .+ εn) =

1

n− k
(εk+1 + . . .+ εk∗ + γn−k∗ + . . .+ γ1)
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=
k∗

n− k
εk∗ − k

n− k
εk +

n− k∗

n− k
γn−k∗ .

Therefore |δk| ≤
k∗

n− k∗
(
|εk∗ |+ |εk|

)
+ |γn−k∗ | ≤

(
2

k∗

n− k∗
+ 1
)
Tn. We get the

convergence of δ(n).

For 4(k), we find that for k∗ < k ≤ n− k0 then

4k =
1

(n− k)2
(
(k + 1)ε(k+1) + . . .+ nεn)

)
=
n+ 1

n− k
γn−k − Γn−k.

So |4k| ≤
n+ 1

n− k0
|γn−k|+ |Γn−k| ≤

( n+ 1

n− k0
+ 1
)
Tn.

For k0 ≤ k ≤ k∗ then

4k =
1

(n− k)2
(
(k + 1)εk+1 + . . .+ nεn

)
=

1

(n− k)2
(
(k + 1)φk+1 + . . .+ k∗φk∗ + (k∗ + 1)εk∗+1 + . . .+ nεn

)
=

k∗2

(n− k)2
Φk∗ − k2

(n− k)2
Φk +

(n− k∗)(n+ 1)

(n− k)2
γn−k∗ −

(n− k∗)2

(n− k)2
Γn−k∗ .

From that

|4k| ≤
k∗2

(n− k∗)2
|Φk∗ |+ k∗2

(n− k∗)2
|Φk|+

n(n− k∗)
(n− k∗)2

|γn−k∗ |+ |Γn−k∗ |.

Hence |4k| ≤
(

2
k∗2

(n− k∗)2
+

n

n− k∗
+ 1
)
Tn. The convergence of 4(n) is ob-

tained. Lemma 4.5 is deduced.

Lemma 4.6. If A5 holds and k0 →∞ iff n→∞ then

Un = max
k0≤k≤n−k0

(
|K̂0k|+ |K̂1k|

)
≤
(

11 +
19

τ0

)
Gn,

Vn = q max
k0≤k≤n−k0

(
|L̂0k|+ |L̂1k|

)
≤
(

1 +
24

τ0
+

18

τ20

)
Gn,

Fn = max(Un, Vn)
a.s.−→ 0.

Proof. Using (11) we get

Un ≤ max
k0≤k≤n−k0

(4k + 2

k − 1
|εk|+

6k

k − 1
|Ek|+

6n

k − 1
|εk|+

12nk

k2 − 1
|Ek|

)
≤
(10k + 2

k − 1
+

6n(k + 1 + 2k)

(k − 1)(k + 1)

)
Gn <

(10k + 2

k − 1
+

18n(k + 1)

(k − 1)(k + 1)

)
Gn

≤
(

11 +
19

τ0

)
Gn.

Vn ≤
(

1 + 3
(n+ k + 1)2

(n− k)2 − 1
+ 6

(n− k)(n+ k + 1)

(n− k)2 − 1
+ 6

n(n+ k + 1)

(n− k)2 − 1

9



+ 12
n(n− k)

(n− k)2 − 1

)
Gn

≤
(

1 + 3
(2n)2

k20
+ 6

2n

k0
+ 6

2n2

k20
+ 12

n

k0

)
Gn ≤

(
1 +

24

τ0
+

24

τ20

)
Gn.

The rest of the proof is deduced from the fact Gn
a.s.−→ 0 proved in Lemma

4.5. Lemma 4.6 is proved.

Lemma 4.7. With the assumptions of Theorem 2.1, the inclusion{
sup
n>N

(
F 2
n + 2Fnh

(
τ2 + (1− τ)2 +

3

n

)
+ 4Gn(Fn + 2hτ2)

)
≤ 3

2
h2ε2

τ2

1− τ

}

⊂
{

inf
n>N

k̂n
n
> τ − ε

}
,

where Gn is defined by Lemma 4.5, Fn is defined by Lemma 4.6, follows.

Proof. For k0 ≤ k ≤ k1 = b(τ − ε)nc,

n∑
i=1

ẽ2ik∗ =

k∑
i=1

ẽ2ik∗ +

k∗∑
i=k+1

ẽ2ik∗ +

n∑
i=k∗+1

ẽ2ik∗ . (20)

Let’s denote the terms in the right-hand side of (20) by I1, I2, I3, respec-
tively. The equality (a− b)2 = (a− c)2 + b2− c2 + 2a(c− b) is used to transform
those terms. Put

^
α0k = α̂0k − α0,

^
α1k = α̂1k − α1,

^

β 0k = β̂0k − α0,
^

β 1k = β̂1k − α1.

First, note that

I1 =

k∑
i=1

ẽ2ik∗ =

k∑
i=1

(
yi − (β̂0k∗ + β̂1k∗xi)

)2
=

k∑
i=1

(
εi − (

^

β 0k∗ +
^

β 1k∗xi)
)2

=

k∑
i=1

(
εi − (

^

β 0k +
^

β 1kxi)
)2

+

k∑
i=1

(
(
^

β 0k∗ +
^

β 1k∗xi)
2 − (

^

β 0k +
^

β 1kxi)
2
)

+

k∑
i=1

2εi

(
(
^

β 0k +
^

β 1kxi)− (
^

β 0k∗ +
^

β 1k∗xi)
)

=

k∑
i=1

ẽ2ik +R1,

where

R1 =

k∑
i=1

(B0k∗ +B1k∗xi)
2 −

k∑
i=1

(B0k +B1kxi)
2

+

k∑
i=1

(
(L̂0k∗ + L̂1k∗xi)

2 − (L̂0k + L̂1kxi)
2
)

+ 2

k∑
i=1

(B0k∗ +B1k∗xi)(L̂0k∗ + L̂1k∗xi)− 2

k∑
i=1

(B0k +B1kxi)(L̂0k + L̂1kxi)

+ 2

k∑
i=1

εi

(
(L̂0k + L̂1kxi)− (L̂0k∗ + L̂1k∗xi)

)
+ 2

k∑
i=1

εi(B0k +B1kxi)

10



− 2

k∑
i=1

εi(B0k∗ +B1k∗xi).

Using similar reductions, we get

I2 =

k∗∑
i=k+1

ẽ2ik∗ =

k∗∑
i=k+1

ẽ2ik +R2,

I3 =

n∑
i=k∗+1

ẽ2ik∗ =

n∑
i=k∗+1

ẽ2ik +R3,

where

R2 =

k∗∑
i=k+1

(B0k∗ +B1k∗xi)
2 +

k∗∑
i=k+1

(L̂0k∗ + L̂1k∗xi)
2

+ 2

k∗∑
k+1

(B0k∗ +B1k∗xi)(L̂0k∗ + L̂1k∗xi)−
k∗∑

i=k+1

(
^
α0k +

^
α1kxi)

2

+ 2

k∗∑
i=k+1

εi(
^
α0k +

^
α1kxi)− 2

k∗∑
i=k+1

εi(B0k∗ +B1k∗xi)− 2

k∗∑
i=k+1

εi(L̂0k∗ + L̂1k∗xi),

R3 =

n∑
i=k∗+1

(
^
α0k∗ +

^
α1k∗xi)

2 −
n∑

i=k∗+1

(
^
α0k +

^
α1kxi)

2

+ 2

n∑
i=k∗+1

(B0k∗ +B1k∗xi)
(

(
^
α0k +

^
α1kxi)− (

^
α0k∗ +

^
α1k∗xi)

)
+ 2

n∑
i=k∗+1

εi

(
(
^
α0k +

^
α1kxi)− (

^
α0k∗ +

^
α1k∗xi)

)
.

Let R =
∑n

i=1 ẽ
2
ik∗ −

∑n
i=1 ẽ

2
ik then R = R1 +R2 +R3. After reduction, we

get
R = J1 + J2 + J3 (21)

where

J1 =

k∗∑
i=1

(B0k∗ +B1k∗xi)
2 −

k∑
i=1

(B0k +B1kxi)
2,

J2 =
( k∗∑

i=1

(L̂0k∗ + L̂1k∗xi)
2 +

n∑
i=k∗+1

(
^
α0k∗ +

^
α1k∗xi)

2
)

−
( k∑

i=1

(L̂0k + L̂1kxi)
2 +

n∑
i=k+1

(
^
α0k +

^
α1kxi)

2
)

− 2

k∑
i=1

(L̂0k + L̂1kxi)(B0k +B1kxi)− 2

n∑
i=k∗+1

(
^
α0k∗ +

^
α1k∗xi)(B0k∗ +B1k∗xi)

+ 2

k∗∑
i=1

(L̂0k∗ + L̂1k∗xi)(B0k∗ +B1k∗xi) + 2

n∑
i=k∗+1

(
^
α0k +

^
α1kxi)(B0k∗ +B1k∗xi),

11



J3 =

k∑
i=1

εi(B0k +B1kxi)−
k∗∑
i=1

εi(B0k∗ +B1k∗xi) +

k∑
i=1

εi(L̂0k + L̂1kxi)

+

n∑
i=k+1

εi(
^
α0k +

^
α1kxi)−

k∗∑
i=1

εi(L̂0k∗ + L̂1k∗xi)−
n∑

i=k∗+1

εi(
^
α0k∗ +

^
α1k∗xi).

According to (15)

J1 =

k∗∑
i=1

(B0k∗ +B1k∗xi)
2 −

k∑
i=1

(B0k +B1kxi)
2 ≥ 3

2
nh2ε2

τ2

1− τ
.

Because |L̂0k + L̂1kxi| ≤ |L̂0k|+ |L̂1k| ≤ Fn, |
^
α0k +

^
α1kxi| ≤ |K̂0k|+ |K̂1k| ≤

Fn and using Lemma 4.2, 4.5 and 4.6 we obtain

J2 ≥ −|J2| ≥ 0−
( k∑

i=1

(L̂0k + L̂1kxi)
2 +

n∑
i=k+1

(
^
α0k +

^
α1kxi)

2
)

+ 2

k∑
i=1

|(L̂0k + L̂1kxi)|(B0k +B1kxi)− 2

k∑
i=k∗+1

|(^α0k∗ +
^
α1k∗xi)|(B0k∗ +B1k∗xi)

+ 2

k∗∑
i=1

|(L̂0k∗ + L̂1k∗xi)|(B0k∗ +B1k∗xi)− 2

k∑
i=k∗+1

|(^α0k +
^
α1kxi)|(B0k∗ +B1k∗xi)

≥ −
( k∑

i=1

F 2
n +

n∑
i=k+1

F 2
n

)
+ 2

k∑
i=1

Fn(B0k +B1kxi)− 2

n∑
i=k∗+1

Fn(B0k∗ +B1k∗xi)

+ 2

k∗∑
i=1

Fn(B0k∗ +B1k∗xi)− 2

n∑
i=k∗+1

Fn(B0k∗ +B1k∗xi)

≥ −nF 2
n + 2

k∑
i=1

Fn(B0k +B1kxi)− 2

n∑
i=k∗+1

Fn(B0k∗ +B1k∗xi)

+ 2

k∗∑
i=1

Fn(B0k∗ +B1k∗xi)− 2

n∑
i=k∗+1

Fn(B0k∗ +B1k∗xi)

≥ −nF 2
n + 4Fn

( k∗∑
i=1

(B0k∗ +B1k∗xi)−
n∑

i=k∗+1

(B0k∗ +B1k∗xi)
)

= −nF 2
n − 2nhFn

(k∗(k∗ − 1)

n2
+

(n− k∗)(n− k∗ + 1)

n2

)
≥ −nF 2

n − 2nhFn

(
τ2 + (1− τ)2 +

3

n

)
,

J3 =

k∑
i=1

εi
(
(L̂0k +B0k) + (L̂1k +B1k)xi

)
−

k∗∑
i=1

εi
(
(L̂0k∗ +B0k∗) + (L̂1k∗ +B1k∗xi)

)
+

n∑
i=k+1

εi(
^
α0k +

^
α1kxi)−

n∑
i=k∗+1

εi(
^
α0k∗ +

^
α1k∗xi)
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= (L̂0k +B0k)kεk + (L̂1k +B1k)
k2

n
Ek − (L̂0k∗ +B0k∗)k∗εk∗ − (L̂1k∗ +B1k∗)

k∗2

n
Ek∗

+
^
α0k(n− k)δk +

^
α1k

(n− k)2

n
4k −

^
α0k∗(n− k∗)δk∗ +

^
α1k∗

(n− k∗)2

n
4k∗

≥ −(|L̂0k| −B0k∗)k|εk| − (|L̂1k|+B1k)
k2

n
|Ek| − (|L̂0k∗ | −B0k∗)k∗|εk∗ |

− (|L̂1k∗ |+B1k∗)
k∗2

n
|Ek∗ | − |K̂0k|(n− k)|δk|

− |K̂1k|
(n− k)2

n
|4k| − |K̂0k∗ |(n− k∗)|δk∗ | − |K̂1k∗ | (n− k

∗)2

n
|4k∗ |

= −Gn

((
|L̂0k|+

hk∗

n
)k + (|L̂1k|+ h)

k2

n
+ (|L̂0k∗ |+ hk∗

n
)k∗ + (|L̂1k∗ |+ h)

k∗2

n

+ |K̂0k|(n− k) + |K̂1k|
(n− k)2

n
+ |K̂0k∗ |(n− k∗) + |K̂1k∗ | (n− k

∗)2

n

)
≥ −Gn

(
k(|L̂0k|+ |L̂1k|) +

hkk∗

n
+ h

k2

n
+ k∗(|L̂0k∗ |+ |L̂1k∗ |) + 2h

k∗2

n

+ (|K̂0k|+ |K̂1k|)(n− k) + (|K̂0k∗ |+ |K̂1k∗ |)(n− k∗)
)

≥ −Gn

(
kFn +

hkk∗

n
+ h

k2

n
+ k∗Fn + 2h

k∗2

n
+ Fn(n− k) + Fn(n− k∗)

)
≥ −2nGn(Fn + 2hτ2).

Substituting the above assessments into (21) yields

R ≥ 3

2
nh2ε2

τ2

1− τ
+ n

(
− F 2

n − 2Fnh
(
τ2 + (1− τ)2 +

3

n

))
− 4nGn(Fn + 2hτ2)

= n
(3

2
h2ε2

τ2

1− τ
− F 2

n − 2Fnh
(
τ2 + (1− τ)2 +

3

n
)− 4Gn(Fn + 2hτ2

))
.

The right-hand side of the last inequality is nonnegative if and only if

F 2
n + 2Fnh

(
τ2 + (1− τ)2 +

3

n

)
+ 4Gn(Fn + 2hτ2) ≤ 3

2
h2ε2

τ2

1− τ
. (22)

From (6), yields{
F 2
n + 2Fnh

(
τ2 + (1− τ)2 +

3

n

)
+ 4Gn(Fn + 2hτ2) ≤ 3

2
h2ε2

τ2

1− τ

}
⊂
{

max
k0≤k≤k1

( n∑
i=1

ẽ2ik∗ −
n∑

i=1

ẽ2ik

)
≥ 0
}
⊂
{ k̂n
n
≥ τ − ε

}
.

Lemma 4.7 is proved.

Proof of Theorem 2.1 (continuous). From Lemma 4.7, we deduce

P
{

inf
n>N

k̂n
n
≥ τ − ε

}
≥ P

{
sup
n>N

(
F 2
n + 2Fnh

(
τ2 + (1− τ)2 +

3

n

)
+ 4Gn(Fn + 2hτ2)

)
≤ 3

2
h2ε2

τ2

1− τ

}
−→ 1 as N →∞.

(23)
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The last convergence follows from the fact Fn, Gn
a.s.−→ 0 by Lemma 4.5, 4.6.

By a similar argument, we thus get

P
{

sup
n>N

k̂n
n
< τ + ε

}
≥ P

{
sup
n>N

(
F 2
n + 2Fnh

(
τ2 + (1− τ)2 +

3

n

)
+ 4Gn(Fn + 2hτ2)

)
≤ 3

2
h2ε2

(1− τ)2

τ

}
−→ 1 as N →∞.

(24)

So (5) holds and the Theorem 2.1 is completely proved.

Proof of Theorem 2.2. By the strong law of large numbers,

kpφk, k
pΦk, k

pγk, k
pΓk

a.s.−→ 0 as k →∞.

Note that n ≤ (k0 + 1)/τ0 we get npTn
a.s.−→ 0, hence npGn

a.s.−→ 0 so npFn
a.s.−→ 0.

The inequality (22) still holds if h is replaced by hn. Multiplying both sides
of (22) by n2p we get

(npFn)2 + 2(npFn)(nphn)
(
τ2 + (1− τ)2 +

3

n

)
+ 4(npGn)(npFn + 2nphnτ

2)

≤ 3

2
(nphn)2ε2

τ2

1− τ
or (npFn)2 + 4(npGn)(npFn)

≤ (nphn)
(3

2
(nphn)ε2

τ2

1− τ
− 2(npFn)

(
τ2 + (1− τ)2 +

3

n

)
− 4npGn2τ2

)
.

This inequality holds for all large enough n’s. Hence, (23) follows, so does

(24). From that k̂n/n
a.s.−→ τ .

Now, consider the case lim
n→∞

hn = h∞ 6= 0. Without loss of generality, we

can assume that h∞ > 0. By the above proved assertion, k̂n/n
a.s.−→ τ . Because

k0 < k̂n < n − k0, according to Lemma 4.6, K̂ik̂n
, L̂ik̂n

a.s.−→ 0 (i = 0, 1). From
that and (9), (10) we obtain

lim
n→∞

Aik̂n
= 0, lim

n→∞
B0k̂n

= −h∞τ, lim
n→∞

B1k̂n
= h∞.

Now, applying (8) we thus proved the almost sure limits of the parameter
estimates, which completes the proof of Theorem 2.2.

Remark. For p = 1/2 the conclusion of Theorem 2.2 may not hold. Indeed,
with the same assumptions as in the Theorem 2.2, let’s assume further that εi

are i.i.d. By the law of iterated logarithm, lim
n→∞

sup
φ1 + . . .+ φn√
n log log n

=
√

2, thence

lim
n→∞

sup
√
n φn =∞ and in general we do not obtain

√
nGn

a.s.−→ 0,
√
nFn

a.s.−→ 0

and neither do (23) and (24).
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