
 

 

The Chow Test with Time Series-Cross Section Data 

 

Abstract 

The Chow test is the standard method to test for differences in regression response across groups. In some 

cases, the groups being tested are composed of a time series of cross sections. For example, when testing 

for differences across industries, each industry may be composed of several observations on several 

individual firms. If the individuals themselves have systematic differences, the Chow test will be 

compromised: the individual and group effects become confounded. This can cause rejections in the 

absence of the group effect of interest. We illustrate the problem with a Monte Carlo analysis, and show 

that the effects cannot be separated. We propose a bootstrap-like testing procedure that can eliminate 

excessive Type I errors, and when used with the standard Chow test can help to arrive at an appropriate 

conclusion when both effects are present. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Researcher(s) own analyses calculated (or derived) based in part on data from Nielsen Consumer LLC 

and marketing databases provided through the NielsenIQ Datasets at the Kilts Center for Marketing Data 

Center at The University of Chicago Booth School of Business.  

The conclusions drawn from the NielsenIQ data are those of the researcher(s) and do not reflect the 

views of NielsenIQ. NielsenIQ is not responsible for, had no role in, and was not involved in analyzing 

and preparing the results reported herein.



 

 

Introduction 
Consider the problem of testing whether firms in the steel and chemical industries have different dividend 

policies. A common method for this is the well-known Chow test (1960), which tests for group effects by 

comparing the error sum of squares (ESS) from regressions on the individual industries to the ESS from a 

pooled regression using an F-test. It is usually characterized as involving two groups, but the test is easily 

extended to several groups. This makes it an attractive tool for testing group differences in a wide range 

of fields study from public policy to biomedical engineering research (e.g. Kartikasari & Merianti, 2016; 

Chen et al., 2019). Hence, any potential problems with or hidden violations of the test and its assumptions 

can have broad implications. 

 The interest in this study is using the Chow test for detecting group effects, and examining a 

relatively little-known issue with how this can be done. To this end, consider Chow’s (1960) own 

example of comparing dividend behavior across the steel and chemical industries. Data for the test may 

consist of a single observation on many steel firms and many chemical firms. This is likely to require a 

large number of firms, which may be difficult to obtain, and perhaps impossible in some cases. In Chow’s 

own example, there are only a limited number of steel/chemical firms in existence, at least firms large 

enough to have stock price trading data publicly available.  The alternative is to have time series 

observations on 𝑚1 steel firms and 𝑚2 chemical firms, a time series of cross-sections. Data of this type is 

also likely with geographic data, when there is panel-type data on a set of states or countries and the 

interest is in determining whether there are regional differences.  

It is this case, when there are multiple data points for each observational unit within a group, that 

is the focus of this paper. We show that, because the groups being examined (e.g. the chemical industry 

and the steel industry) are themselves composed of subgroups (chemical firms and steel firms), the results 

of the test are likely to be misinterpreted. In the extreme case, one may conclude there are group 

differences when in fact there are none: there are differences, but they have nothing to do with the 

hypothesis. The problem is that differences identified by the test may be due not only to the groups of 

interest but also to the subgroups. For example, there may be not only industry effects, but also firm 



 

 

effects. Finding a significant difference may indicate an industry difference, but it may also reflect 

idiosyncratic firm differences, of no interest to anyone except possibly the firms themselves. We 

demonstrate the nature of the problem with analytical arguments and a simple Monte Carlo analysis. We 

then argue that the two effects cannot be separately identified, making an accurate grouping test 

infeasible. We propose a solution to this problem using a bootstrap testing procedure, which is 

demonstrated with two applications using actual data. We end by presenting some results regarding power 

of the proposed procedure.  

Our work is related to previous work concerning pooling data (Balgagi, Bresson, and Pirotte, 

2008). However, that work has been more concerned with the consequences of improper pooling rather 

than the detection of differences. Throughout we use the example of firms and industries, though 

obviously results apply to any case with groups composed of subgroups (henceforth, without loss of 

generality, “industries” and “firms”, respectively). 

Overview of the Chow Test 

 Consider a standard 𝑘-variable regression model 𝑌 = 𝑿𝛽 + 𝑒, where 𝑒 is the usual error term and 

𝑘 includes an intercept. Data is available from two distinct groups in the data, such as the industries in 

Chow’s example, or two geographic regions. Denoting the groups as A and B, the interest is in whether 

the same equation applies to both. That is, testing the null hypothesis 𝛽𝐴 = 𝛽𝐵, which is the hypothesis 

characterizing the Chow test. As suggested above, the standard procedure is to estimate three regressions:  

one with the A data, one with the B data, and one with the data pooled in a single regression. Then the 

Chow test statistic is as follows: 

𝐸𝑆𝑆𝑃−(𝐸𝑆𝑆𝐴+𝐸𝑆𝑆𝐵)

𝐸𝑆𝑆𝐴+𝐸𝑆𝑆𝐵
×

𝑛𝐴+𝑛𝐵−2𝑘

𝑘
                             (1) 

where the ESS’s are the error sum of squares from the regressions. The statistic has an F distribution with 

𝑘 and 𝑛𝐴 + 𝑛𝐵 − 2𝑘 degrees of freedom. Note that, should the hypothesis be extended to finitely many, 

or 𝑚 industries, then the last term being subtracted in the second degrees of freedom becomes 𝑚 ∗ 𝑘. In 



 

 

this example, 𝑚 = 2 because there are two distinct groups (industries), making the subtracted term equal 

to 2𝑘. 

An alternative method to conduct the test is to use intercept and slope shifters (Gujarati, 1970). 

To illustrate we use a simple univariate model 𝑌 = 𝛼 + 𝑿𝛽. Continuing the A-B distinction, we apply the 

test in the usual way. Thus, we estimate this equation three times, as described above. The alternative is to 

use the model 𝑌 = 𝛼 + 𝑿𝛽 + 𝛼1𝐷 + 𝛽1(𝐷𝑿), where 𝐷 is a dummy variable indicating either of the 

industries, say, B.  This is estimated once, using the pooled data. It yields an equivalent test because it 

yields coefficients numerically equivalent to those in the individual regressions. For example, 𝛽̂ will equal 

the original 𝛽̂𝐴; 𝛽̂1 will be the same as (𝛽̂𝐵 − 𝛽̂𝐴), and similarly for the 𝛼’s. It follows that an F test of 

𝛼1 = 𝛽1 = 0 in this model is a test that the coefficients for the industries are the same, that is, a Chow 

test.  

For either method, the generalization to 𝑚 industries is fairly obvious. One either estimates more 

individual regressions to obtain more individual ESS’s, or one uses a larger set of intercept and slope 

shifters.  

Testing with Time Series-Cross Section Data 

 We now consider the case of interest in this paper: testing when the cross sections being 

examined are each composed of time series. For convenience we continue the example of firms and 

industries. Suppose we have firm data on some relation, and it is of interest whether there are differences 

in response across industries, where each industry is a subset of firms. The vector of coefficients of firm 𝑖 

in industry 𝑔 can be thought of as 𝛽 + 𝜋𝑔, where 𝛽 is the effect common to all firms in all industries and 

𝜋𝑔 is a 𝑘-vector of industry effects, specific to firms in industry 𝑔. The Chow test amounts to testing that 

𝜋𝑔 = 𝜋ℎ = ⋯ = 𝜋𝑝, (or equivalently, they are all zero), where 𝑔, ℎ, … , 𝑝 account for all firms and each 

firm is in one of the industries. If the test is rejected, we conclude there are industry effects. 

A problem arises if the coefficient vector for firm 𝑖 in industry 𝑔 is actually 𝛽 + 𝜋𝑔 + 𝜈𝑖, where 

𝜈𝑖 is a 𝑘-vector of elements measuring systematic coefficient differences in firm 𝑖 relative to the average 



 

 

firm, unrelated to industries. That is, 𝜈𝑖 does not vary in time within a firm. It seems reasonable that this 

would be a common occurrence: each member of a group would not be expected to respond exactly as do 

other members of the industry. In the example, if such individual firm effects are “large,” rejection of the 

hypothesis may in part be due to some joint effect of the component firms, which could occur with any 

grouping of firms.  

Consider the simplest possible model 𝑦 = 𝜇 + 𝑒, where 𝜇 is the unconditional mean and 𝑒 is the 

usual error term. The OLS estimate is 𝛽̂ = 𝑦̅. With industry effects, we have 𝛽̂𝑔 + 𝑦̅ + 𝜃𝑔. If there are no 

firm effects, then 𝜃𝑔 = 𝜋̂𝑔, the industry effect. With firm effects, 𝜃𝑔 is an estimate of 𝜋𝑔 +
1

𝑚
∑ (𝜈𝑖)𝑚

𝑖=1 , 

where 𝑚 is the number of firms in 𝑔 and we assume the sample size in each firm is the same. Since under 

this condition the Chow test is a test on the 𝜃’s rather than the 𝜋̂’s, if the second term on the right is 

important relative to the first, a deceptive outcome is likely. Obviously this is more likely when the 𝜈’s 

are “large” relative to 𝜋𝑔. We see from the definition of 𝜃 it  is more likely when 𝑛, the number of 

observations per firm is large, making firm effects more detectable. It may also be more likely when m, 

the number of firms in an industry, is small, since then positive firm effects are less likely to be 

counterbalanced by negative effects. However, this itself may be counterbalanced by a reduction in the 

total number of observations, making any differences less detectable. In any case, if there are no actual 

industry effects, the Chow test may still reject the hypothesis, due to firm effects in the specified 

industries. This occurs even though the effect has nothing to do with the underlying grouping criterion but 

will occur with randomly chosen firms, as we show later.  

Identifying Industry Effects 

 In view of the foregoing, an important question is whether or not the group effects of interest and 

the underlying subgroup effects can be identified and separately tested in a traditional regression model, 

such as in a Least Squares Dummy Variable (LSDV) model. The answer to this question is “no”. To 

illustrate, consider a very simple case. Suppose we again have the univariate model 𝑌 = 𝛼 + 𝛽𝑋, and we 

have panel data on four firms, firms 1 and 2 from industry A and firms 3 and 4 from B. The interest is in 



 

 

whether there is an industry effect. Ignoring any firm differences, to test this we can employ the intercept-

slope shifter method (in the same vein as Gujarati, 1970) and use the model 𝑌 = 𝛼 + 𝛽𝑋 + 𝛼𝐴𝐷𝐴 +

𝛽𝐴(𝐷𝐴𝑋𝐴), where 𝐷𝐴 is a dummy variable indicating industry A. The test is  𝛼𝐴 = 𝛽𝐴 = 0.  

To allow for firm effects, it might seem we can use the model 

𝑌 = 𝛼 + 𝛽𝑋 + 𝛼𝐴𝐷𝐴 + 𝛽𝐴(𝐷𝐴𝑋𝐴) + 𝛼1𝐷1 + 𝛽1(𝐷1𝑋1) + 𝛼3𝐷3 + 𝛽3(𝐷3𝑋3)                      (2) 

where the subscripts are obvious. This model separates all firms, first by industry, then within each 

industry. However, under the null hypothesis of no industry effect, 𝛼𝐴 = 𝛽𝐴 = 0, the model in (2) 

becomes 𝑌 = 𝛼 + 𝛽𝑋 + 𝛼1𝐷1 + 𝛽1(𝐷1𝑋1) + 𝛼3𝐷3 + 𝛽3(𝐷3𝑋3), which does not fully separate the firms: 

firms 2 and 4 are now combined. This implies the hypothesis 𝛼𝐴 = 𝛽𝐴 = 0 can also be interpreted as a 

test of equality between firms 2 and 4. The ambiguity in interpretation arises because in order to identify 

firms 2 and 4, 𝛼𝐴 and 𝛽𝐴 must be in the model. In fact, because the model in (2) with 𝛼𝐴 and 𝛽𝐴 does 

separate the firms, it is statistically equivalent to the model 

𝑌 = 𝛼 + 𝛽𝑋 + 𝛼2𝐷2 + 𝛽2(𝐷2𝑋2) + 𝛼1𝐷1 + 𝛽1(𝐷1𝑋1) + 𝛼3𝐷3 + 𝛽3(𝐷3𝑋3)                       (3) 

a model which explicitly differentiates firms, with no allowance for industries. Thus, the industry test 

𝛼𝐴 = 𝛽𝐴 = 0 in (2) is equivalent to the firm test 𝛼2 = 𝛽2 = 0 in (3), which explicitly tests that firms 2 and 

4 respond equally. Note that if firms 2 and 4 respond equally, then there must be no industry effect, given 

they are in different industries: although this may seem to be insufficient to conclude the absence of an 

industry effect, since firms 1 and 3 may still differ, and they are in different industries. But if 1, which is 

in the same industry as 2, differs from 3, which is the same industry as 4, and given that 2 and 4 do not 

differ, this difference in 1 and 3 must reflect firm differences. To eliminate this confounding, the model in 

(3) would need to also include the variables 𝐷2 and 𝐷2𝑋. But then we would have perfect 

multicollinearity: the parameters would be unidentified. We conclude that to identify industry effects 

while accounting for individual effects is not possible. They are confounded and hence not separable.  

This would seem to eliminate the possibility of validly testing for industry differences when there 

are multiple observations on the sampled units and the units have systematic differences. Essentially, with 



 

 

such multiple observations, the standard test must be made under the maintained hypothesis of no 

individual effects. But of course assuming does not make it so: a maintained hypothesis must have some 

credibility, and many cases of the kind considered herein do not. Thus, the solution requires a test which 

explicitly incorporates the possibility of individual effects into the maintained hypothesis. We propose 

such a test in the next section following a brief illustrative exercise. 

Monte Carlo 

 Here we further illustrate the issue with a simple Monte Carlo analysis. For convenience, we 

continue the industry example, focusing on a model with firm effects, but no industry effects. This makes 

the Chow test’s performance easy to assess: the test should reject the null hypothesis with probability 

equal to a Type I error, or the size of the test. We employ the model 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝑒 (4) 

Where 𝑥1 and 𝑥2 are uniform (0, 20) variables and 𝑒 is a normally distributed error. A typical model 

coefficient is 𝛽𝑖 = 𝛽 + 𝜋𝑔𝑖 + 𝜈𝑖 where 𝛽 = 10, 𝜋𝑔𝑖 = 0, and 𝜈𝑖 is normal (0, 𝜎𝑣) with 𝜎𝑣 taking on 

different values; 𝜈𝑖 is a constant value for each coefficient in each experiment. For simplicity, we use two 

industries composed of a varying number of firms with a varying number of observations per firm. Since 

this exercise is meant only to be illustrative, we used only a small number of possible values of each of 

the four parameters of the experiment. They are listed in Table 1.  

Table 1. Parameter values in the analysis 

Parameter Values 

Observations per firm 10, 20, 30, 40, 50, 60 

𝜎𝑣   1, 2, 3, 4, 5   
Number of firms per industry 10, 20, 30 

𝜎𝑒𝑟𝑟𝑜𝑟 60, 80 

 

There are 180 different combinations possible. We conducted an analysis with each combination, 

performing 100 iterations in each case. For each iteration, a sample based on the particular set of 

parameters was generated. For 𝜎𝑒𝑟𝑟𝑜𝑟 = 60 and 𝜎𝑣 = 2, the 𝑅2 from OLS estimation of (4) is 

approximately 0.60. Also note that 𝜎𝑣 = 2 implies that approximately 90% of the time, 𝜈𝑖 lies within the 



 

 

interval [-2(1.67), 2(1.67)]. Then two industry regressions and a pooled regression were estimated, 

followed by the Chow test. Our measure of test performance is the percent of rejections. 

The basic results obtained from each parameter value are presented in Table 2, which is actually a 

set of several one-dimensional tables – that is, we ignore how the effect of one parameter might depend 

on others.  

Table 2. Percent of iterations resulting in rejection of null hypothesis (varying all 4 parameters) 

Observations per firm 10 20 30 40 50 60 

% of tests rejected 0.23 0.41 0.48 0.51 0.57 0.62 

 

𝝈𝒗 1 2 3 4 5 - 

% of tests rejected 0.17 0.40 0.51 0.62 0.65 - 

 

Number of firms 10 20 30 - - - 

% of tests rejected 0.46 0.46 0.49 - - - 

 

𝝈𝒆𝒓𝒓𝒐𝒓 60 80 - - - - 

% of tests rejected 0.50 0.44 - - - - 
 

We found little evidence of interaction. Thus, the entries for a given parameter are the percentage of 

rejections for all experiments with the parameter set at the indicated values at 𝛼 = 0.05. If the Chow test 

performed correctly, then all entries in the table should be approximately 0.05.  

Briefly examining Table 2, we see considerable evidence that the test did not perform correctly: 

all entries exceed 0.05, in many cases by a large amount. The two most influential parameters are the 

observations per firm and the standard deviation of the firm effect. From the discussion above, both of 

these are what we expected. The error standard deviation is also influential, driving the number of 

rejections down as it increases. This is not surprising: the larger the error variance becomes, the less 

sensitive is any test. The number of firms per industry does not appear to be very influential, although we 

had no strong expectations about to the importance of its effect. 

We can summarize the results by regressing the percent of rejections at 𝛼 = 0.05 in each 

experiment on the parameters of each experiment. This yields 



 

 

𝟏{𝑅𝑒𝑗𝑒𝑐𝑡 𝑎𝑡 𝛼 = 0.05} = 0.110
(3.72) + 0.001

(0.84) 𝑓𝑖𝑟𝑚𝑠 − 0.030
(−7.78) 𝜎𝑒𝑟𝑟𝑜𝑟 + 0.007

(30.60) 𝑜𝑏𝑠 + 0.111
(42.17) 𝜎𝑣        (5) 

The t-statistics are listed in parenthesis, and the 𝑅2 is about 0.17. This regression essentially mirrors what 

is in the table: the important factors are the relative size of firm effects and the number of observations 

per firm. The error standard deviation has less influence, and the number of firms per industry has 

virtually none. We also estimated this equation with interactions between all the variables. The 

coefficients were difficult to interpret (a result of multicollinearity) and the 𝑅2 was not an improvement 

over (5) (0.1733 versus 0.1728). From this, we conclude that the effects essentially act independently of 

one another. 

 To further examine the importance of the number of observations we conducted an experiment 

with varying observations per firm but all other parameters fixed. There are two industries, each with five 

firms. The standard deviation of firm effects is 2 and the error standard deviation is 60.  Figure 1 graphs 

rejections versus sample size, for three conventional significance levels. 

 

Figure 1. Rejections at the 1%, 5%, and 10% significance levels, by firm sample size 
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There is a clear response to increases in the number of observations. Each point is the average of 100 

repetitions. As the number of observations per firm increases, the number of rejections also increases. 

From the graph, the slope appears to decrease as the number of observations increases. This is indeed the 

case; regressing the rejections on the observations in a quadratic model yields a significant quadratic term, 

and the model implies that at 60 observations per firm, there is no measurable effect brought about by 

additional observations. We also conducted a set of experiments comparing cases differing only by the 

number of firms, either five or ten, and found no discernible difference between the two. This supports the 

result that that the number of firms has little effect. 

 Thus, the evidence points to two key factors in determining the influence of firm effects in our 

problem: (a) the number of observations for each firm in the dataset, and (b) the magnitude of the firm 

effect. The number of firms has only a limited impact on the frequency of incorrect rejections in the 

Chow test. Hence, from a practical standpoint, it is better to have many firms, each with a small number 

of observations than to have a few firms, each with many observations. 

 As a final point, it is of some interest that as the error variance increases, that is, as 𝑅2 declines, 

over-rejection from the Chow test becomes less of a problem. In our simulation, the 𝑅2 was no larger than 

0.60. In actual empirical studies, model fit is likely to be better than this. Therefore, we have if anything, 

understated the extent of over-rejection that is likely to occur in actual cases. 

Methodology 

Generating an Empirical F-Distribution 

As just suggested, the problem can be framed as a failure of the assumption of no individual or 

firm-level effects. To eliminate this assumption, we propose a simple bootstrap-like procedure. To 

illustrate, we again use Chow’s industry example. Suppose industry A is to be tested against industry B, 

and the data consists of 𝑡 observations on each of 𝑛𝐴 firms and 𝑛𝐵 firms. The procedure is to generate a 

bootstrap F distribution, as follows. Step 1 is to create two artificial industries A’ and B’ by randomly 

assigning each of the 𝑛 = 𝑛𝐴 + 𝑛𝐵 firms to one of the two industries, requiring 𝑛𝐴′ = 𝑛𝐴 and 𝑛𝐵′ = 𝑛𝐵. 

Step 2 is to conduct a Chow test on these random industry groupings, generating an F statistic. Repeating 



 

 

this a large number of times generates a pseudo-F distribution. This distribution accounts for any firm 

heterogeneity that exists in the sample data, since it is based on the actual data generation process. If there 

are firm effects, they will be in the random groupings to the same extent as in the correct industry 

grouping. The F statistic of interest, i.e., when the firms are correctly allocated to their industry, can then 

be compared to this empirical distribution. If there is no industry difference, this F statistic will be a 

random draw from the distribution. If there is an industry effect, the F statistic should be larger than a 

randomly drawn F from the empirical distribution. This follows since the correct allocation would be less 

heterogeneous: it not only accounts for any differences across the component firms, but also the industry 

differences. This procedure is termed “bootstrap-like” because resampling involves groupings of data 

(firms in the example), rather than individual observations, and the sampling is without replacement. 

Power of the Procedure 

 These examples suggest that the procedure we have proposed is potentially useful in dealing with 

multiple-level effects when testing with the Chow test. We will now examine the power of the procedure, 

its ability to discern group effects when individual effects are present, and indeed when they are not. It is 

somewhat difficult to do this in any fully general way, due to the wide variety of model structures – the 

number of groups and individuals – under which the test may be applied. We will limit the analysis to 

three structures, each involving the standard case of two groups, which for convenience we again think of 

as industries, composed of firms. The three are 8 firms, with 4 firms in each industry; 20 firms, with 10 in 

each industry; and 20 firms, with 4 in one industry and 16 in the other. The regression model used is the 

same as employed in the Monte Carlo. As before, model coefficients can be expressed as 𝛽 + 𝜋𝑔 + 𝜈𝑖, 

where 𝛽 is always 10; 𝜋𝑔 is the group (industry) effect, taking values 0, 1, 2, 3, 4, and 5; and 𝜈𝑖 is a 

normal (0, 𝜎𝑣) random variable representing a firm effect, with 𝜎𝑣 also taking integer values from 0 to 5. 

Experiments were conducted with 10, 20, and 30 observations per firm. Note that with 𝛽 = 10, a value of, 

for instance, 𝜋 = 2 implies a 20% increase in 𝛽. Also, 𝜋 = 2 is “larger” than 𝑣 = 2 in the sense that the 

average of the absolute value of a random variable distributed 𝑁(0,2) is less than 2. 



 

 

 The experiments proceeded as follows. For each of the three structures there are 108 

combinations of parameters. For each of these, 50 samples were generated, and to each sample, the 

bootstrap procedure was applied. First a Chow test was performed with the firms correctly allocated to 

industries. Then the firms were randomly allocated to industries a number of times, each time conducting 

a Chow test. In experiments with 8 firms and two industries, the assignment was not actually random. 

This is because there are 35 unique ways to allocate 8 items to 2 groups. We simply conducted Chow tests 

for all 35, one of which was the correct allocation. For the experiments with 20 firms, the random 

assignment was repeated 60 times. Thus, each of the 50 runs generated either 61 or 35 F statistics, one of 

which was from the correct allocation of firms to industries. Call this F*. Our main interest is the location 

of F* in the empirical distribution of all the F’s from that run, as in Figures 2 and 3. This is the basis of 

whether one accepts or rejects when using the bootstrap procedure.  

The results for the three structures are presented in tables A1, A2, and A3 in the Appendix. In 

each case, we report (over the 50 experiments) the percent of times F* fell above the 75th and 95th 

percentiles of the empirical F distributions (percentages rounded to nearest integer). We also report the 

percent of F*’s that would lead to rejection (p < 0.05) by the standard Chow test. In order to avoid 

overdetailed tables, results for some values of 𝜋 and 𝑣 are not reported. A general point to be made here is 

that neither test performed well when the sample size is extremely small, bordering on inadequate for a 

meaningful estimation (e.g. 𝑛 = 10). Although it is unlikely that many impactful studies would base their 

findings on samples as small as these, including such a case in the power simulations was necessary. 

A brief examination of the tables shows that the results do not meaningfully differ across the 

three model structures. Thus, we will discuss them as a group. With no industry effect (𝜋 = 0) and with 

the presence of firm effects, the conventional test rejects too often, as much as 50 percent or more of the 

time when individual effects are strong, especially as sample size increases. This is what we observed in 

the Monte Carlo. It is not true of the bootstrap test. For example, the number of times F* falls in the upper 

quartile of the empirical F distribution does not often differ from the expected 25 percent, although there 

is considerable variability. However, the amount above the 95th percentile appears excessive in some 



 

 

cases, being as large as 16 percent. It is not clear whether this is anything beyond sampling variation. In 

any case, it is clear that use of the empirical F distribution is far less likely to result in mistaking firm 

effects for a non-existent industry effect.  

Thus, the bootstrap method is effective in reducing Type I errors. The next question is how well it 

performs when the hypothesis is false. First consider the case where there is no individual firm effect, in 

which the textbook Chow test is fully applicable. In each table there are three examples of this, with 

industry effects of 1, 3, and 5, which together with 3 structures and 3 sample sizes generates 27 cases. Of 

these, the bootstrap procedure was worse than the conventional test (i.e. had fewer rejections) 10 times, 

better twice, and in the remainder they were equal. Power for both methods increased with n. With   

taking values of 3 and 5, both tests rejected the hypothesis in nearly all cases. 

 With individual effects, performance of both tests declined. But the bootstrap test declined more. 

At high values of v, differences between the two tests were large in some cases. When 𝜋 is very small 

relative to 𝜈 (𝜋 = 1, 𝜈 = 5), bootstrap performance was quite poor, with often little more than 25% of F* 

values falling above the 75th percentile. However, the standard test also had many failures in this case. 

Indeed, when the industry effect is dominated by firm effects in this manner, one might legitimately 

question whether there is a viable industry effect. 

 If 𝜋 and 𝑣 have the same value, both tests perform better the larger is the value. For example, 

performance is better when 𝜋 and 𝜈 are both 5 than when they are three. This occurs in all three tables, 

and suggests that the strength of the group effect is more important than the strength of the individual 

effect. Throughout, the bootstrap test is more likely to generate a Type II error, failing to detect a group 

effect.   

 The key difference between the two procedures is clearly their differing response to the value of 

𝜈, the strength of individual effects within the groups being tested. The bootstrap is much more sensitive, 

and the effect is always negative. When there is no group effect, or when it is minor and economically 

inconsequential, this is desirable: it reduces Type I errors. But in the presence of both effects, it is overly 



 

 

conservative and hence prone to Type II errors. Thus, if only one test is to be relied on, which is better 

depends on the relative cost of Type I-Type II errors.  

Of course one need not rely on one test. The best way to proceed would seem to be to begin with 

a conventional Chow test. If it fails to reject the null hypothesis, there is no need for additional testing. If 

the hypothesis is rejected, and if it is reasonable to suspect there may be individual effects, then one is 

well advised to apply the bootstrap procedure and generate an empirical F distribution. With sufficient 

data for each unit, one can perform a standard Chow test within each industry to test for individual 

effects. If these are not rejected, one can conclude there are no individual effects and the original test is 

valid. If F* falls at a sufficiently high percentile (e.g. at least 0.9), this corroborates the conventional test. 

If F* falls well above the median but below conventional levels of significance, the combination of tests 

can reasonably be construed as indicating both industry and firm effects. An F* at or below the center of 

the distribution, regardless of how highly significant it may be, is best interpreted as evidence of strong 

firm effects, and no industry effect.  

As a final point prior to application, it is well known that the Chow test is compromised if the 

individual regression models have different error variances. There is a large literature on the problem of 

heteroskedasticity in the Chow test, and alternative tests have been developed (Toyoda, 1970; Schmidt 

and Sickles 1977). Nevertheless, the problem is easily remedied by dividing each individual data set (e.g. 

for a firm) by the square root of the estimated error variance of the regression estimated with that data, 

that is, using weighted least squares. Note in this case the underlying heteroskedasticity model is known, 

eliminating the possibility of misspecification. This simple procedure has been found to be at least as 

good as more elaborate methods under most conditions (Thursby 1992). In all our tests involving actual 

data (discussed below), we performed this data weighting, without a prior test for heteroskedasticity. 

Results 

Application: Differences in Grocery Pricing Behavior 

To illustrate, we now apply our procedure to two data sets. The first application of our procedure uses 

milk pricing data derived from the Nielsen Consumer Homescan Panel to examine a question addressed 



 

 

in the marketing literature: do chains in the same metropolitan market price similarly (Shankar & Bolton, 

2004)?  This is a natural candidate for the Chow test. Since most applications would not have data as 

extensive as ours, we used a randomly selected subset: 10 markets and 12 consecutive months (the same 

for each market). Of course 10 markets is still quite large: most applications involve two. We tested the 

hypothesis with the stores correctly allocated to their markets, and a market fixed effect. The calculated F 

was 2.22 with 10 and 220 degrees of freedom, which is highly significant (p <0.001), indicating similar 

pricing in local markets. We then generated an empirical F distribution by randomly allocating stores to 

the markets (with a market fixed effect), as described above. This is shown in Figure 2. 

 

Figure 2. Bootstrap F distribution from regressions on the Nielsen data 

 

The 95th percentile of this distribution is 2.50, with the darker area being the 0.05 rejection region; 2.22 is 

below this, around the 80th percentile. This would cast doubt on the original conclusion, and suggests 

firm effects in this sample. Indeed, 67 percent of the bootstrap F’s were significant at 0.05 measured by 

the standard F. 



 

 

These results pertain to one set of 10 markets out of 49, over one of the 63 twelve-month periods. 

We repeated the procedure 25 times, each time randomly drawing a different set of 10 firms over a 

different 12 months, but with 100 iterations. In 20 of the 25 the hypothesis was rejected by a standard 

Chow test; but 5 of the 20 were not rejected by the bootstrap test. Thus in a large majority of these tests, 

the hypothesis would have been rejected by the standard test, but the fewer bootstrap rejections suggests 

that part of this strength is due to ignored firm effects. Indeed, 32 percent of the random groupings were 

significant at 0.05 using the theoretical F distribution, which shows the strength of these effects. 

Application: Differences in Investment Activity 

A possible problem with the method is that in many cases there may not be sufficient cross-

section units (firms) to generate a usable bootstrap distribution. The range of combinations may be 

limited. For example, with two industries each with two firms, there are just three combinations. But a 

form of the method can still provide information about test validity. Hence, we turn to a second example, 

one similar to that given originally by Chow. The data is the Grunfeld investment data, which has been 

used in numerous econometric studies and is available in Greene (2012). The data involves eleven firms, 

each with 20 observations, with variables measuring investment, market value of stock, and real value of 

assets. The first is regressed on the other two. The data is useful here because among the eleven firms, 

there are four pairs for which each member of the pair is from the same industry. We used these eight 

firms to conduct a Chow test for an industry effect. Note this test involves four industries rather than the 

two in Chow’s example. 

First we conducted the test with the firms correctly allocated to their industry. The calculated F 

was 33.98 with 3 and 148 degrees of freedom, which is highly significant by any standard when 

compared to the usual F distribution. This would seem to provide strong evidence of an industry effect. 

We then generated a bootstrap F distribution by randomly grouping the eight firms into four industries 

400 times, repeating the Chow test each time, thus generating 400 F statistics. This empirical distribution 

is shown in Figure 3.  



 

 

 

Figure 3. Bootstrap F distribution from regressions on the Grunfeld data 

 

As indicated, 33.98 is in the 85th percentile of this distribution. This is not significant by normal 

standards. Thus, while there is some evidence of an industry effect, it is not strong, and not at the level 

suggested by the original F statistic. On the other hand, there is very strong evidence of a firm effect. Note 

from the figure that the smallest F statistic exceeds 6.0, which in this case has a probability value below 

0.01. Some might argue that when conducting a Chow test, in many cases it makes more sense to permit 

intercept shifters for the industries and perform the test only on the slope coefficients (Wooldridge 2013). 

This amounts to applying the Chow test to fixed effects models. The bootstrap exercise was repeated for 

this case, and the F statistic for the correct pairing was in the 82nd percentile, providing yet weaker 

evidence of an industry effect. 

 One consideration in this case is that with only two firms and four industries, a large number of 

bootstrap samples is likely to have repetitions. That is assured here, for there are 115 unique possible 

pairings and we have 400 repetitions. However, repetitions do not invalidate bootstrap sampling. A more 

pertinent issue is that with only two firms per industries, many random pairings are likely to involve firms 



 

 

from the same industry, that is, correct groupings. With four industries, in any bootstrap sample we can 

have zero, one, two, or four such correct pairings. If samples with more correct pairings tend to have 

higher F values, this can be taken as evidence of an industry effect. We found some tendency for this in 

the samples. This is shown in Table 3, which has average F statistics for each of the four possibilities.  

Table 3. F statistic descriptive data, by correct pairings 

Correct 

Pairings 
n 

 
F - Mean F - Std. Dev. F - Minimum F - Maximum 

0 254  19.91 9.08 6.53 36.40 

1 110  23.81 11.45 7.69 47.81 

2 41  27.52 10.85 7.65 38.87 

4 5  33.98 0.00 - - 

 

The average F consistently rises as the number of correct matches increase. But the table also shows that 

for this data, it is possible to get very large F’s even with no matches. In general, then, the table leads to 

the same conclusion as obtained above: weak but perhaps non-trivial evidence of industry effects and 

very strong evidence of firm effects. 

 A final point is that in this example, in which there are 115 possible groupings, the empirical F 

distribution has sufficient variability to enable meaningful probability statements. But if the number of 

unique pairings is very small, this may not be possible. But even with only a few different possibilities, 

meaningful conclusions may emerge. For example, with two firms and two industries, there are just three 

possible firm pairings: that with firms in the same industry grouped together, and the two incorrect 

pairings. We selected two industries from the Grunfeld data and conducted a Chow test for each of the 

three possible two-firm pairings of the four firms in these industries. When the firms were correctly 

paired by their industries, the F value was 5.98; the two incorrect pairings resulted in values of 2.10 and 

6.59. All of these are “significant.”  Since the F for the correct pairing falls between those for the 

incorrect pairings, neither of which can represent a test of industries, the appropriate conclusion would 

seem to be no real evidence of an industry effect, and (again) strong evidence of firm effects. This is 

similar to the previous case, and perhaps somewhat more definitive.  

 



 

 

Conclusions 

 A question often encountered in econometric research is whether behavior differs across 

segments of a study population (in this paper, industries). To investigate this, one generally employs a 

Chow test, data for which consists of observations from the separate industries of interest. It may occur 

that these industries themselves are composed of multiple observations on component firms, such as 

several observations on each of several firms. In this paper we have shown that when this is the case, the 

Chow test can yield deceptive results (e.g. if region-level differences were of interest to a researcher, then 

sufficiently strong state-level heterogeneity could cause a Chow between states to overstate any 

differences, but it would be accounted for in our proposed testing procedure). This occurs when the firms 

themselves differ from each other, generating effects that become confounded with the effects of interest. 

As a result, the Chow test may reject the null when there are no differences in the industries of interest. In 

this paper we analytically examined the nature of the problem, and demonstrated its consequences using a 

simple Monte Carlo analysis. We proposed a bootstrapping procedure to deal with the problem. Using 

actual data, we demonstrated it can be quite useful in reducing the effects of this confounding, thus 

reducing the danger of test misinterpretation. 

 Our recommendation in performing a Chow test was not to rely on the results of only one test, but 

to begin with a conventional Chow test. Failure to reject the null hypothesis would imply that there is no 

issue, and thus is no need for running an additional test. However, if the null is rejected, there is reason to 

suspect the presence of any individual effects, then we recommend the researcher apply our bootstrap 

procedure in order to generate an empirical F distribution and re-evaluate. 

 We ended with an examination of test power. We found that when there is no confounding, the 

bootstrap procedure performs with accuracy similar to the standard Chow test. When both types of effect 

are present, the power of both tests declines, but the bootstrap test is considerably less likely to detect the 

industry effect of interest. Thus, under the condition stated, the proposed test has lower power, making 

more Type II errors. We suggest that in order to avoid errors it is advisable that both tests be used.  



 

 

As a final point, it is evident that the data generating process underlying our analysis is similar to 

that underlying random coefficient and varying parameter models, for which various estimation methods 

have been proposed. One such method is to employ hierarchical modeling (Bryk & Raudenbush, 2002; 

Ergan et al., 2016; Meager, 2019), which estimates coefficient differences across the firms. However, this 

requires more information than that available for a Chow test, and goes beyond the simple purpose of 

determining whether there are differences in behavior. Our model is more akin to that underlying 

Swamy’s random coefficient model (Swamy, 1970). This suggests the possibility of adapting Swamy’s 

method to the Chow test. We performed some preliminary examination of this question by using Swamy 

estimation to obtain the error sums of squares for the Chow test. The result was a test with little power. 

This is a topic for future research.  
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APPENDIX 

Table A1 

Two industries, each with four firms 

  10 Observations 20 Observations 30 Observations 

π v F Empirical F F Empirical F F Empirical F 

  P=.05 P=.25 P=.05 P=.05 P=.25 P=.05 P=.05 P=.25 P=.05 

0 0 10 29 5 4 24 4 8 28 5 

0 1 8 27 5 10 26 5 10 26 2 

0 3 28 32 5 42 29 7 55 28 7 

0 5 37 24 7 51 34 9 62 28 3 

1 0 16 45 15 38 73 35 55 78 49 

1 1 23 48 15 45 59 20 48 56 24 

1 3 38 37 10 61 38 9 57 32 8 

1 5 38 26 8 54 29 8 69 30 8 

3 0 95 100 89 100 100 99 100 100 100 

3 1 94 98 80 99 99 89 100 100 96 

3 3 68 63 29 89 78 41 91 70 33 

3 5 66 53 20 77 52 15 82 51 18 

5 0 100 100 100 100 100 100 100 100 100 

5 1 100 100 98 100 100 100 100 100 100 

5 3 96 95 71 99 97 82 99 97 77 

5 5 88 76 34 94 82 45 96 79 40 

 



 

 

Table A2  

Two industries, each with ten firms 

  10 Observations 20 Observations 30 Observations 

π v F Empirical F F Empirical F F Empirical F 
  

P=.05 P=.25 P=.05 P=.05 P=.25 P=.05 P=.05 P=.25 P=.05 

0 0 8 28 6 2 30 6 2 32 6 

0 1 14 22 8 12 26 14 12 30 8 

0 3 16 20 4 34 26 8 48 34 10 

0 5 46 36 10 48 24 10 71 20 4 

1 0 42 72 40 66 82 68 82 98 78 

1 1 44 60 38 70 82 52 76 82 66 

1 3 40 46 16 46 34 10 72 54 20 

1 5 40 26 8 60 30 18 68 34 10 

3 0 100 100 100 100 100 100 100 100 100 

3 1 100 100 100 100 100 100 100 100 100 

3 3 90 94 76 100 98 92 96 92 82 

3 5 72 66 54 98 86 48 94 74 50 

5 0 100 100 100 100 100 100 100 100 100 

5 1 100 100 100 100 100 100 100 100 100 

5 3 100 100 100 100 100 100 100 100 100 

5 5 96 94 86 98 96 90 100 98 84 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table A3 

Two industries, one with four firms, the other with sixteen 

  10 Observations 20 Observations 30 Observations 

π v F Empirical F F Empirical F F Empirical F 
  

P=.05 P=.25 P=.05 P=.05 P=.25 P=.05 P=.05 P=.25 P=.05 

0 0 8 25 8 0 28 6 7 22 8 

0 1 6 29 6 10 22 8 14 24 10 

0 3 15 17 4 45 30 11 50 36 16 

0 5 30 20 2 48 14 2 47 16 4 

1 0 18 53 25 42 68 32 64 92 62 

1 1 25 47 16 39 57 39 53 67 27 

1 3 42 48 12 42 26 12 68 44 12 

1 5 29 27 6 66 38 10 58 40 15 

3 0 98 100 96 100 100 100 100 100 100 

3 1 96 98 92 100 100 100 100 100 100 

3 3 84 88 67 92 88 72 100 96 80 

3 5 74 64 28 82 72 40 84 65 29 

5 0 100 100 100 100 100 100 100 100 100 

5 1 100 100 100 100 100 100 100 100 100 

5 3 100 100 92 100 100 100 100 100 96 

5 5 92 86 51 98 92 73 100 87 79 

 


