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Abstract

The beta Lindley-Poisson (BLP) distribution which is an extension
of the Lindley-Poisson Distribution is introduced and its properties are
explored. This new distribution represents a more flexible model for the
lifetime data. Some statistical properties of the proposed distribution
including the expansion of the density function, hazard rate function,
moments and moment generating function, skewness and kurtosis are
explored. Rényi entropy and the distribution of the order statistics are
given. The maximum likelihood estimation technique is used to estimate
the model parameters and finally applications of the model to real data
sets are presented for the illustration of the usefulness of the proposed
distribution.

Keywords: Beta Lindley-Poisson distribution, Exponentiated Lindley dis-
tribution, Lindley distribution, Maximum likelihood estimation.

1 Introduction

Lindley [15] proposed a distribution in the context of fiducial and Bayesian
statistics. Properties and applications of the Lindley distribution have been
studied in the context of reliability analysis by Ghitany et al. [9], several
other authors including Sankaran [28], Ghitany et al. [8] and Nadarajah et al.
[20] proposed and developed the mathematical properties of the generalized
Lindley distribution. The probability density function (pdf) and cumulative
distribution function (cdf) of the Lindley distribution are respectively, given
by

f(x; β) =
β2

β + 1
(1 + x)e−βx, (1.1)

and

F (x) = 1−
(

1 +
βx

β + 1

)
e−βx, (1.2)
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for x > 0, α, β > 0.
The main objective of this article is to construct, develop and explore

the properties of the four-parameter beta Lindley Poisson (BLP) distribution.
The beauty of this model is the fact that it not only generalizes the Lindley
and Lindley Poisson distribution but also exhibits the desirable properties of
increasing, decreasing, and bathtub shaped hazard function.

This paper is organized as follows. In section 2, the model, sub-models and
some properties including the quantile function, expansion of density, hazard
function and reverse hazard function, moments and conditional moments of
the BLP distribution are derived. Section 3 contains the mean deviations,
Bonferroni and Lorenz curves. In section 4, the distribution of order statistics
and Rényi entropy are presented. Maximum likelihood estimates of the model
parameters and asymptotic confidence intervals are given in section 5. A Monte
Carlo simulation study is conducted in section 6 to examine the bias and
mean square error of the maximum likelihood estimators for each parameter.
Applications to illustrate the usefulness of the distribution and its sub-models
are given in section 7. Some concluding remarks are given in section 8.

2 The Model, Sub-models and Properties

Suppose that the random variable X has the Lindley distribution where its cdf
and pdf are given in (1.2) and (1.1). Given N, let X1, ..., XN be independent
and identically distributed random variables from Lindley distribution. Let N
be distributed according to the zero truncated Poisson distribution with pdf

P (N = n) =
θne−θ

n!(1− e−θ)
, n = 1, 2, ..., θ > 0. (2.1)

Let X=max(Y1, ..., YN), then the cdf of X|N = n is given by

GX|N=n(x) =

[
1−

(
1 +

βx

β + 1

)
e−βx

]n
, x > 0, β > 0, θ > 0, (2.2)

which is the Lindley distribution. The Lindley Poisson (LP) distribution de-
noted by LP(β, θ) is defined by the marginal cdf of X, that is,

G
LP

(x; β, θ) =

1− exp

{
θ

[
1−

(
1 + βx

β+1

)
e−βx

]}
1− eθ

(2.3)

for x > 0, β > 0, θ > 0. The Lindley Poisson density function is given by

g
LP

(x; β, θ) =

θβ2(1 + x)e−βx exp

{
θ

[
1−

(
1 + βx

β+1

)
e−βx

]}
(β + 1)(eθ − 1)

. (2.4)
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In this section we present the beta Lindley Poisson (BLP) distribution and
derive some properties of this class of distributions including the cdf, pdf,
expansion of the density, hazard and reverse hazard functions, shape and sub-
models. Let G(x) denote the cdf of a continuous random variable X and define
a general class of distributions by

F (x) =
BG(x)(a, b)

B(a, b)
, (2.5)

where BG(x)(a, b) =
∫ G(x)

0
ta−1(1 − t)b−1dt and 1/B(a, b) = Γ(a + b)/Γ(a)Γ(b).

The class of generalized distributions above was motivated by the work of Eu-
gene et al. [7]. They proposed and studied the beta-normal distribution. Some
beta-generalized distributions discussed in the literature include the work done
by Jones [12], Nadarajah and Kotz [18], Nadarajah and Gupta [17], Nadara-
jah and Kotz [17], Barreto-Souza et al. [1] proposed the beta-Gumbel, beta-
Frechet, beta-exponential (BE), beta-exponentiated exponential distributions,
respectively. Gusmao et al. [11] presented results on the generalized inverse
Weibull. Pescim et al. [25] proposed and studied the beta-generalized half-
normal distribution which contains some important distributions such as the
half-normal and generalized half normal (Cooray and Ananda) [5] as special
cases. Furthermore, Cordeiro et al. [6] presented the generalized Rayleigh
distribution and Carrasco et al. [2] studied the generalized modified Weibull
distribution with applications to lifetime data. More recently, Oluyede et al.
[24] studied the beta generalized Lindley distribution with applications.

By considering G(x) as the cdf of the Lindley Poisson (LP) distribution
we obtain the beta Lindley Poisson (BLP) distribution with a broad class of
distributions that may be applicable in a wide range of day to day situations
including applications in medicine, reliability and ecology. The cdf and pdf of
the four-parameter BLP distribution are respectively given by

FBLP (x; β, θ, a, b) =
1

B(a, b)

∫ GLP (x;θ,β)

0

ta−1(1− t)b−1dt

=
BGLP (x)(a, b)

B(a, b)
, (2.6)
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and

fBLP (x; β, θ, a, b) =
1

B(a, b)

[
GLP (x)

]a−1[
1−GLP (x)

]b−1
gLP (x),

=

θβ2(1 + x)e−βx exp

{
θ

[
1−

(
1 + βx

β+1

)
e−βx

]}
B(a, b)(β + 1)(eθ − 1)

×
(

1− exp

{
θ

[
1−

(
1 +

βx

β + 1

)
e−βx

]})a−1
×

(
exp

{
θ

[
1−

(
1 +

βx

β + 1

)
e−βx

]}
− eθ

)b−1
× (1− eθ)2−a−b, (2.7)

for x > 0, β > 0, θ > 0, a > 0, b > 0. Plots of the pdf of the BLP distribution
for several values of β, θ, a and b are given in Figure below. Using the substitu-

Figure 2.1: Plots of the pdf for different values of β, θ, a and b

tion ω = θ

[
1−

(
1 + βx

β+1

)
e−βx

]
, we can write the pdf of the BLP distribution

as

f(x; β, θ, a, b) =
θβ2(1 + x)e−βxeω(1− eω)a−1(eω − eθ)b−1

B(a, b)(β + 1)(eθ − 1)

× (1− eθ)2−a−b. (2.8)
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The cumulative distribution function of of the BLP random variable X is given
by

FBLP (x) = IGPL(x)(a, b) = I 1−eω
1−eθ

(a, b). (2.9)

2.1 Quantile Function

The quantile function of the BLP distribution, say x = F−1(y; β, θ, a, b), is
obtained by solving the non-linear equation

βx− ln

(
1 +

βx

β + 1

)
+ ln

(
1− ln

(
1− y

(
1− eθ

)) 1
θ

)
= 0, (2.10)

where y = Qa,b(u) is the quantile function of the beta distribution with param-
eters a and b. We can readily simulate from the BLP distribution, since if Y
is a random variable having a beta distribution with parameters a and b, then
the solution of the equation (2.10) gives the quantiles of the BLP distribution.

Note also that the quantile function of the BLP distribution can be obtained
via the Lambert W function as follows: Let Z(p) = −1−β−βQ(p), then from

1−
(

1 + βx
β+1

)
exp (−βx) = ln

(
1− y

(
1− eθ

)) 1
θ , we have

1 +
Z(p)

β + 1
exp (Z(p) + 1 + β) = ln

(
1− y

(
1− eθ

)) 1
θ , (2.11)

that is,

Z(p) exp (Z(p)) =
−(β + 1)

exp(β + 1)

(
1− ln

(
1− y

(
1− eθ

)) 1
θ

)
. (2.12)

Thus,

Z(p) = W

(
−(β + 1)

exp(β + 1)

(
1− ln

(
1− y

(
1− eθ

)) 1
θ

))
, (2.13)

0 < p < 1, where W (.) is the Lambert function. The quantile function of the
BLP distribution is obtained by solving for Q(p) and is given by

Q(p) = −1− 1

β
− 1

β
W

(
−(β + 1)

exp(β + 1)

(
1− ln

(
1− y

(
1− eθ

)) 1
θ

))
. (2.14)

Consequently, random number can be generated based on equation (2.14).
Table 2.1 lists the quantile for selected values of the parameters of the BLP
distribution.
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Table 2.1: BLP quantile for selected values

(β, θ, a, b)

u (1.5,1.5,0.5,0.5) (1.5,0.5,1.5,0.5) (0.5,0.5,1.5,1.5) (0.5,1.0,0.5,1.5) (1.0,1.0,1.0,1.0)

0.1 0.0615 0.5394 1.0102 0.0624 0.3219

0.2 0.2266 0.8739 1.5698 0.2386 0.6202

0.3 0.4610 1.1846 2.0652 0.5072 0.9137

0.4 0.7445 1.5008 2.5501 0.8539 1.2153

0.5 1.0755 1.8427 3.0550 1.2773 1.5384

0.6 1.4665 2.2334 3.6105 1.7902 1.9008

0.7 1.9509 2.7106 4.2621 2.4283 2.3323

0.8 2.6066 3.3541 5.1021 3.2799 2.8967

0.9 3.6832 4.4124 6.4126 4.6304 3.7921

2.2 Expansion of the Density Function

The expansion of the pdf of BLP distribution is presented in this section. For
b > 0 a real non-integer, we use the series representation

(1−GLP (x))b−1 =
∞∑
i=0

(
b− 1

i

)
(−1)i [GLP (x)]i , (2.15)

where G
LP

(x) = GLP (x; β, θ) is the Lindley Poisson cdf. If b > 0 is a real
non-integer and a > 0 is also a real non-integer, from Equation (2.15) and the
above expansion, we can rewrite the density of the BLP distribution as

fBLP (x) =
∞∑
j=0

(
b− 1

j

)
(−1)j

gLP (x)

B(a, b)
[GLP (x)]a+j−1 (2.16)

=
∞∑
j=0

∞∑
k=0

(
b− 1

j

)(
a+ j − 1

k

)
(−1)a+2j+k−1[eθ(1+k) − 1]

(1 + k)B(a, b)(eθ − 1)a+j

× β2θ(1 + k)(1 + x)e−βx

(β + 1)[eθ(1+k) − 1]
exp

{
θ(k + 1)

[
1−

(
1 +

βx

β + 1

)
e−βx

]}
=

∞∑
j=0

∞∑
k=0

λθ,a,b(j, k)f(x; θ(1 + k), β), (2.17)

where λθ,a,b(j, k) =
(
b−1
j

)(
a+j−1
k

) (−1)a+2j+k−1[eθ(1+k)−1]
(1+k)B(a,b)(eθ−1)a+j . This shows that the BLP

distribution can be written as a linear combination of Lindley Poisson density
functions. Hence mathematical properties of the BLP distribution can be
obtained from those of the LP properties.
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2.3 Some sub-models of the BLP distribution

In this section we present some sub-models of the BLP distribution for selected
values of the parameters β, θ, a and b.

• If a = b = 1 and θ → 0+, we obtain Lindley (L) distribution.

• When a = b = 1, we obtain the Lindley Poisson (LP) distribution whose
cdf and pdf are given by equations (2.3) and (2.4), respectively.

• When b = 1, we obtain the exponentiated Lindley Poisson (ELP) distri-
bution.

• When θ → 0+, we get the beta Lindley (BL) distribution (Oluyede and
Yang [24]).

• When b = 1 and θ → 0+, we get the exponentiated Lindley (EL) distri-
bution.

2.4 Hazard and Reverse Hazard Rate Functions

The hazard and reverse hazard functions for the BLP distribution will be
presented in this section. Using some selected values of β, θ, a and b, some
plots of the hazard function will be presented. The hazard and reverse hazard
functions of the BLP distribution are given by

hBLP (x; β, θ, a, b) =
fBLP (x; β, θ, a, b)

1− FBLP (x; β, θ, a, b)
=
gLP (x)[GLP (x)]a−1[1−GLP (x)]b−1

B(a, b)−BGLP (x)(a, b)
,

(2.18)
and

τBLP (x; β, θ, a, b) =
fBLP (x; β, θ, a, b)

FBLP (x; β, θ, a, b)
=
gLP (x)[GPL(x)]a−1[1−GLP (x)]b−1

BGLP (x)(a, b)
,

(2.19)
respectively for x > 0, β > 0, θ > 0, a > 0 and b > 0. The graphs of the
hazard rate function exhibit increasing, decreasing, bathtub, bathtub followed
by upside down bathtub shapes for the selected values of the model parameters.

2.5 Moments

The rth moment of a continuous random variable X, denoted by µ′r, is ,

µ′r = E(Xr) =

∫ ∞
−∞

xrf(x)dx for r = 0, 1, 2, . . . . (2.20)
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Figure 2.2: Plots of the hazard function for different values of β, θ, a and b

In order to find the moments, consider the following lemma.

Lemma 1
Let

L1(β, θ, a, b, r) = L1 =

∫ ∞
0

xr(1+x) exp

{
θ(k+1)

[
1−
(

1+
βx

β + 1

)
e−βx

]}
dx,

(2.21)
then

L1(β, θ, a, b, r) =
∞∑
p=0

p∑
q=0

q∑
s=0

s+1∑
m=0

(−1)qθp(k + 1)pβs

p!(β + 1)q

(
p

q

)(
q

s

)(
s+ 1

m

)
× Γ(r +m+ 1)

[βq]r+m+1
. (2.22)

Proof. We apply the following series expansions: If b is a positive real non-
integer and |z| < 1, then

(1− z)b−1 =
∞∑
j=0

(−1)jΓ(b)

Γ(b− j)j!
zj, (2.23)

and ez =
∑∞

p=0
zp

p!
, so that by considering the right hand side of equation (2.21),
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we have

L1 =
∞∑
p=0

θp(k + 1)p

p!

∫ ∞
0

xr(1 + x)

[
1−

(
1 +

βx

β + 1

)
e−βx

]p
dx

=
∞∑
p=0

p∑
q=0

(−1)qθp(k + 1)p

p!(β + 1)q

(
p

q

)∫ ∞
0

[1 + β(1 + x)]qxr(1 + x)e−βxqdx

=
∞∑
p=0

p∑
q=0

q∑
s=0

s+1∑
m=0

(−1)qθp(k + 1)pβs

p!(β + 1)q

(
p

q

)(
q

s

)(
s+ 1

m

)
×

∫ ∞
0

xr+me−βxqdx. (2.24)

By letting u = βxq, we have x = u
βq

and dx = du
βq
. Thus,∫ ∞

0

xr+me−βxqdx =
1

[βq]r+m+1

∫ ∞
0

ur+me−udu =
Γ(r +m+ 1)

[βq]r+m+1
.

By using Lemma 1, the rth moment of the BLP distribution is

µ′r =
∞∑
j=0

∞∑
k=0

β2θ(k + 1)

(β + 1)[eθ(k+1) − 1]
λθ,a,b(j, k)L1(β, θ, a, b, r), (2.25)

where

λθ,a,b(j, k) =

(
b− 1

j

)(
a+ j − 1

k

)
(−1)a+2j+k−1[eθ(1+k) − 1]

(1 + k)B(a, b)(eθ − 1)a+j
. (2.26)

Plots of the skewness and kurtosis for selected choices of the parameter b
as a function of a, as well as for some selected choices of a as a function of b are
displayed in Figures 2.3 and 2.4. These plots clearly indicate that the skewness
and kurtosis depend on the shape parameters a and b. Table 2.2 lists the first
four moments of the BLP distribution for selected values of the parameters,
by fixing β = 1.5 and θ = 1.5, and Table 2.3 lists the first four moments of the
BLP distribution for selected values of the parameters, by fixing a = 1.5 and
b = 1.5. These values can be determined numerically using R and MATLAB.
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Figure 2.3: Skewness and Kurtosis of BLP distribution as a function of a for
some values of b with β = 0.5 and θ = 0.5.

Figure 2.4: Skewness and Kurtosis of BLP distribution as a function of b for
some values of a with β = 0.5 and θ = 0.5.



Beta Lindley Poisson Distribution 11

Table 2.2: Moments of the BLP distribution for some parameter values; β =
1.5 and θ = 1.5.

µ′s a = 0.5, b = 1.0 a = 1.0, b = 1.5 a = 1.0, b = 1.0 a = 1.5, b = 1.0

µ′1 0.8272 0.9427 1.2764 1.5739

µ′2 1.4564 1.3998 2.5600 3.4525

µ′3 3.6466 2.7287 6.8107 9.6269

µ′4 11.6674 6.5182 22.4884 32.6293

SD 0.8787 0.7149 0.9648 0.9876

CV 1.0623 0.7583 0.7559 0.6275

CS 1.7160 1.2192 1.2995 1.1657

CK 7.0045 5.0662 5.5140 5.1799

Table 2.3: Moments of the BLP distribution for some parameter values; a =
1.5 and b = 1.5.

µ′s β = 1.0, θ = 1.0 β = 0.5, θ = 0.5 β = 0.5, θ = 1.5 β = 1.5, θ = 0.5

µ′1 1.7341 3.4566 4.2328 0.9601

µ′2 4.2358 16.8027 23.5029 1.3879

µ′3 13.0924 103.6617 158.8613 2.6361

µ′4 48.7020 771.9723 1260.5950 6.1728

SD 1.1085 2.2033 2.3635 0.6827

CV 0.6392 0.6374 0.5584 0.7111

CS 1.0909 1.1238 0.9154 1.2836

CK 4.7591 4.8794 4.3074 5.4133

The moment generating function of a random variable X having the BLP
distribution is given by

E(etX) =
∞∑
l=0

tl

l!

∫ ∞
0

xlf(x)dx

=
∞∑
j=0

∞∑
k=0

∞∑
l=0

tlβ2θ(k + 1)

l!(β + 1)[eθ(k+1) − 1]
λθ,a,b(j, k)L1(β, θ, a, b, l),

by Lemma 1, where λθ,a,b(j, k) is defined in (2.26).
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2.6 Conditional Moments

For lifetime models, it may be useful to know about the conditional moments
which can be defined as E(Xr | X > x). In order to calculate these, we
consider the following lemma whose proof is along the same lines as Lemma 1.

Lemma 2
Let

L2(β, θ, a, b, r, t) =

∫ ∞
t

xr(1 + x) exp

{
θ(k + 1)

[
1−

(
1 +

βx

β + 1

)
e−βx

]}
dx,

then

L2(β, θ, a, b, r, t) =
∞∑
p=0

p∑
q=0

q∑
s=0

s+1∑
m=0

(−1)qθp(k + 1)pβs

p!(β + 1)q

(
p

q

)(
q

s

)(
s+ 1

m

)
Γ [(r +m+ 1, βtq)]

[βq]r+m+1
.

Note that

L2(β, θ, a, b, r, t) =
∞∑
p=0

p∑
q=0

q∑
s=0

s+1∑
m=0

(−1)qθp(k + 1)pβs

p!(β + 1)q

(
p

q

)(
q

s

)(
s+ 1

m

)∫ ∞
t

xr+me−βxqdx.

By letting u = βxq, we have x = u
βq

and dx = du
βq
. Thus when x = t, u = βtq.∫ ∞

βtq

xr+me−βx(q)dx =
1

[β(q + 1)]r+m+1

∫ ∞
βtq

ur+me−udu

=
Γ [(r +m+ 1, βtq)]

[βq]r+m+1
.

We therefore have

L2(β, θ, a, b, r, t) =
∞∑
p=0

p∑
q=0

q∑
s=0

s+1∑
m=0

(−1)qθp(k + 1)pβs

p!(β + 1)q

(
p

q

)(
q

s

)(
s+ 1

m

)
× Γ [(r +m+ 1, βtq)]

[βq]r+m+1
.

By applying Lemma 2, the rth conditional moment of the BLP distribution
is given by

E(Xr|X > x) =
∞∑
j=0

∞∑
k=0

λβ,θ,a,b(j, k)β2θ(k + 1)

(β + 1)[eθ(k+1) − 1]

L2(β, θ, a, b, r, x)

1− FBPL(x)

=
∞∑
j=0

∞∑
k=0

λβ,θ,a,b(j, k)β2θ(k + 1)

(β + 1)[eθ(k+1) − 1]

L2(β, θ, a, b, r, x)

1− I 1−eω
1−eθ

(a, b)
,

where λβ,θ,a,b(j, k) is defined in (2.26).
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2.7 Reliability

We derive the reliability R when X and Y have independent BLP(θ1, β1, a1, b1)
and BLP(θ2, β2, a2, b2) distributions, respectively. Note that from (2.6), the
BLP cdf can be written as

FBLP (x; β, θ, a, b) =
1

B(a, b)

∫ GLP (x;β,θ)

0

ta−1(1− t)b−1dt

=
1

B(a, b)

∞∑
m=0

(
b− 1

m

)
(−1)m

a+m

×

1− exp

{
θ

[
1−

(
1 + βx

β+1

)
e−βx

]}
1− eθ


a+m

.(2.27)

From equation (2.27) of the pdf of the BLP and the above equation, the
reliability to be given by

R = P (X > Y ) =

∫ ∞
0

fX(x; β1, θ1, a1, b1)FY (x; β2, θ2, a2, b2)dx.

Thus after applying some series expansions we have

FY (x; β2, θ2, a2, b2) =
1

B(a2, b2)

∞∑
m=0

(
b2 − 1

m

)
(−1)m

(a2 +m)(1− eθ2)a2+m

×
[
1− exp

{
θ2

[
1−

(
1 +

β2x

β2 + 1

)
e−β2x

]}]a2+m
.

=
1

B(a2, b2)

∞∑
m=0

∞∑
p=0

(
b2 − 1

m

)(
a2 +m

p

)
× (−1)m+p

(a2 +m)(1− eθ2)a2+m

×
{

exp

(
θ2p

[
1−

(
1 + β2[1 + x]

1 + β2

)
e−β2x

])}
=

1

B(a2, b2)

∞∑
m=0

∞∑
p=0

∞∑
q=0

(
b2 − 1

m

)(
a2 +m

p

)
(−1)m+p(θ2p)

q

(a2 +m)(1− eθ2)a2+mq!

×
[
1−

(
1 + β2[1 + x]

1 + β2

)
e−β2x

]q
=

1

B(a2, b2)

∞∑
m,p,q=0

q∑
r=0

r∑
s=0

s∑
t=0

(
b2 − 1

m

)(
a2 +m

p

)(
q

r

)
×

(
r

s

)(
s

t

)
(−1)m+p+r(θ2p)

qβs2x
te−β2rx

(a2 +m)(1− eθ2)a2+mq!(1 + β2)r
. (2.28)



14

From the expansion of the pdf in (2.2), we have

fX(x; β1, θ1, a1, b1) =
1

B(a1, b1)

∞∑
i=0

∞∑
j=0

(
b1 − 1

i

)(
a1 + i− 1

j

)
× (−1)a1+2i+j−1θ1β

2
1(1 + x)e−β1x

(β1 + 1)(eθ1 − 1)a1+i

× exp

{
θ1(j + 1)

[
1−

(
1 + β1[1 + x]

β1 + 1

)
e−β1x

]}
=

1

B(a1, b1)

∞∑
i=0

∞∑
j=0

∞∑
k=0

k∑
l=0

l∑
u=0

u+1∑
v=0

(
b1 − 1

i

)(
a1 + i− 1

j

)

×
(
k

l

)(
l

u

)(
u+ 1

v

)
(−1)a1+j+l−1θk+1

1 (j + 1)kβu+2
1

(β1 + 1)l+1(eθ1 − 1)a1+jk!

× xve−β1(l+1)x

=
1

B(a1, b1)

∞∑
i,j,k=0

∞∑
w=0

k∑
l=0

l∑
u=0

u+1∑
v=0

(
b1 − 1

i

)(
a1 + i− 1

j

)

×
(
k

l

)(
l

u

)(
u+ 1

v

)
(−1)a1+j+l+w−1θk+1

1 (j + 1)kβu+w+2
1

(β1 + 1)l+1(eθ1 − 1)a1+jk!w!

× (l + 1)wxv+w. (2.29)

By using parts of the last two equations and the substitution u = β2rx, we
thus have ∫ ∞

0

xt+v+we−β2rxdx =
1

(β2r)t+v+w+1

∫ ∞
0

ut+v+we−udu

=
Γ (t+ v + w + 1)

(β2r)t+v+w+1
. (2.30)

Using equation (2.28), the reliability of the BLP distribution is given by

R =
1

B(a1, b1)B(a2, b2

∞∑
i,j,k=0

∞∑
w=0

k∑
l=0

l∑
u=0

u+1∑
v=0

(
b1 − 1

i

)(
a1 + i− 1

j

)

×
(
k

l

)(
l

u

)(
u+ 1

v

)
θk+1
1 (j + 1)kβu+w+2

1 (l + 1)w

(β1 + 1)l+1(eθ1 − 1)a1+jk!w!

×
∞∑

m,p,q=0

q∑
r=0

r∑
s=0

s∑
t=0

(
b2 − 1

m

)(
a2 +m

p

)(
q

r

)
×

(
r

s

)(
s

t

)
(−1)a1+j+l+w+m+p+r−1(θ2p)

qβs2
(a2 +m)(1− eθ2)a2+mq!(1 + β2)r

× Γ (t+ v + w + 1)

(β2r)t+v+w+1
. (2.31)
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3 Mean Deviations, Bonferroni and Lorenz Curves

In this section, we present the mean deviation about the mean and mean devi-
ation about the median of the BLP distribution. Also presented are Bonferroni
and Lorenz curves. Bonferroni and Lorenz curves are widely used tools for an-
alyzing and visualizing income inequality. Lorenz curve, L(p) can be regarded
as the proportion of total income volume accumulated by those units with
income lower than or equal to the volume q, and Bonferroni curve, B(p) is
the scaled conditional mean curve, that is, ratio of group mean income of the
population.

3.1 Mean Deviations

The amount of scatter in a population is evidently measured to some extent
by the totality of deviations from the mean and median. These are known as
the mean deviation about the mean and the mean deviation about the median
and are defined by

δ1(x) =

∫ ∞
0

|x− µ|f
BLP

(x)dx and δ2(x) =

∫ ∞
0

|x−M |f
BLP

(x)dx, (3.1)

respectively, where µ = E(X) and M =Median (X) denotes the median. The
measures δ1(x) and δ2(x) can be calculated using the relationships

δ1(x) = 2µF
BLP

(µ)− 2µ+ 2

∫ ∞
µ

xf
BLP

(x)dx, (3.2)

and

δ2(x) = −µ+ 2

∫ ∞
M

xf
BLP

(x)dx, (3.3)

respectively. When r = 1, we get the mean µ = E(X) from equation (2.20).
Note that T (µ) =

∫∞
µ
xf

BLP
(x)dx and T (M) =

∫∞
M
xf

BLP
(x)dx are given by

T (µ) = L2(β, θ, a, b, 1, µ) and T (M) = L2(β, θ, a, b, 1,M), respectively, so that
the mean deviation about the mean and the mean deviation about the median
are given by

δ1(x) = 2µF
BLP

(µ)− 2µ+ 2T (µ) and δ2(x) = −µ+ 2T (M),

respectively.

3.2 Bonferroni and Lorenz Curves

In this subsection, we present Bonferroni and Lorenz curves. Bonferroni and
Lorenz curves have applications not only in economics for the study of income
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and poverty, but also in other fields such as reliability, demography, insurance
and medicine. Bonferroni and Lorenz curves for the BLP distribution are given
by

B(p) =
1

pµ

∫ q

0

xf
BLP

(x)dx =
1

pµ
[µ− T (q)],

and

L(p) =
1

µ

∫ q

0

xf
BLP

(x)dx =
1

µ
[µ− T (q)],

respectively, where T (q) =
∫∞
q
xf

BLP
(x)dx = L2(β, θ, a, b, 1, q), q = F−1

BLP
(p),

0 ≤ p ≤ 1.

4 Order Statistics and Rényi Entropy

In this section, the distribution of order statistics and Rényi entropy for the
BLP distribution are presented. The concept of entropy plays a vital role in
information theory. The entropy of a random variable is defined in terms of its
probability distribution and can be shown to be a good measure of randomness
or uncertainty.

4.1 Distribution of Order Statistics

Suppose that X1, · · · , Xn is a random sample of size n from a continuous pdf,
f(x). Let X1:n < X2:n < · · · < Xn:n denote the corresponding order statistics.
If X1, · · · , Xn is a random sample from BLP distribution, it follows from the
equations (2.6) and (2.7) that the pdf of the kth order statistics, say Yk = Xk:n

is given by

fk(yk) =
n!

(k − 1)!(n− k)!

n−k∑
l=0

(
n− k
l

)
(−1)l

(
BGLP (yk;β,θ)(a, b)

B(a, b)

)k−1+l
× θβ2(1 + yk)e

−βykeω(1− eω)a−1(eω − eθ)b−1

B(a, b)(β + 1)(eθ − 1)
(1− eθ)2−a−b. (4.1)

The corresponding cdf of Yk is

Fk(yk) =
n∑
j=k

n−j∑
l=0

(
n

j

)(
n− j
l

)
(−1)l[F (yk)]

j+l

=
n∑
j=k

n−j∑
l=0

(
n

j

)(
n− j
l

)
(−1)l

[
BGLP (yk;β,θ)(a, b)

B(a, b)

]j+l
.
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4.2 Rényi Entropy

Rényi entropy [26] is an extension of Shannon entropy. Rényi entropy is defined

to be Hv(fBLP (x; β, θ, a, b)) =
log(

∫∞
0 fvBLP (x;β,θ,a,b)dx)

1−v , where v > 0, and v 6= 1.
Rényi entropy tends to Shannon entropy as v → 1. Note that

∫ ∞
0

f vBLP (x)dx =

(
1

B(a, b)

)v ∞∑
j=0

(−1)j
(
bv − v
j

)∫ ∞
0

gvPL(x)[GPL(x)]j+av−vdx

=

[
θβ2

B(a, b)(β + 1)(eθ − 1)

]v ∞∑
j=0

(−1)j
(
bv − v
j

)
×

∫ ∞
0

exp

{
θv

[
1−

(
1 +

βx

β + 1

)
e−βx

]}
× (−1)j+av−v(1 + x)ve−βvx

(eθ − 1)j+av−v

×
(

1− exp

{
θ

[
1−

(
1 +

βx

β + 1

)
e−βx

]})j+av−v
dx

= C
∞∑

j,k,m=0

m∑
p=0

p∑
q=0

(
bv − v
j

)(
j + av − v

k

)(
m

p

)(
p

q

)
× (−1)av−v+k+p[θ(v + k]mβq

(eθ − 1)j+av−v(β + 1)pm!

∫ ∞
0

(1 + x)q+ve−β(p+v)xdx

= C
∞∑

j,k,m=0

m∑
p=0

p∑
q=0

q+v∑
r=0

(
bv − v
j

)(
j + av − v

k

)(
m

p

)(
p

q

)(
q + v

r

)
× (−1)av−v+k+p[θ(v + k]mβq

(eθ − 1)j+av−v(β + 1)pm!

∫ ∞
0

xre−β(p+v)xdx, (4.2)

where C =

[
θβ2

B(a,b)(β+1)(eθ−1)

]v
. Letting u = βx(p + v) ⇒ x = u

β(p+v)
, so that

dx = du
β(p+v)

. Hence

∫ ∞
0

xre−β(p+v)xdx =
1

[β(p+ v)]r+1

∫ ∞
0

xre−udu =
Γ(r + 1)

[β(p+ v)]r+1
. (4.3)
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Consequently, Rényi entropy for the BLP distribution is given by

Hv(fBLP ) =
1

1− v
log

[ ∞∑
j,k,m=0

m∑
p=0

p∑
q=0

q+v∑
r=0

(
bv − v
j

)(
j + av − v

k

)
×

(
m

p

)(
p

q

)(
q + v

r

)
(−1)av−v+k+p[θ(v + k]mβq

(eθ − 1)j+av−v(β + 1)pm!

×
(

θβ2

B(a, b)(β + 1)(eθ − 1)

)v
Γ(r + 1)

[β(p+ v)]r+1

]
, (4.4)

for v > 0, v 6= 1.

5 Maximum Likelihood Estimation

Let x1, · · · , xn be a random sample from the BLP distribution.The log-likelihood
function is given by

L = n log(θ) + 2n log(β) +
n∑
i=0

log(1 + xi)− β
n∑
i=0

xi +
n∑
i=0

ωi

+ (a− 1)
n∑
i=0

log(1− eωi) + (b− 1)
n∑
i=0

log(eωi − eθ)

+ n(2− a− b) log(1− eθ) + n log(Γ(a+ b))− n log(β + 1)

− n log(eθ − 1)− n log Γ(a)− n log Γ(b). (5.1)

The elements of the score vector are given by

∂L

∂a
= n[ψ(a+ b)− ψ(a)] +

n∑
i=0

log(1− eωi)− n log(1− eθ),

∂L

∂b
= n[ψ(a+ b)− ψ(b)] +

n∑
i=0

log(eωi − eθ)− n log(1− eθ),

∂L

∂β
=

2n

β
− n

β + 1
−

n∑
i=0

xi +
n∑
i=0

∂ωi
∂β
− (a− 1)

n∑
i=0

eωi ∂ωi
∂β

1− eωi

+ (b− 1)
n∑
i=0

eωi ∂ωi
∂β

eωi − eθ
,

and

∂L

∂θ
=

n

θ
+

n∑
i=0

∂ωi
∂θ
− (a− 1)

n∑
i=0

eωi ∂ωi
∂θ

1− eωi
+ (b− 1)

n∑
i=0

eωi ∂ωi
∂θ
− eθ

eωi − eθ

+
n(1− a− b)eθ

eθ − 1
− neθ

eθ − 1
,



Beta Lindley Poisson Distribution 19

respectively. Note that since ω = θ

[
1−

(
1 + βx

β+1

)
e−βx

]
, we have

∂ω

∂β
= θe−βx

[(
1 +

βx

β + 1

)
− 1

(β + 1)2

]
and

∂ω

∂θ
=

[
1−

(
1 +

βx

β + 1

)
e−βx

]
.

The maximum likelihood estimates, Θ̂ of Θ = (a, b, β, θ) are obtained by solv-
ing the nonlinear equations ∂l

∂a
= 0, ∂l

∂b
= 0, ∂l

∂β
= 0, and ∂l

∂θ
= 0. These equations

are not in closed form and the values of the parameters a, b, β and θ must be
found by using iterative methods.

6 Simulation

In this section, we study the performance and accuracy of maximum likeli-
hood estimates of the BLP model parameters by conducting various simu-
lations for different sample sizes and different parameter values. Equation
(2.14) is used to generate random data from the BLP distribution. The
simulation study is repeated for N = 5, 000 times each with sample size
n = 25, 100, 200, 400, 800, 1000 and parameter values I : β = 2.0, θ = 1.0, a =
0.2, b = 0.5 and II : β = 2.0, θ = 5.0, a = 0.5, b = 0.1. Four quantities are
computed in this simulation study.

(a) Average bias of the MLE ϑ̂ of the parameter ϑ = β, θ, a, b :

1

N

N∑
i=1

(ϑ̂− ϑ).

(b) Root mean squared error (RMSE) of the MLE ϑ̂ of the parameter ϑ =
β, θ, a, b : √√√√ 1

N

N∑
i=1

(ϑ̂− ϑ)2.

Table 6.1 presents the Average Bias and RMSE values of the parameters
β, θ, a and b for different sample sizes. From the results, we can verify that as
the sample size n increases, the RMSEs decay toward zero. We also observe
that for all the parametric values, the biases decrease as the sample size n
increases.
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Table 6.1: Monte Carlo Simulation Results: Average Bias, RMSE, CP, and
AW

I II

Parameter n Average Bias RMSE Average Bias RMSE

β 25 0.5593 1.6583 -0.0050 1.0538
100 0.1369 0.6980 -0.0866 0.7302
200 0.0747 0.4119 -0.0753 0.5520
400 0.0342 0.1853 -0.0530 0.3744
800 0.0167 0.0900 -0.0221 0.257

1000 0.0147 0.0688 -0.0095 0.2244

θ 25 2.2498 3.3033 2.6000 10.4471
100 0.5314 1.0674 0.6384 3.1532
200 0.2213 0.6090 0.2227 1.9917
400 0.0679 0.2962 0.0768 1.3389
800 0.0300 0.1619 0.0184 0.9354

1000 0.0244 0.1213 0.0384 0.8346

a 25 -0.0046 0.0523 0.0947 0.4295
100 0.0005 0.0248 0.0427 0.2169
200 0.0004 0.0172 0.0302 0.1508
400 0.0010 0.0118 0.0179 0.1039
800 0.0010 0.0083 0.0096 0.0717

1000 0.0010 0.0073 0.0055 0.0625

b 25 24.0923 581.3696 27.2032 322.4362
100 0.5152 7.7664 2.6522 31.0830
200 0.0717 1.1833 0.8088 6.1785
400 0.0062 0.0977 0.2167 1.1007
800 0.0023 0.0335 0.0746 0.3091

1000 0.0019 0.0264 0.0465 0.2357

7 Applications

In this section, the BLP distribution is applied to two real data sets in order
to illustrate the usefulness and applicability of the model. We fit the density
functions of the beta Lindley Poisson and its sub-models, namely, the expo-
nentiated Lindley Poisson (ELP), the Lindley-Poisson (LP) (2.4), beta Lindley
(BL), exponentiated Lindley (EL) and Lindley (L) (1.1) (Lindley [15]) distri-
butions. Estimates of the parameters of BLP distribution (standard error in
parentheses), Akaike Information Criterion (AIC), Consistent Akaike Informa-
tion Criterion (AICC), Bayesian Information Criterion (BIC), sum of squares
(SS) from the probability plots, Cramer Von Mises W ∗ and Anderson-Darling
A∗, statistics are presented for each data set. We also compare the BLP distri-
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bution with the beta inverse Weibull distribution (BIW) (Hanook et al. [10]),
inverse Weibull Poisson (IWP) distribution (Mahmoudi and Torki [16]) and
the Burr XII Poisson (BXIIP) (Silva et al. [33]) distribution. The pdfs of the
BIW, IWP and BXIIP distributions are respectively given by

g
BIW

(x) =
αβx−β−1

B(a, b)
e−aαx

−β
(

1− e−aαx−β
)b−1

,

for x > 0, α, β, a, b > 0,

g
IWP

(x) =
θαβx−β−1e−αx

−β
exp(θe−αx

−β
)

eθ − 1

for x > 0, α, β, θ > 0, and

g
BXIIP

(x) =
cks−cλ

1− e−λ
xc−1

[
1 +

(x
s

)c]−k−1
exp

{
− λ

[
1−

(
1 +

(x
s

)c)−k]}

for x > 0, c, k, s, λ > 0.
The maximum likelihood estimates (MLEs) of the BLP parameters Θ =

(β, θ, a, b) are computed by maximizing the objective function via the sub-
routine mle2 in R. The estimated values of the parameters (standard er-
ror in parenthesis), -2log-likelihood statistic, Akaike Information Criterion,
AIC = 2p− 2 ln(L), Bayesian Information Criterion, BIC = p ln(n)− 2 ln(L),

and Consistent Akaike Information Criterion, AICC = AIC + 2 p(p+1)
n−p−1 , where

L = L(Θ̂) is the value of the likelihood function evaluated at the parameter
estimates, n is the number of observations, and p is the number of estimated
parameters are presented in Table 5. The goodness-of-fit statistics W ∗ and A∗,
described by Chen and Balakrishnan [4] are also presented in the table. These
statistics can be used to verify which distribution fits better to the data. In
general, the smaller the values of W ∗ and A∗, the better the fit. The BLP dis-
tribution is fitted to the data sets and these fits are compared to the fits using
the Lindley Poisson (LP), Lindley (L), BIW, IWP and BXIIP distributions.

We maximize the likelihood function using NLmixed in SAS as well as the
function nlm in R ([27]). These functions were applied and executed for wide
range of initial values. This process often results or lead to more than one
maximum, however, in these cases, we take the MLEs corresponding to the
largest value of the maxima. In a few cases, no maximum was identified for
the selected initial values. In these cases, a new initial value was tried in order
to obtain a maximum.
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The issues of existence and uniqueness of the MLEs are theoretical interest
and has been studied by several authors for different distributions including
[30], [29], [36], and [34].

We can use the likelihood ratio (LR) test to compare the fit of the BLP
distribution with its sub-models for a given data set. For example, to test
a = 1, b = 1 the LR statistic is ω = 2[ln(L(β̂, θ̂, â, b̂))− ln(L(β̃, θ̃, 1, 1))], where
β̂, θ̂, â, and b̂ are the unrestricted estimates, and β̃, and θ̃, are the restricted
estimates. The LR test rejects the null hypothesis if ω > χ2

ε
, where χ2

ε
denote

the upper 100ε% point of the χ2 distribution with 2 degrees of freedom.
Plots of the fitted densities, the histogram of the data and probability

plots (Chambers et al. [3]) are given in Figures. For the probability plot, we

plotted F
BLP

(x(j); β̂, θ̂, â, b̂) against
j − 0.375

n+ 0.25
, j = 1, 2, · · · , n, where x(j) are

the ordered values of the observed data. The measures of closeness are given
by the sum of squares

SS =
n∑
j=1

[
F
BLP

(x(j))−
(
j − 0.375

n+ 0.25

)]2
.

Estimates of the parameters of BLP distribution (standard error in paren-
theses), Akaike Information Criterion (AIC), Consistent Akaike Information
Criterion (AICC), Bayesian Information Criterion (BIC), Kolmogorov-Smirnov
(KS) and p-values are given in Table 7.4 for the data set.

7.1 Glass Fibers Data

The first data set set consists of 63 observations of the strengths of 1.5 cm glass
fibers, originally obtained by workers at the UK National Physical Laboratory.
The data was also studied by Smith and Naylor [32]. The data observations
are given below:

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64 1.68 1.73 1.81 2.00
0.74 1.04 1.27 1.39 1.49 1.53 1.59 1.61 1.66 1.68 1.76 1.82 2.01
0.77 1.11 1.28 1.42 1.50 1.54 1.60 1.62 1.66 1.69 1.76 1.84 2.24
0.81 1.13 1.29 1.48 1.50 1.55 1.61 1.62 1.66 1.70 1.77 1.84 0.84
1.24 1.30 1.48 1.51 1.55 1.61 1.63 1.67 1.70 1.78 1.89 - -

Table 7.1: Glass Fiber data set

The results of the fitted estimates from the glass fibers data are given in
the table below.
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Table 7.2: Estimates of Models for Glass Fibers Data

Estimates Statistics

Model β̂ θ̂ â b̂ −2 log L AIC AICC BIC W ∗ A∗ SS KS P-Value
BLP 0.7795 15.0649 0.9653 1299.04 28.2 36.2 36.9 44.8 0.1610 0.9050 0.1536 0.1336 0.2108

(0.1691) (4.9931) (0.6088) (26.5179)
ELP 3.0456 14.8150 1.9806 1.0000 59.3 65.3 65.7 71.7 0.7237 3.964912 0.7157 0.2189 0.0048

(0.2338) (22.1224) (2.9033) -
LP 3.0456 29.3432 1.0000 1.0000 59.3 63.3 63.5 67.6 0.7237 3.9649 0.7157 0.2189 0.0047

(0.2338) (8.3871) - -
BL 0.0445 - 9.9976 2028.85 42.4 48.4 48.9 54.9 0.4753 2.6087 0.4708 0.2038 0.0107

(0.0039) - (1.5952) (12.4978)
EL 2.9901 - 26.1716 1.0000 61.2 65.2 65.4 69.5 0.7616 4.1585 0.7609 0.2264 0.0031

(0.1382) - (3.3519)
L 0.9961 - - - 162.6 164.6 164.6 166.7 0.5424 2.9764 3.3017 0.3869 1.35× 10−8

(0.09484)
α β a b

BIW 17.4507 0.7946 0.4075 44019 32.4 40.4 41.1 49.0 0.2825 1.5470 0.3189 0.1792 0.0349
(2.8918) (0.2082) (0.1971) (621.97)

α β θ
IWP 0.6365 3.8769 5.2630 75.8 81.8 82.2 88.2 0.9833 5.3106 0.8549 0.2163 0.0055

(0.1824) (0.3096) (1.3853)
c k s λ

BXIIP 5.8213 136.32 8.4467 107.26 30.4 38.4 39.1 47.0 0.2383 1.3091 0.2108 0.1522 0.1082
(0.6384) (5223.30) (57.9923) (671.70)

The estimated variance-covariance matrix for the BLP distribution is given
by: 

0.02860 0.8389 −0.09761 0.7895
0.8389 24.9308 −2.9592 25.4505
−0.09761 −2.9592 0.3706 −3.1535

0.7895 25.4505 −3.1535 703.20


and the 95% two-sided asymptotic confidence intervals for β, θ, a and b are
given by 0.7795±0.3315, 15.0649±9.7862, 0.9653±1.1932, and 1299.04±51.974,
respectively.

The LR test statistics of the hypotheses H0 : LP vs Ha : BLP and
H0 : L vs Ha : BLP are 31.1 (p-value=1.8×10−7 < 0.0001) and 134.4 (p-
value=6.1×10−29 < 0.0001). Also tested were H0 : BL vs Ha : BLP and
H0 : EL vs Ha : BLP which resulted in p-values of 1.6×10−4 and 6.8×10−8

respectively. The BLP distribution is significantly better than its sub-models
namely LP,L,BL and EL distributions based on the likelihood ratio tests. The
BLP distribution was compared to non-nested BIW, IWP and BXIIP distri-
butions using the AIC, AICC, BIC, W ∗, A∗ and SS statistics. The model
with the smallest value for each of the statistics will be the best one to be
used in fitting the data. Comparing the BLP distribution with the non-nested
BIW, IWP and BXIIP distributions, we note that the BLP distribution is
better based on the AIC, AICC and BIC values. The BLP distribution has
the smallest goodness of fit statistic W ∗ and A∗ values as well as the smallest
SS value among all the models that were fitted. Moreover, the BLP model
has points closer to the diagonal line corresponding to the smallest SS value
for the probability plots when compared to the non-nested distributions. The
values of KS statistic as well as the corresponding p-value clearly indicate that
the BLP is better that the sub-models and the non-nested distributions for
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the glass fibers data set. Hence, the BLP distribution is the “best” fit for the
glass fibers data when compared to all the other models that were considered.

Plots of the fitted densities and the histogram, observed probability vs
predicted probability are given in Figure 7.1. The plots also show that the
BLP distribution is the “best” fit for the glass fibers data.

Figure 7.1: Histogram, Fitted Density and Probability Plots for Glass Fiber
Data

7.2 Taxes Data

The second real data set represents the taxes data set. This data was previously
analyzed by Nassar and Nada [21]. The data consists of the monthly actual
taxes revenue in Egypt from January 2006 to November 2010. The data is
highly skewed to the right. The actual taxes revenue data (in million Egyptian
pounds) are:

5.90 20.4 14.9 16.2 17.2 7.80 6.10 9.20 10.2 9.60 13.3 8.50 21.6
18.5 5.10 6.70 17.0 8.60 9.70 39.2 35.7 15.7 9.70 10.0 4.10 36.0
8.50 8.00 9.20 26.2 21.9 16.7 21.3 35.4 14.3 8.50 10.6 19.1 20.5
7.10 7.70 18.1 16.5 11.9 7.0 8.60 12.5 10.3 11.2 6.10 8.40 11.0
11.6 11.9 5.20 6.80 8.90 7.10 10.8 - - - - - -

Table 7.3: Taxes data set
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The results of the fitted estimates from the taxes data are given in the table
below.

Table 7.4: Estimates of Models for Taxes Data

Estimates Statistics

Model β̂ θ̂ â b̂ −2 log L AIC AICC BIC W ∗ A∗ SS KS P-Value
BLP 0.5152 120.19 0.1359 0.2407 374.8 382.8 383.5 391.1 0.0234 0.1812 0.0221 0.0537 0.9957

(0.1011) (86.1168) (0.08455) (0.06973)
ELP 0.2606 33.8110 0.1410 1.0000 392.2 398.2 398.6 404.4 0.2446 1.4957 0.2538 0.1341 0.2390

(0.02358) (849.45) (3.5411) -
LP 0.2449 3.9650 1.0000 1.0000 390.8 394.8 395.0 398.9 0.2442 1.4954 0.2198 0.1326 0.2506

(0.02883) (1.1896) - -
BL 0.9436 - 40.5032 0.1479 376.0 382.0 382.5 388.3 0.0470 0.3042 0.0506 0.0761 0.8842

(0.1234) - (14.1156) (0.03542)
EL 0.2210 - 2.8125 1.0000 384.6 388.6 388.8 392.7 0.1718 1.0499 0.1884 0.1261 0.3057

(0.02610) - (0.6984)
L 0.1392 - - - 401.3 403.3 403.3 405.3 0.2091 1.3027 0.4463 0.1922 0.0256

(0.01286)
α β a b

BIW 22.9693 1.4162 2.0904 2.3427 376.7 384.7 385.5 393.0 0.0426 0.2588 0.0429 0.0648 0.9654
(13.3203) (0.8463) (2.4243) (2.8068)

α β θ
IWP 16.3803 2.3788 12.6655 377.4 383.4 383.8 389.6 0.0354 0.2427 0.0326 0.0680 0.9481

(70.1303) (0.4900) (39.1263)
c k s λ

BXIIP 5.2146 0.01674 8.2517 26.1080 378.8 386.8 387.5 395.1 0.0490 0.3182 0.0456 0.0850 0.7869
(1.5604) (0.02677) (1.2993) (36.2426)

The estimated variance-covariance matrix for the BLP distribution is given
by: 

0.01021 3.0640 0.0031181 −0.00447
3.0640 7416.11 −5.1954 −3.9193

0.003118 −5.1954 0.007149 0.001393
−0.00447 −3.9193 0.001393 0.004863


and the 95% two-sided asymptotic confidence intervals for β, θ, a and b are
given by 0.5152±0.1982, 120.19±168.7889, 0.1359±0.1657, and 0.2407±0.1367,
respectively.

The LR test statistics of the hypothesesH0 : LP vsHa : BLP andH0 : L vs
Ha : BLP are 16.0 (p-value=3.4×10−4 < 0.0001) and 26.5 (p-value=7.5×10−6

< 0.0001). Also tested were H0 : ELP vs Ha : BLP and H0 : EL vs Ha : BLP
which resulted in p-values of 3.02×10−5 and 7.4×10−3 respectively. The BLP
distribution is significantly better than its sub-models namely LP, L, ELP and
EL distributions based on the likelihood ratio tests. The BLP distribution was
compared to non-nested BIW, IWP and BXIIP distributions using the AIC,
AICC, BIC, W ∗, A∗ and SS statistics. The model with the smallest value
for each of the statistics will be the best one to be used in fitting the data.
Comparing the BLP distribution with the non-nested BIW, IWP and BXIIP
distributions, we note that the BLP distribution is better based on the AIC,
AICC and BIC values. The BLP distribution has the smallest goodness of
fit statistic W ∗ and A∗ values as well as the smallest SS value among all the
models that were fitted. Moreover, the BLP model has points closer to the
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diagonal line corresponding to the smallest SS value for the probability plots
when compared to the non-nested distributions. The values of KS statistic as
well as the corresponding p-value clearly indicate that the BLP is better that
the sub-models and the non-nested distributions for the taxes data set. Hence,
the BLP distribution is the “best” fit for the taxes data when compared to all
the other models that were considered.

Plots of the fitted densities and the histogram, observed probability vs
predicted probability are given in Figure 7.2. The plots also show that the
BLP distribution is the “best” fit for the taxes data.

Figure 7.2: Histogram, Fitted Density and Probability Plots for Taxes Data

8 Concluding Remarks

A new and generalized Lindley Poisson distribution called the beta Lindley
Poisson (BLP) distribution is proposed and studied. The BLP distribution has
several well known distributions including the Lindley, exponentiated Lindley-
Poisson and Lindley-Poisson distributions as special cases. The density of this
new class of distributions can be expressed as a linear combination of LP den-
sity functions. The BLP distribution possesses a hazard function with flexible
behavior. We also obtain closed form expressions for the moments, mean and
median deviations, distribution of order statistics and Rényi entropy. Maxi-
mum likelihood estimation technique is used to estimate the model parameters.
Finally, the BLP distribution is fitted to real data sets to illustrate its appli-
cability and usefulness.
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Appendix A Observed Information

Elements of the observed information matrix can be readily obtained from
the mixed partial derivatives of the log-likelihood function. The mixed second
partial derivatives of the log-likelihood function are given by

∂2L
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and
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R Algorithms

In this appendix, we present R codes to compute cdf, pdf, moments, reliability,
Rényi entropy, mean deviations, maximum likelihood estimates and variance-
covariance matrix for the BLP distribution.

#Def ine the pdf o f BLP d i s t r i b u t i o n

f1=func t i on (x , beta , theta , a , b){
GLP=(1−exp ( theta ∗(1−(1+ beta ∗x /( beta +1))∗ exp(−beta ∗x ))))/(1− exp ( theta ) )
g lp=theta ∗beta ˆ2∗(1+x )∗ exp(−beta ∗x )∗ ( exp ( theta ∗
(1−(1+beta ∗x /( beta +1))∗ exp(−beta ∗x ) ) ) ) / ( ( beta +1)∗( exp ( theta )−1))
y=GLPˆ(a−1)∗(1−GLP)ˆ( b−1)∗ g lp / beta ( a , b)
re turn ( y )
}

#Def ine the cd f o f BLP d i s t r i b u t i o n
F1=func t i on (x , beta , theta , a , b){
y=pbeta ((1−exp ( theta ∗(1−(1+ beta ∗x /( beta +1))∗ exp(−beta ∗x ) ) ) )
/(1−exp ( theta ) ) , a , b )
re turn ( y )
}

#Def ine the q u a n t i l e o f BLP d i s t r i b u t i o n
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l i b r a r y (LambertW)
q u a n t i l e=func t i on ( beta , theta , a , b , u){
y=qbeta (u , a , b )
r e s u l t=−1−1/beta−W 1(−( beta +1)∗( theta−l og (1−y∗
(1−exp ( theta ) ) ) ) / ( exp ( beta +1)∗ theta ) )/ beta
#check
e r r o r=F1( r e s u l t , beta , theta , a , b)−u
return ( l i s t (” r e s u l t ”=r e s u l t , ” e r r o r”=e r r o r ) )
}

#Def ine the moments o f BLP d i s t r i b u t i o n
moment=func t i on ( beta , theta , a , b , r ){
f=func t i on (x , beta , theta , a , b , r )
{( xˆ r )∗ ( f 1 (x , beta , theta , a , b ) )}
y=i n t e g r a t e ( f , lower =0,upper=Inf , s u b d i v i s i o n s =1000 ,
beta=beta , theta=theta , a=a , b=b , r=r )
re turn ( y )
}

#Def ine Mean Deviat ion about the mean o f BLP d i s t r i b u t i o n
DU=func t i on ( beta , theta , a , b){
mu=moment( beta , theta , a , b , 1 ) $ value
f=func t i on (x , beta , theta , a , b )
{( abs (x−mu)∗ f 1 (x , beta , theta , a , b)}
y=i n t e g r a t e ( f , lower =0,upper=Inf , s u b d i v i s i o n s =100
, beta=beta , theta=theta , a=a , b=b)
return ( y )
}

#Def ine Mean Deviat ion about the median o f BLP d i s t r i b u t i o n
DM=func t i on ( beta , theta , a , b){
M=median ( c (X) ) #X i s the data s e t
f=func t i on (x , beta , theta , a , b )
{( abs (x−M)∗ f 1 (x , beta , theta , a , b)}
y=i n t e g r a t e ( f , lower =0,upper=Inf , s u b d i v i s i o n s =100
, beta=beta , theta=theta , a=a , b=b)
return ( y )
}

Def ine the Renyi entropy o f BLP d i s t r i b u t i o n
t=func t i on ( alpha , beta , theta , a , b , v ){
f=func t i on (x , beta , theta , a , b , v )
{( f 1 (x , beta , theta , a , b ) ) ˆ ( v )}
y=i n t e g r a t e ( f , lower =0,upper=Inf , s u b d i v i s i o n s =100
, beta=beta , theta=theta , a=a , b=b) $ value
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re turn ( y )
}
Renyi=func t i on ( beta , theta , a , b , v ){
y=log ( t ( beta , theta , lambd , v))/(1−v )
re turn ( y )
}

#Calcu la te the maximum l i k e l i h o o d e s t imato r s
#o f BLP d i s t r i b u t i o n
l i b r a r y ( ’ bbmle ’ )
xvec<−c (X) #X i s the data s e t
ln<−f unc t i on ( beta , theta , a , b){
GLP=(1−exp ( theta ∗(1−(1+ beta ∗xvec /( beta +1))
∗exp(−beta ∗xvec ))))/(1− exp ( theta ) )
g lp=theta ∗beta ˆ2∗(1+ xvec )∗ exp(−beta ∗xvec )
∗( exp ( theta ∗(1−(1+ beta ∗xvec /( beta +1))
∗exp(−beta ∗xvec ) ) ) ) / ( ( beta +1)∗( exp ( theta )−1))
mle=−sum( log (GLPˆ(a−1)∗(1−GLP)ˆ( b−1)∗ g lp / beta (a , b ) ) )
re turn ( mle )
}
mle . r e s u l t s 1 <−mle2 ( ln , s t a r t=l i s t
( beta=beta , theta=theta , a=a , b=b ) , he s s i an . opt=TRUE)
summary( mle . r e s u l t s 1 )

# Variance−covar iance matrx o f BLP d i s t r i b u t i o n
vcov ( mle . r e s u l t s 1 )
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