
Page 1 of 17 

 

 

Review copy, An algorithm for binary linear programming, Subhendu11Das@gmail.com, June 23, 2014 

 

 

AN ALGORITHM FOR BINARY LINEAR PROGRAMMING 
 

Subhendu Das, CCSI, West Hills, California, USA 

 

 

ABSTRACT 

 

A polynomial time algorithm, which is a modification of the simplex algorithm for Linear Programming (LP), is 

presented for solving Binary Linear Programming (BLP) problems. It is an n-step process where n is the number of 

binary variables of the problem. Conditions for existence, uniqueness, termination, and optimality are discussed. 

Three numerical examples are presented to explain the details and features of the algorithm. The algorithm generates 

two matrices. One of them is based on the minimum ratio concept of the Simplex method. It creates a Ratio Test 

Matrix from the ratio of corresponding elements of b vector and all column vectors. The other matrix, called 

Correlation Matrix, is generated from pseudo inverse estimates of the primal and dual variables. These two matrices 

provide an array of Column Selection Logic to assign binary values for variables corresponding to the matrix 

columns. 
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1. INTRODUCTION 

 

In this paper we present an algorithm for solving Binary Linear Programming (BLP) problems. The algorithm is 

based on pseudo inverse and concepts derived from the simplex algorithm for standard Linear Programming (LP) 

problems. The BLP is defined in the following way. 

 

BLP:   Maximize     ��� 

 Subject to �� = �,   � ∈ 
�×, � ∈ 
�, � < �, � ∈ �0,1�    (1) 

 

The above means that x can take only binary values, 0 or 1, in the solution for the matrix equation �� = �. Without 

loss of any generalities we will assume that the matrix A has full row rank, all elements of A are nonnegative 

(Section 4), and that the vector b belongs to the binary range space, as defined later, of columns of A. In a similar 

way the LPLU is defined as 

 

LPLU:   Maximize     ��� 

 Subject to �� = �,   � ∈ 
�×, � ∈ 
�, � < �, � ∈ 
 , 0 ≤ �� ≤ 1, � = 1, . . �  (2) 

 

The difference is that in LPLU all solutions will have positive real values between 0 and 1, but in BLP only 0-1 

values are allowed.  

 

Although the BLP algorithm borrows ideas from the Simplex method but it does not carry the pitfalls of the Simplex 

method with it. However, it should be noted that there are variants of the Simplex method that has solved many such 

pitfalls [Vanderbei, p. 32]. LP is considered as polynomial time problem [Dasgupta, p. 243], but we are not directly 

using LP methods, other than verifying our results using LPLU. Although Simplex is considered as a non-

polynomial time algorithm [Luenberger, p.114], even then our BLP algorithm belongs to the polynomial time 

solutions. Once we go through the examples it will be clear that BLP algorithm ends in at most n iterations, where n 

is the number of variables in (1). Like the Simplex method [Vanderbei, p.32] the BLP algorithm presented here 

consists of a class of algorithms under a common basic structure. BLP is considered as NP complete problem 

[Dasgupta, p. 243]. It seems then the BLP algorithm presented here will resolve an important issue. 

 

First we present the algorithm in some details using a pseudo mathematical language. Next, we discuss some 

theoretical results that justify the validity of the algorithm. Finally we solve three numerical example problems to 

explain more details of the algorithm, computational techniques, types of tables we may need, and some variants for 

implementations. We also discuss a numerical method for generating test problems for our algorithms. This test 
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method actually helps to identify how to reverse engineer the solution of BLP. We present one example from such 

class of problems. The algorithm has been tested extensively for these kinds of test problems for both small and 

medium size examples.  

 

 

2. THE BLP ALGORITHM 

 

We can now state the algorithm using some kind of descriptive language and in a hierarchical way. The main 

program is shown in Table-A0. 

As we can see that the main program has three sub-programs. The sub-program 3 has again two more sub-programs, 

which are marked as 3a and 3b. All these subprograms are repeated n times as indicated in the first row. The Loop 

exits if any one of the subprograms 3a or 3b becomes valid. We now describe the subprograms 1 and 2, beginning 

with similar Tables. 

 

Process Ratio Test Matrix 
 

This part of the algorithm creates a matrix ����� . The idea is borrowed from the Simplex method, but we create an 

entire matrix. Each element of the RTM is obtained by dividing the corresponding elements of b vector by the 

elements of the a vectors, which are the columns of the A matrix, as shown in the second row in the Table-A1. There 

are three possible values for ���   which we analyze next. 

 

If ���  is less than 1 then the j-th component of x cannot be set to 1, that is, xj cannot have a value of 1. This is 

because the ratio means aij is greater than bi and ���  �� >  ��  will violate the constraint i. Thus xj must be assigned as 

0. This is shown in row four of the Table-A1. It is clear that this step gives an optimal CSL. It is optimal because 

you cannot increase the variable to 1 to raise the cost value. 

 

If the ratio is 1, then xj can take both 1 or 0 value. But if we assign 1, then no other variables in the i-th constraint 

can be 1 because ���  �� =  �� will satisfy the constraint with equality. Thus assigning 1 will stop the BLP algorithm 

and we will exit. If that is acceptable then the result is optimal and we have found and optimal CSL in this step. If 

that is not acceptable, then we can set the variable to 0, or ignore the variable for now, and the future steps will take 

care of it. This is mentioned in row 6 of Table-A1. Examples illustrate these cases in a better way. 

Table–A0: Main Program 

Repeat n times  

1 Process Ratio Test Matrix; 

2 Process Reduced Cost Row; 

3 Stop If  

 3a All variables are processed or 

 3b Norm of b is zero 

 

Table–A1: Process Ratio Test Matrix:  ����� 

Create RTM 

 ��� = �� ���⁄ ,   ��� ≠ 0  

 If ∃  ��� < 1 

  Set  �� = 0, �� = 0,   �� = 0  

 If ∃  ��� = 1 

  Decide if �� = 1 is possible or ignore 

 ∀ ��� > 1 

  Do nothing and exit subprogram 

 

Table–A2: Process Reduced Cost Row:  rC 

�� = �  ⇒ $% = �&� ;    If $%  is binary Stop. 

��' = � ⇒ (% = �&�� 

 Correlation Matrix =  
�� = ��)*(%� ∗ $%�, 

 Max row = �� = -��*
��, ∀�,, for ∀. 

 Reduced cost row =  �/�  = �� ∗ �� ,    �� ≠ 0 

 Max Index = �01| �/3 = -��*�/. , ∀.,� 

 

�3 = 1, ��45 = �� − �3 ,  �3 = �3 = 0 

Setup for next iteration 

 



Page 3 of 17 

 

 

Review copy, An algorithm for binary linear programming, Subhendu11Das@gmail.com, June 23, 2014 

 

 

 

For all ��� > 1 there is nothing that can be done, so skip the algorithm described in Table-A1 and begin examining 

the process described by Table-A2. This is the last row of Table-A1. 

 

This step of the column selection logic (CSL) may assign values to many variables in a single iteration, as illustrated 

by examples. As a database management process, we set the cost coefficient corresponding to each assigned x 

variable to zero, so that we do not process the same column in any future iteration. Also we remove the 

corresponding columns from the matrix A. More details of the process are available from the computer programs 

and examples. 

 

Process Reduced Cost Row 

 

This is the second most important sub-function of the BLP algorithm. Like in simplex method, we find a reduced 

cost row and then from this row we select the optimal cost element and the optimal column. This then becomes the 

optimal CSL for this step. This step is described in Table–A2. 

 

In the simplest case, the reduced cost row can be just the original cost row vector. That is, the elements rj = 1 in row 

5 of Table–A2. But in a general case we can multiply each cost element by a weight rj derived from some 

meaningful process. As an example we choose a correlation matrix. This correlation matrix estimates how x and y 

vectors are related to matrix A and how they create the vectors b and c respectively. The idea behind this comes 

from the duality theorem of standard LP program and has been explained in details in the test problem generation 

method. 

 

In a standard LPLU, the b vector is created by a linear combination of columns of A matrix. That is, each element in 

a row A is multiplied by the corresponding element of x to produce a factor ���  ��  for the corresponding element of 

b. Similarly each element of A is multiplied by a corresponding element of y to get a factor for the corresponding 

element of c. This relationship comes from the law of conservation that relates A, b, c, x, and y as pointed out in 

[Dantzig, p. 33]. Since we are dealing with BLP as opposed to LPLU, we try to estimate these factors from the 

correlation matrix elements obtained from the corresponding pseudo matrices. The formulation of a mathematical 

model is not dependent on the solution. This formulation should be based on the laws of nature, i.e. conservation of 

mass, energy, forces, voltage, current etc. Thus correlation concept will always be there, be it LPLU or BLP. 

However, rather than correlation matrix, depending on the problem, a better or simpler algorithm for the CSL may 

be feasible, as illustrated by examples. 

 

The first row of Table-A2 gets an estimate for x using pseudo-inverse. If the estimate of x is a binary vector then we 

have found the solution and the BLP algorithm ends. For, this binary vector can be used for the solution of the 

remaining x variables. We claim that this binary vector is the optimal vector, that is, no element of this vector, which 

is zero now, can be chosen as 1 to increase the cost value. For, any variable to be selected as 1, its ratio must be less 

than or equal to 1. But we have not detected such a condition in the previous step in Table-A1. Therefore the present 

solution is the optimal. The rest of the rows in Table-A2 will be skipped. It is clear that this step gives an optimal 

CSL. 

 

If there is no binary vector then we estimate y and create the correlation matrix Rij as defined in rows 2 and 3 in 

Table-A2. Then create the reduced cost row as shown in row 5 of the Table-A2. The rest of the rows of the table are 

self evident. It should be clear from this algorithm for Table-A2 that this is an optimal procedure for this step, i.e. an 

optimal CSL, since it selects the cost element that gives the maximal value for this part of the BLP. 

 

 

3. THEORETICAL OBSERVATIONS 

 

First we define some basic notations and terminologies to refresh the communication channels with all readers. 

These are well known and simple definitions. 

 

Definitions-1: Column Selection Logic (CSL) is a logic or an algorithm that selects a column of the matrix A of the 

BLP defined by (1).  
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Assumption: Lets us assume that this CSL is an optimization process at each step.  

 

Then we show that an application of a finite sequence of such CSL finds the optimal solution of the BLP problem 

(1). If each CSL is a polynomial time algorithm then the entire BLP algorithm is also a polynomial time algorithm. 

 

Definitions-2: Assume that the matrix A of (1) consists of the following m-dimensional columns of A 

� = �0��| ��  ∈ 
� , � = 1, ⋯ , ��.  

The Binary Range Space ℬ of A is defined as all binary linear combinations of columns of A, that is, 

ℬ = �09| 9 =  ∑ �� ∗ ��

�;5 ,  �� ∈ �0,1�,  �� ∈ � �  

 

Definitions-3: We define the feasible region of (1) without the binary constraints as: 

< = �0�| �� ≤ �, � ≥ 0, � ∈ 
�  

That is, F represents all positive vectors in the n-dimensional real vector space satisfying (1) with less than equal to 

condition.  

 

Definitions-4: Similarly, the n-cube is defined as the n-dimensional hyper cube U, with length of each side being 1 

along each axis. Thus U can be written as: 

> = �0�|  � ∈ 
 , 0 ≤ �� ≤ 1, ∀� = 1 ⋯ ��  

 

Definitions-5: The corner points of U can be defined as a sequence of n binary digits or bits 

/ = �0�|  � ∈ 
 , �� ∈ �0,1�, ∀� = 1 ⋯ ��.   

Observe that � ∈ �0,1�  means that x is a corner point of U. 

 

Existence: It is clear that if F and C do not intersect then there cannot exist any solutions to the BLP problem (1). 

Thus an optimal solution to (1) will exist only when F contains some corner points of C. One of these corner points 

will be the optimal solution. And therefore we do not need to analyze the corner points of the feasible region F. The 

unboundedness of F does not also affect the solutions of (1), as long as F has a non-empty intersection with C. 

 

Theorem-1: 

If a solution to (1) exists then it has an optimal solution. The optimal solution is always bounded, as long as the 

coefficients of the objective hyper plane are bounded. 

 

Proof: 

The proof of Theorem-1 is very trivial. By definition all solutions of (1) are the corner points of C. If any of the 

corner points are inside the feasible region F, then the solutions to (1) exists. Since the feasible corner points of U 

are finite in number, all of them can be enumerated to find the maximal value to the BLP problem (1). Since all 

corner points are bounded, and they are finite in number, the objective values for each corner point is finite and 

bounded, since the coefficients are bounded.■     

 

The following theorem is very fundamental to the CSL based algorithms for the BLP. Without loss of generality we 

can state 

 

Theorem-2: 

Let ? = ��5, �@, ⋯ , �&5, ��,  �5 = 1, A = ��@, ⋯ , �&5, ��, �� ∈ �0,1�. Then ? is a binary solution of the equation 

 

�� = �, � = ��5, �@, �B, ⋯ ��, 
��1C�D = �, � ∈ ℬ           (9) 

 

If and only if  A is the binary solution of 

 

E� = � − �5,  E = ��@, �B, ⋯ ��            (10) 

 

Proof: 

As before the proof is very trivial also. Since  ? is a solution of (9) we can write 
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�5�5 + �@�@ + �B�B + ⋯ �� = �  As �5 = 1, the last expression reduces to 

 

�5 + �@�@ + �B�B + ⋯ �� = �  or 

 

�@�@ + �B�B + ⋯ �� = � − �5  This clearly indicates that A is a solution of (10). Conversely if  A is the solution 

of (10) then we have 

 

�@�@ + �B�B + ⋯ �� = � − �5 , choosing �5 = 1 we can write 

 

�@�@ + �B�B + ⋯ �� = � − �5�5  or  �5�5 + �@�@ + �B�B + ⋯ �� = �  

 

That is, ? is a solution of (9). ■ 

   

The above theorem is true for any �� and not just for �5. It is also true for more than one variable fixed at predefined 

binary values. The theorem holds also for 0 values for the variables. In case of 0 values we just do not have to 

subtract the columns from the b vector. It should be recognized that the above theorem is in general not correct for 

real number solutions of x.  

 

It is clear that the CSL will stop after n iterations, if after each step the cost coefficient for the selected variable is set 

to zero. Thus CSL must be based on the non-zero cost elements. 

 

Theorem-3: 

The CSL algorithm ends in less than equal to n number of iterations, where n is the number of variables in the BLP 

problem (1). 

 

Proof: 

The CSL algorithm always selects a column that has nonzero cost value in the reduced cost row. After it selects a 

column, the process automatically sets the cost to zero, for that column in the cost row, as a data base management 

step of the software. Setting the cost to zero indicates that the column is to be eliminated from all future steps. Thus 

within n steps all elements of the reduced cost row in Table-A2 will become zero and the process will stop. 

 

As the columns of A matrix are subtracted from the b vector, as stated in Theorem 2, the values of b vector reduces. 

This step will eventually make many columns of A larger than b. Thus the CSL will set all of their costs to zero in 

one step, because of the ratio test matrix of Table-A1. This process will reduce the number of steps to less than n.  

 

If the CSL uses pseudo inverse then at some point in the chain of iterations, the CSL may encounter binary values 

from the pseudo inverse. This process then also will set many variables to 0 and 1 in one single step. Thus the CSL 

algorithm ends in at most n number of steps. ■      

 

Theorem-4: 

The CSL algorithm finds the optimal solution for the BLP. 

 

Proof: 

Because there are only two choices, at each iteration the CSL algorithm assigns a 0 or an 1 value to one of the 

variables �� . In this process the algorithm moves, at each step, from higher dimensional hyper space to the next 

lower dimensional hyper space. It is also clear that in this process the CSL algorithm is climbing up along the corner 

points of the n-cube, because the cost functional is increasing and is going away from origin. Since the optimal 

solution is always a corner point of the n-cube, at every step the cost functional increases its value or remains same, 

it never goes down. Thus when the process ends the algorithm finds the optimal solution. 

 

Let us assume that u and v are two bit patterns or corner points of C claiming to be the optimal solutions. Without 

loss of generality we can assume that cost coefficients are arranged in a decreasing order. Let k be the first bit 

position where u and v differ, that is, u has a 0 and at that same location v has an 1. This means v gives a higher 

value for the objective function. Now this cannot happen, because it is assumed that the CSL gives higher value at 

each step. Therefore u must be same as v. ■     
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Theorem-5: 

The CSL is a polynomial time algorithm. 

 

Proof: 

The computationally involved most complicated step in the CSL logic is the evaluation of pseudo inverse of A 

matrices at each step. In the simplest case of pseudo inverse, the process will evaluate the matrix directly from the 

relation �& = �′ G��′H&5. This step takes two matrix multiplications and one matrix inversion. It is well known 

[Trahan] that they are polynomial time algorithms.  Thus an iteration of the CSL logic involves only polynomial 

time computations. Therefore the entire BLP algorithm presented is a polynomial time process. ■ 

 

 

4. TEST PROBLEMS 

 

The algorithm has been tested on various problems. Many problems were taken from standard textbooks and 

published literature. However, majority of test problems were constructed using a specific method described here. 

The Mathematica software tools have been used for many of our problems. One of the important requirements of the 

test problems is that it must have a proven known optimal solution; so that the results of the algorithm can be 

compared. And the other important factor is that the matrix A must be of full row rank, i.e., rank (A) = m, where m 

is the number of rows. 

 

Definition: The set of functions �I5GJH, I@GJH, … , IGJH, � is linearly dependent on an interval I if there are scalars  

�5, �@, … , � not all zero such that 

�5I5GJH + �@I@GJH + ⋯ + �IGJH = 0 

 

for all t in I. Otherwise the set is linearly independent [Farlow, p.179].  

 

To create such an A matrix of any given size with m independent rows, we selected m independent functions, and 

then sampled them n times to produce the elements of the m x n matrices [Das]. All these functions are defined over 

a fixed time interval. Thus, as n increases the sample interval decreases. To show that the algorithm can handle a 

problem of reasonable size we have considered one problem with m = 10 rows, and so we have 10 functions. These 

functions are listed in (3). It is clear that there are many choices of independent functions. 

 

Observe that all functions produced only nonnegative numbers. We define the parameters of the above functions as 

 

L = 0.001,   MN = 5

�
 , 0 ≤ J ≤ L          (4) 

The equal sample interval is dT = T/n. The first sample starts at t = dT. The characteristics of the problem sets are 

quite dependent on the types of functions and the way they are sampled. 

 

We have used random number generator for creating arbitrary binary solution vector x. To create a n-bit binary 

sequence, we used an integer of size 2. Then we generated a random integer number within that size, starting with 

a given seed value for the random generator. Finally we converted the random integer to a binary number with n-

digits. 

 

I5GJH = 1 + SinG2 S MN JH I@GJH = 1 + CosG2 S MN JH     

IBGJH = 1 − W&BNNNX    IYGJH = 1 + CosG4 S MN JH     

I[GJH = 1 + SinG4 S MN JH    I\GJH = 1 + SinG S MN JH (3) 

I]GJH = 1 + CosG S MN JH    I^GJH = 1 + CosG6 S MN JH     

I`GJH = 1 + SinG6 S MN JH    I5NGJH = W&BNNNX     
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We multiply A by this binary number x to get the b vector. So our BLP algorithm takes these A and b matrices and 

solves for the x. The solution will be correct only when it matches the known random x vector. 

 

To ensure optimality, we used another random sequence of m real numbers for the dual variable y for the standard 

linear programming problem. Then we use ��' = � to generate the cost vector c. This will automatically ensure that 

the x vector is the optimal solution for the LPLU, because the variables so selected will satisfy the optimality 

condition: 

 

'�� = ��� = '��� = a           (5) 

 

Such a LPLU problem will always have binary vector x as the optimal solution. Therefore that same binary vector x 

will also be the optimal solution of the corresponding BLP problem. It is clear that we are using a sufficient 

condition and not as a necessary condition. 

 

In addition to satisfying the above condition, we will also use LP software with 0 ≤ � ≤ 1 bounded variables 

condition to produce and therefore verify the same binary solution. In some examples we will see that LPLU will 

not give the binary solutions, but will give the same optimal value z. This will happen because condition for LPLU 

is not binary, it only satisfies bounds. Under this situation we will show that the BLP algorithm can still give the 

correct binary solution. For some of the problems, we verified the results using direct enumeration of all binary 

vectors.  

 

It should be realized that this method of problem generation follows an important law of nature, as pointed out by 

[Dantzig, p. 33]. That is the law of conservation. This law is same as: material balance or law of conservation of 

mass, energy, force etc. It is also same as Kirchoff’s current and voltage laws of electric circuit theory. Thus a BLP 

problem example may be hypothetical or unrealistic or impractical if it violates the law of conservation. This law is 

also reflected in the relationship between the primal and the dual variables. Thus the coefficients in A, b, and c 

cannot be arbitrarily changed; they are related by this law. 

 

We have chosen non-negativity of elements of A to keep the computer program simpler. Our objective was not to 

venture for creating a commercially robust program. The focus is to provide a high level concept of the algorithm by 

eliminating complexities arising from negativities of A, b, and c parameters. The algorithm, once understood, can be 

easily customized for all such special cases. As we have seen that the solution of BLP does not depend of the nature 

of the feasible region and its corner points, which are defined by the A, b, and c matrices. The solution depends on 

the existence of corner points of the unit cube inside the feasible region. 

 

It is always possible to add an equation with all positive coefficients for all variables to all the equations to make all 

A matrix elements nonnegative. However this may produce right hand side b vector with negative elements. This 

kind of b vector can always be replaced by a linear combination of vectors from the first quadrant. We can then 

solve all equations separately and then combine them linearly to find the original solution. Thus matrix equations 

with positive coefficients are really not a constraint on the principle behind the BLP algorithm. We should realize 

that in nature there are no negative numbers. Negative numbers are products of human imagination, and therefore 

abstract and artificial. 

 

 

5. NUMERICAL EXAMPLES 

 

In the following subsections we provide three numerical examples to illustrate the algorithm and the nature of tables 

it may require. The problems are: 

(a) An example generated using the method described in test problems (m < n) 

(b) An OR Library example taken from a website (m > n) 

(c) A 0-1 Knapsack problem taken from a standard text book (m = 1) 

 

This exercise is not designed to prove the algorithm. They are provided to illustrate the details of the algorithm. Note 

that the algorithm is a complicated computer program. It has many variants and adjustments depending on the nature 
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of the problem. All computer programs require customization to make things work for individual problems. These 

examples are presented to explain such details. 

 

The algorithm is documented at high level or at conceptual level. Even then it may appear cryptic. This is true for all 

computer programs. More details we add more cryptic the algorithm will look. We have taken a hierarchical and 

modular approach in describing the algorithm; which is a well known concept in software engineering. This method 

allows every lower level to be smaller and simpler. 

 

5.1 A 3R5C EXAMPLE 
 

First we illustrate our algorithm, using an example generated by the method described in the previous section on 

Test Problems. The first three functions were used with five samples to produce the following A matrix. The matrix 

A has 3 rows and 5 columns, and hence the name 3R5C. 

 

A: 

3R5C 

1.000000000 0.8138079236 0.2112777074 0.02508563094 0.5125428155 

0.6545084972 0.09549150281 0.09549150281 0.6545084972 1.000000000 

0.4748286925 0.7354202041 0.8784358579 0.9569245129 1.000000000 

 

Initial values for the vectors b and c are given below and are labeled as B0 and C0. 

  

Example 5.1 

B0 2.351436370 2.404508497 3.167173409   

C0 1.034693911 0.8100068609 0.8731983764 1.358575743 1.717000249 

X0  {1,1,0,1,1} z0= 4.920276764   

Y0 0.104971 0.779101 0.884097   

 

Randomly generated binary solution vector X0, and the associated optimal cost z0 are reproduced in the table. For 

the sake of completeness, the dual random variable Y0 is also mentioned. 

 

This problem can be solved by the standard LPLU algorithm of the Mathematica Software tool. It gives the same 

binary result that our problem formulation method selected. Thus the result of the BLP algorithm has been validated, 

for this example, by the simplex method also. Our algorithm is best illustrated using tabular forms like in simplex 

method for LP. The first one, Table-1A, shows the setup of the initial data. 

 

The Table-1A shows the given matrix data placed in a specific form. The problem variables X1-X5 are displayed in 

row-3. Column-i, which is the last column, represents the given B0 vector. The elements of the B0 vector are also 

placed in a diagonal matrix, as artificial variable coefficients, labeled S1-S3. The row-7 represents the cost vector 

C0. The given optimal solution is recorded at the RHS of row-1, for the purpose of monitoring the status of 

iterations of our algorithm. Initially all problem variables are set to 0 and all artificial variables are set to 1. These 

are shown in row-2. At this time, in Table-1A, all equations are satisfied; and therefore we have a feasible solution. 

 

At each iteration we create a matrix �����, called Ratio Test Matrix (RTM), an idea borrowed from the simplex 

method, to determine the feasibility of all possible solutions. This matrix is shown in Table-1B. The column-a of 

Table-1B is obtained by dividing corresponding elements of B0 by the first column of the A matrix. Thus the 

element in the first location 2-a of Table-1B is obtained from 2.3514/1.000. As long as all elements of the RTM are 

greater than 1, the problem is considered as feasible. If any entry becomes less than 1, then that variable cannot be 

1 Table-1A:  Setup of given data      x0= {1,1,0,1,1}      z0 = 4.920 

2 0 0 0 0 0 1 1 1  

3 X1 X2 X3 X4 X5 S1 S2 S3 B0 

4 1.00 0.81 0.21 0.02 0.51 2.35   2.35 

5 0.65 0.09 0.09 0.65 1.00  2.40  2.40 

6 0.47 0.73 0.87 0.95 1.00   3.16 3.16 

7 1.03 0.81 0.87 1.35 1.71 0 0 0 C0 

 a b c d e f g h i 

 

Example 5.1 

Table-1B: Ratio Test Matrix ����� 

1 X1 X2 X3 X4 X5 B0 

2 2.35 2.88 11.1 93.7 4.58 2.35 

3 3.67 25.1 25.1 3.67 2.40 2.40 

4 6.67 4.30 3.60 3.30 3.16 3.16 

 a b c d e f 
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set to 1, and therefore its value must be 0. If a value becomes exactly equal to 1, then more advanced logic can be 

used to decide the value of the corresponding column variable. In this paper we ignore that step. As we can see from 

Table-1B that the problem is feasible at this iteration. 

 

Next we compute the pseudo inverse of the A matrix to estimate the primal variable X and the dual variable Y. We 

get them from the following relations: 

 

$% = �&EN    ��b  (% = �&�/N          (6) 

 

In (6) above $% and (% are the estimates for X and Y respectively; �& and �&� are the pseudo inverse and its 

transpose for the matrix A. As we show below, in each iteration A matrix will change in size, but not in values, we 

have to estimate X and Y in all iterations. Therefore we have to compute �& also at each iteration. In each iteration 

we create a correlation matrix, called �
���, by using the following relations: 

 


�� = ��)* $%� ∗ (%�,    � = 1, … �,   . = 1, … �        (7) 

 

The following is a little description of the Table-1C. We hope, to an attentive reader it will be self evident. Row-1 

represents the estimate of X vector; and Column-a for the estimate of the Y vector. The shaded matrix is the 

corresponding correlations. Row-5 is the original cost vector C0 and Column-g is the original RHS vector B0. From 

Table-1C we create our next Table-1D, called the reduced cost row, rC.  

 

The elements in Row-1 of Table-1D are the maximum of corresponding columns of the Correlation Matrix R given 

in the previous Table-1C. Each row element is multiplied by the corresponding cost vector elements of C0. The C0 

is repeated in Row-2 and the product is given in Row-3. The maximum of Row-3 is marked by x in Row-4. Thus X5 

will be assigned as 1 for its value. All other variables still remain 0. Observe that, for the initial step, the maximum 

of C0 and Row-3 are at same location in Column-f. However, this will not be so in all iterations. This ends the first 

Table-2C: Correlation Matrix {
��} 

 X1 X2 X3 X4 X5 Bi 

$%/(% 1.19 0.66 0.39 0.79   

0.104 0.12 0.07 0.04 0.08  1.83 

0.779 0.92 0.52 0.30 0.62  1.40 

0.884 1.05 0.59 0.34 0.70  2.16 

Ci 1.03 0.81 0.87 1.35 0  

C0 1.03 0.81 0.87 1.35 1.71  

 

Example 5.1 

Table-2D: Reduced Cost Row 
  X1 X2 X3 X4 

1 Col-Max 1.05 0.59 0.34 0.70 

2 Ci 1.03 0.81 0.87 1.35 

3 Product 1.08 0.47 0.30 0.96 

4 Max-loc x    

 a b c d e 

 

Table-2A:  Iteration 2, Initial setup.       X0= {1,1,0,1,1}       Z0 = 4.92027 

 0 0 0 0 1 1 1 1  

 X1 X2 X3 X4 X5 S1 S2 S3 B 

 1.00 0.81 0.21 0.02  1.83   2.35 

 0.65 0.09 0.09 0.65   1.40  2.40 

 0.47 0.73 0.87 0.95    2.16 3.16 

Ci 1.03 0.81 0.87 1.35 0     

C0 1.03 0.81 0.87 1.35 1.71 0 0 0  

 a b c d e f g h i 

 

Example 5.1 

Table-2B: Ratio Test Matrix {���} 

1 X1 X2 X3 X4 X5 Bi 

2 1.83 2.25 8.70 73.3  1.83 

3 2.14 14.7 14.7 2.14  1.40 

4 4.56 2.94 2.46 2.26  2.16 

 a b c d e f 

 

Example 5.1 

Table-1D: Reduced Cost Row ��/�� 

  X1 X2 X3 X4 X5 

1 Col-Max 0.96 0.61 0.35 0.58 1.02 

2 C0 1.03 0.81 0.87 1.35 1.71 

3 Product 0.99 0.50 0.30 0.79 1.75 

4 Max-loc     x 

 a b c d e f 

 

Table-1C: Correlation Matrix {
��} 

  X1 X2 X3 X4 X5 B0 

1 $%/(% 1.08 0.70 0.39 0.65 1.15  

2 0.10 0.11 .073 .041 .069 0.12 2.35 

3 0.77 0.84 0.54 0.30 0.51 0.90 2.40 

4 0.88 0.96 0.61 0.35 0.58 1.02 3.16 

5 C0 1.03 0.81 0.87 1.35 1.71  

 a b c d e f g 
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iteration. In each iteration we decide a value for at least one variable. Thus the algorithm will end at most after n 

iterations. 

 

The next iteration is initialized in the following way and is shown in Table-2A. Since we have selected X5 as 1, we 

subtract elements of this column from the corresponding diagonal elements of the artificial variables. The values for 

the artificial variables always remain as 1. The column for X5 is removed from the Table-2A; the cost element for 

X5 is set to 0, for the data base management information. We repeat the C0 row and call it Ci for the iteration. 

Table-2A now takes the following form. 

 

Our next step will be to create the Ratio Test Matrix and present it as Table-2B. This time however, the ratios will 

be created using the modified diagonal elements of the artificial variables. We have represented the diagonal 

elements of the artificial variable coefficients as column in Bi. In Table-2B there are no entries with values less than 

1. So we ignore this step. Next we find the pseudo inverse of the matrix in Table-2A and the corresponding 

estimates of primal and dual variables using Bi and Ci values shown in Table-2C. Then we compute the correlation 

matrix R as shown in Table-2C. 

 

Once we have the correlation matrix, we can then create the reduced cost row. This is shown in Table-2D. Row-3 is 

the product of corresponding elements of Row-1 and Row-2 of Table-2D. Note that this time Ci max, which is in 

column-c, has not been selected by the BLP algorithm. The X1 variable will now have value 1 and will be 

eliminated from the process in the next iteration. 

 

Since we are not using the artificial variables as diagonal elements, we can represent them as a column vector and 

call it Bi, the iterations of B0. This will help to reduce the size of the Table-3A as shown. 

 

The next step is to create the pseudo inverse of the matrix in Table-3A. This A is a 3x3 matrix. We also compute 

estimates of the primal and the dual variables using Bi and Ci values shown in Table-3A. However now we get an 

interesting result. The estimate for the primal variables becomes all binary, and is given below: 

 

$% = �1.0000, 0, 1.0000�  

 

Which gives X2=1, X3=0, and X4=1. Thus our process ends here and our results match with the original values we 

selected during the problem design phase. The final Z0 value can be computed using the cost values. In many other 

problems, the process steps can be reduced by the ratio test matrix also. We will present an example later for this 

situation. 

 

Summarizing, we can see that the algorithm contains the following steps for each iteration. More details will be 

given later, after we present more examples. 

 

(a) Create the ratio test matrix to find if any element is less than 1. This will help to set those column variables 

to 0. 

(b) Create pseudo inverse of the A matrix, estimate the primal and dual variables, and create a correlation 

matrix using the estimates. This step may end the process, if it gives binary values for $% . 

Example 5.1 

Table-3A:  Iteration 3 X0= {1,1,0,1,1} Z0 = 4.920276764 

 1 0 0 0 1 1  

 X1 X2 X3 X4 X5 Bi B0 

  0.81380 0.21127 0.02508  0.83889 2.35143 

  0.09549 0.09549 0.65450  0.75000 2.40450 

  0.73542 0.87843 0.95692  1.6923 3.16717 

Ci 0 0.81000 0.87319 1.35857 0   

C0 1.03469 0.81000 0.87319 1.35857 1.71700 0  

 a b c d e f i 
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(c) Create a max row by selecting maximal elements of each column from correlation matrix. Multiply this 

row by the corresponding cost values from C0. We call it the reduce cost row. 

(d) Select the max element from this reduced cost row. This selected column variable will have a value of 1. 

(e) Update the tables for next iteration, by subtracting the selected column of the A matrix from B0 vector. Set 

the cost element to 0 corresponding to the selected variables. Remove the column from the A matrix. 

(f) Continue as above from step (a) until we process all n variables. 

 

5.2 AN OR LIBRARY PROBLEM 

 

The following problem is taken from the operations research (OR) database library [Beasley]. In the problem the 

matrix A has more number of rows than columns. The matrices for the problem are given by the following tables. 

Notice that it is a less than equal to problem, as oppose to R3C5 problem, which had equality only. The optimal 

solution vector x0 and the optimal cost z0 are also given. The problem is stated as 

 

-�� a = ���,     �� ≤ �, � ∈ �0,1� , � = 6  

 

The linear programming approach of Mathematica using upper and lower bounds fails to solve this problem. But the 

BLP algorithm presented gives the correct solution. The solution has been verified using direct enumeration as well.  

 

We present the initial table in the following way in Table-1A. Like in the case of R3C5 problem, we collapse the 

slack variables as a column and call it Bi vector. We also retain the original B0 at each step, to track the status. First 

we create a ratio test matrix RTM and present it in Table-1B. Each entry in this table is a ratio of the following type, 

using a simplified notation, hopefully will not be confusing to the reader. 

 

��� = de

feg
,    ��� ≠ 0           (8) 

 

If any element in the RTM is less than 1 then that column variable must be assigned a 0 value. However, if an 

OR-Lib Prob.  Matrix A0 

8 12 13 64 22 41 

8 12 13 75 22 41 

3 6 4 18 6 4 

5 10 8 32 6 12 

5 13 8 42 6 20 

5 13 8 48 6 20 

0 0 0 0 8 0 

3 0 4 0 8 0 

3 2 4 0 8 4 

3 2 4 8 8 4 

 

Example 5.2 

OR-Lib Prob.  Initial given vectors 

B0 80 96 20 36 44 48 10 18 22 24 

C0 100 600 1200 2400 500 2000  

X0 {0, 1, 1, 0, 0, 1}  Z0=3800  

 

Example 5.2 

Table-1B: Ratio Test Matrix RTM 

 X1 X2 X3 X4 X5 X6 

1 10 6.67 6.15 1.25 3.63 1.95 

2 12 8 7.38 1.28 4.36 2.34 

3 6.67 3.33 5 1.11 3.33 5 

4 7.2 3.6 4.5 1.12 6 3 

5 8.8 3.84 5.5 1.05 7.33 2.2 

6 9.6 3.69 6 1 8 2.4 

7 X X X X 1.25 X 

8 6 X 4.5 X 2.25 X 

9 7.33 11 5.5 X 2.75 5.5 

10 8 12 6 3 3 6 

 

Table-1A: Given database X0=011001,      Z0=3800 

0 0 0 0 0 0 1  

X1 X2 X3 X4 X5 X6 Bi B0 

8 12 13 64 22 41 80 80 

8 12 13 75 22 41 96 96 

3 6 4 18 6 4 20 20 

5 10 8 32 6 12 36 36 

5 13 8 42 6 20 44 44 

5 13 8 48 6 20 48 48 

0 0 0 0 8 0 10 10 

3 0 4 0 8 0 18 18 

3 2 4 0 8 4 22 22 

3 2 4 8 8 4 24 24 

100 600 1200 2400 500 2000   
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element is 1 then a complex logic will have to be used. 

 

We can see that the RTM matrix in Table-1B has an entry of 1 in column X4 and Row-6. Since all numbers in Row-

6 are nonzero, therefore X4 cannot be assigned a value of 1, because then no other variables can be assigned 1, and 

the algorithm will terminate. So at this step we decide to assign a 0 value to X4. This assignment does not affect Bi 

vector. The iteration step ends here, because we have selected one variable.  

 

Next we create the Table-2A as shown. For this specific problem, we use two different matrices for pseudo inverses. 

To explicitly show them we present the diagonal form again.To take the pseudo inverse and estimate the primal 

variable $% we consider the entire matrix including the diagonal elements, but eliminate column X4. This will 

produce an estimate with 15 elements in the vector. We then chop the last 10 elements, and consider the remaining 5 

Example 5.2 

Table-2A, Iteration 2, Initial matrix setup X0=011001,      Z0=3800 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1  

X1 X2 X3 X4 X5 X6 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 B0 

8 12 13  22 41 80          80 

8 12 13  22 41  96         96 

3 6 4  6 4   20        20 

5 10 8  6 12    36       36 

5 13 8  6 20     44      44 

5 13 8  6 20      48     48 

0 0 0  8 0       10    10 

3 0 4  8 0        18   18 

3 2 4  8 4         22  22 

3 2 4  8 4          24 24 

100 600 1200 0 500 2000 0 0 0 0 0 0 0 0 0 0 Ci 

100 600 1200 2400 500 2000 0 0 0 0 0 0 0 0 0 0 C0 

 

Example 5.2 

Table-2B: Correlation Matrix (RXY),     X0=011001,      Z0=3800 

 X1 X2 X3 X4 X5 X6 Bi 

$%/(% 0.35 0.45 0.50  0.75 0.16  

37.864 13.2 17.3 19.25  28.4 6.33 80 

37.864 13.2 17.3 19.25  28.4 6.33 96 

-701.87 246.3 320.8 356.8  527.5 117.4 20 

1048.7 368.1 479.4 533.2  788.2 175.4 36 

-190.63 66.91 87.15 96.92  143.2 31.88 44 

-190.63 66.91 87.15 96.92  143.2 31.88 48 

459.24 161.2 209.9 233.5  345.1 76.82 10 

235.05 82.51 107.4 119.5  176.6 39.31 18 

-407.12 142.9 186.1 207.0  306.0 68.10 22 

-407.12 142.9 186.1 207.0  306.0 68.10 24 

Ci 100 600 1200 0 500 2000  

C0 100 600 1200 2400 500 2000  

 

Example 5.2 

Table-2C: Reduced Cost Row,     X0=011001,      Z0=3800 
 X1 X2 X3 X4 X5 X6 

Col-Max 368.15 479.47 533.24  788.25 175.43 

C0 100.00 600.00 1200.0 2400 500.00 2000.0 

Product 36815. 2.87×10
5
 6.39×10

5
  3.94×10

5
 3.50×10

5
 

Max-loc   x    
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elements to create the correlation matrix R. However, to estimate the dual variables, we take only the 5 columns of 

the A matrix and the 5 elements of Ci cost vector. Observe that, as shown in the table, Ci has one item as 0, 

corresponding to the X4 column. 

 

Extended $%=  

{0.35104,0.45719,0.50846,0.94987,0.75161,0.16728,0.30606,0.27321,0.30241,0.26141,0.32296,0.24011,0.40634,0.

33606,0.39139} 

 

Reduced $% = {0.35104, 0.45719, 0.50846, 0.75161, 0.16728} 

 

(%= {37.864, 37.864,-701.87, 1048.7,-190.63,-190.63, 459.24, 235.05,-407.12, -407.12} 

 

In our computer program we carefully keep track of deleted variables, matrix columns, and cost rows. We maintain 

one tag for all original variables, and another one for variables remaining to be processed. The correlation matrix for 

this iteration has the data shown in Table-2B; we take the absolute value of each product. 

 

From this correlation matrix we can then create the reduced cost row, by selecting the maximum element from each 

column and multiplying them by the corresponding cost values. This is shown in the Table-2C.  The Table-2C 

shows that max cost is at column X3. Therefore we assign 1 to variable X3. This will end this step and we enter the 

next iteration beginning with Table-3A. 

 

Since the variable X3 was 1, the X3 column must be subtracted from the diagonal elements corresponding to the 

slack variables. We do not show the table in the diagonal form to reduce paper space; but we process in diagonal 

Table-3A:  Iteration 3      X0=011001,      Z0=3800 

 0 0 1 0 0 0 1  

 X1 X2 X3 X4 X5 X6 Bi B0 

 8 12   22 41 67 80 

 8 12   22 41 83 96 

 3 6   6 4 16 20 

 5 10   6 12 28 36 

 5 13   6 20 36 44 

 5 13   6 20 40 48 

 0 0   8 0 10 10 

 3 0   8 0 14 18 

 3 2   8 4 18 22 

 3 2   8 4 20 24 

Ci 100 600 0 0 500 2000   

C0 100 600 1200 2400 500 2000   

 

Example 5.2 

Table-3B: Ratio Test Matrix (RTM) 

 X1 X2 X3 X4 X5 X6 

1 8.37 5.58   3.04 1.63 

2 10.3 6.91   3.77 2.02 

3 5.33 2.66   2.66 4.00 

4 5.60 2.80   4.66 2.33 

5 7.20 2.76   6.00 1.80 

6 8.00 3.07   6.66 2.00 

7 0 0   1.25 0 

8 4.66 0   1.75 0 

9 6 9   2.25 4.5 

10 6.67 10   2.5 5.0 

 

Example 5.2 

Table-3D: Reduced Cost Row,   X0=011001,      Z0=3800 

 X1 X2 X3 X4 X5 X6 

Col-Max 17.21 21.5   4.63 12.8 

C0 100.0 600.   500. 2000. 

Product 1721. 12932.   2315. 25613. 

Max-loc      x 

 

Table-3C: Correlation Matrix (RXY),    X0=011001,    Z0=3800 

 X1 X2 X3 X4 X5 X6 Bi 

$%/(% 0.36 0.45   0.09 0.27  

22.92 8.38 10.5   2.25 6.24 67 

22.92 8.38 10.5   2.25 6.24 83 

-5.67 2.07 2.59   0.55 1.54 16 

-18.7 6.84 8.57   1.84 5.09 28 

14.53 5.32 6.66   1.43 3.95 36 

14.53 5.32 6.66   1.43 3.95 40 

33.42 12.2 15.3   3.29 9.10 10 

-47.0 17.2 21.5   4.63 12.8 14 

-26.7 9.78 12.2   2.63 7.27 18 

-26.7 9.78 12.2   2.63 7.27 20 

Ci 100 600 0 0 500 2000  

C0 100 600 1200 2400 500 2000  

 



Page 14 of 17 

 

 

Review copy, An algorithm for binary linear programming, Subhendu11Das@gmail.com, June 23, 2014 

 

 

form for the determination of the estimates of primal and the dual variables and for the generation of the reduced 

cost row. Table-3A shows the initial setup for this iteration. 

 

Next we show the Ratio Test Matrix, RTM. However this matrix does not contribute anything new this time, 

because none of the elements is less than or equal to 1.  The RTM matrix is shown in Table-3B. 

 

The next we generate the correlation matrix. Here again, as mentioned before, we use both extended matrix and 

short matrix to estimate $% and (%. We do not write the details, as they have been explained in the previous iteration, 

we just present the contents in Table-3C. 

 

Extended $% =  

{0.36598,0.45819,0.97238,0.74599,0.098442,0.27224,0.20841,0.24293,0.20721,0.28649,0.22209,0.36593,0.29015,

0.36113} 

 

Once the matrix RXY is known we can determine the reduced cost matrix, which is shown in Table-3D. The Table-

3D selects the variable X6, and we assign a value of 1 to it. Thus in the next iteration column-6 gets eliminated. For 

the next iterations we present all the tables sequentially with no or minimal explanations. 

 

Extended $% =  {0.39387,0.51991,0.97459,- 

0.18580,0.26593,0.15428,0.18650,0.089018,0.27121,0.22033,0.35869,0.28442,0.37387} 

 

Iteration 4, assigns 1 to the variable X2, as shown in Table-4D. Next iteration, iteration 5, is somewhat interesting. 

Example 5.2 

Table-4B: Ratio Test Matrix RTM 

 X1 X2 X3 X4 X5 X6 

1 3.25 2.16   1.18  

2 5.25 3.5   1.90  

3 4.00 2.00   2.00  

4 3.20 1.60   2.67  

5 3.20 1.23   2.67  

6 4.00 1.53   3.33  

7 0 0   1.25  

8 4.67 0   1.75  

9 4.67 7.00   1.75  

10 5.33 8.00   2.00  

 

Table-4A:  Iteration 4     X0=011001,      Z0=3800 

 0 0 1 0 0 1 1  

 X1 X2 X3 X4 X5 X6 Bi B0 

 8 12   22  26 80 

 8 12   22  42 96 

 3 6   6  12 20 

 5 10   6  16 36 

 5 13   6  16 44 

 5 13   6  20 48 

 0 0   8  10 10 

 3 0   8  14 18 

 3 2   8  14 22 

 3 2   8  16 24 

Ci 100 600 0 0 500 0   

C0 100 600 1200 2400 500 2000   

 

Example 5.2 

Table-4D: Reduced Cost Row 

 X1 X2 X3 X4 X5 X6 

Col-Max 18.748 24.748   12.658  

C0 100.00 600.00   500.00  

Product 1874.8 14849.   6329.1  

Max-loc  x     

 

Table-4C: Correlation Matrix RXY 

 X1 X2 X3 X4 X5 X6 Bi 

$%/(% 0.39 0.51   0.26   

13.94 5.49 7.24   3.70  26 

13.94 5.49 7.24   3.70  42 

6.622 2.60 3.44   1.76  12 

-12.7 5.02 6.63   3.39  16 

16.80 6.61 8.73   4.46  16 

16.80 6.61 8.73   4.46  20 

47.60 18.7 24.7   12.6  10 

-40.6 15.9 21.1   10.7  14 

-20.8 8.22 10.8   5.55  14 

-20.8 8.22 10.8   5.55  16 

Ci 100 600 0 0 500 0  

C0 100 600 1200 2400 500 2000  
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Iteration 5 begins with X1 and X5 only, as shown in Table-5A.  

 

We can see from RTM that both columns of Table-5B have elements which are less than 1. Therefore both variables 

for those columns must be assigned 0 values. This terminates the process and we have found the optimal solution. 

 

 

5.3 A 0-1 KNAPSACK PROBLEM 

 

The following problem is taken from the book by [Martello and Toth, p. 21]. It has 8 variables, one linear inequality 

constraint, and one linear objective function. Martello-Toth defines, using their notations, the problem in the 

following way: 

 

Maximize a = ∑ h���

�;5  

Subject to ∑ 9���

�;5 ≤ � ,    �� = 0 i� 1,   . ∈ j = �1, … , �� 

 

The data for the problem is given by: 

 

kh�l = G15,100,90,60,40,15,10,1H , k9�l = G2,20,20,30,40,30,60,10H,     � = 102  

 

The optimal solution, of value 280, is k��l = G1,1,1,1,0,1,0,0H 

 

The purpose of this example is to illustrate how the algorithm works for single row cases. The objective is not to 

solve large problems or problems with complex characteristics. The computer programs can always be modified to 

solve any problems with special cases as long as the theory is consistent. In this problem we do not use pseudo 

inverse method, although it can be used, and we have used it for this problem successfully. Instead we use the ratio 

test matrix and derive our reduced cost from this data. In iteration one, we begin with Table-1. 

Example 5.3 

 Table-1: Given database & Ratio Test Matrix X0=11110100,      Z0=280 
1  0 0 0 0 0 0 0 0 1  

2  X1 X2 X3 X4 X5 X6 X7 X8 Bi B0 

3 A 2 20 20 30 40 30 60 10 102 102 

4 Ratio Test 51 5.1 5.1 3.4 2.55 3.4 1.7 10.2   

5 Reduced Cost 765 510 459 204 102 51 17 10.2   

6 Max x          

7 Ci 15 100 90 60 40 15 10 1   

8 C0 15 100 90 60 40 15 10 1   

 

Table-5A:  Iteration 5   X0=011001,      Z0=3800 

 0 0 1 0 0 1 1  

 X1 X2 X3 X4 X5 X6 Bi B0 

 8    22  14 80 

 8    22  30 96 

 3    6  6 20 

 5    6  6 36 

 5    6  3 44 

 5    6  7 48 

 0    8  10 10 

 3    8  14 18 

 3    8  12 22 

 3    8  14 24 

Ci 100 0 0 0 500 0   

C0 100 600 1200 2400 500 2000   

 

Example 5.2 

Table-5B: Ratio Test Matrix RTM 

 X1 X2 X3 X4 X5 X6 

1 1.75    0.63  

2 3.75    1.36  

3 2.0    1.0  

4 1.2    1.0  

5 0.60    0.50  

6 1.40    1.16  

7 0    1.25  

8 4.67    1.75  

9 4.0    1.50  

10 4.67    1.75  
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In Table-1 row 3 contains the A matrix as defined in BLP; row 8 is the cost vector C; column B0 is the b vector; 

X1..X8 are the problem variables. In the first initial table we have repeated the initial cost C as C0 and cost at each 

iteration as Ci. In the same way we have repeated b vector as B0 and Bi. Row 4 shows the ratio test matrix (RTM), 

in this case it is a row only. It is created using the relation Bi/Aj. Thus element at row-4 and col-X1 is 51 and is 

obtained from 102/2. We then multiply ratio test row by the corresponding cost values on row-7, which is a repeat of 

row-8. This generates the reduced cost shown in row-5. We then identify the maximum value location, marked as x, 

at column X1. Thus we assign 1 to the variable X1. This ends the first iteration. Next, update the database by 

copying the Table-1 as Table-2 as shown. 

 

In Table-2, we indicate 1 at row-1 and column-X1; set 0 for Ci at row-7 column-X1; and clear remaining parts of 

column-X1. Also we subtract A matrix coefficients from Bi, which now becomes 100. Then we fill the ratio test row 

by dividing 100 by the corresponding row-3 values for A matrix. To derive reduced cost we multiply ratio test row 

by the corresponding Ci elements. The maximum of the reduced cost is now located at X2 as shown by the mark x. 

Thus X2 becomes 1 now. In the next iteration we repeat the process as shown below. 

 

From Table-3 we see that the variable X3 becomes 1. The next we reproduce Table-4. Table-4 represents the fourth 

iteration. We compute ratio test and observe that in columns X5 and X7 the values are less than 1. Thus these two 

variables must be set to 0. We do not need to compute the reduced cost for this fourth iteration in Table-4. The next 

step is to eliminate X5 and X7 columns. The result is shown in Table-5. 

 

Example 5.3 

 Table-2: Given database & Ratio Test Matrix X0=11110100,      Z0=280 
1  1 0 0 0 0 0 0 0 1  

2  X1 X2 X3 X4 X5 X6 X7 X8 Bi B0 

3 A  20 20 30 40 30 60 10 100 102 

4 Ratio Test  5 5 3.33 2.5 3.33 1.67 10   

5 Reduced Cost  500 450 200 100 50 16.6 10   

6 Max  x         

7 Ci 0 100 90 60 40 15 10 1   

8 C0 15 100 90 60 40 15 10 1   

 

Example 5.3 

 Table-3: Given database & Ratio Test Matrix X0=11110100,      Z0=280 
1  1 1 0 0 0 0 0 0 1  

2  X1 X2 X3 X4 X5 X6 X7 X8 Bi B0 

3 A   20 30 40 30 60 10 80 102 

4 Ratio Test   4 2.67 2 2.67 1.33 8   

5 Reduced Cost   360 160 80 40 13.3 8   

6 Max   x        

7 Ci 0 0 90 60 40 15 10 1   

8 C0 15 100 90 60 40 15 10 1   

 

Example 5.3 

 Table-4: Given database & Ratio Test Matrix X0=11110100,      Z0=280 
1  1 1 1 1 0 0 0 0 1  

2  X1 X2 X3 X4 X5 X6 X7 X8 Bi B0 

3 A     40 30 60 10 30 102 

4 Ratio Test     0.75 1.0 0.50 3.0   

5 Reduced Cost           

6 Max           

7 Ci 0 0 0 0 40 15 10 1   

8 C0 15 100 90 60 40 15 10 1   
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The ratio test now shows that X6 has a value of 1.0. If we set this variable as 1 then the process will stop because no 

other variables can be 1 anymore. Comparing the cost in row-7 we choose 1 for X6 and 0 for X8. We have found the 

optimal solution. Notice that in this case Bi has 0 value. In many problems the norm of Bi can be used to terminate 

the algorithm. In equality problems, with B0 in binary range space ℬ, final value of Bi must be 0, as in this problem. 

 

6. CONCLUSIONS 
 

A polynomial time algorithm for binary linear programs is presented. The algorithm and its theoretical foundations 

are clearly described. Different types of numerical examples are solved to explain the details of the theory and its 

features, variants, and capabilities. 
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Example 5.3 

 Table-5: Given database & Ratio Test Matrix X0=11110100,      Z0=280 
1  1 1 1 1 0 1 0 0 1  

2  X1 X2 X3 X4 X5 X6 X7 X8 Bi B0 

3 A      30  10 0 102 

4 Ratio Test      1.0  3.0   

5 Reduced Cost           

6 Max           

7 Ci 0 0 0 0 0 15 0 1   

8 C0 15 100 90 60 40 15 10 1   

 


