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Abstract

A new class of distribution called the beta-exponentiated power
Lindley (BEPL) distribution is proposed. This class of distributions
includes the Lindley (L), exponentiated Lindley (EL), power Lindley
(PL), exponentiated power Lindley (EPL), beta-exponentiated Lindley
(BEL), beta-Lindley (BL), and beta-power Lindley distributions (BPL)
as special cases. Expansion of the density of BEPL distribution is ob-
tained. Some mathematical properties of the new distribution including
hazard function, reverse hazard function, moments, mean deviations,
Lorenz and Bonferroni curves are presented. Entropy measures and the
distribution of the order statistics are given. The maximum likelihood
estimation technique is used to estimate the model parameters. Fi-
nally, real data examples are discussed to illustrate the usefulness and
applicability of the proposed distribution.

Keywords: Exponentiated power Lindley distribution, Power Lindley distribu-
tion, Beta distribution, Maximum likelihood estimation.

1 Introduction

Lindley [?] developed Lindley distribution in the context of fiducial and Bayesian
statistics. Properties, extensions and applications of the Lindley distribution
have been studied in the context of reliability analysis by Ghitany et al. [?],
Zakerzadeh and Dolati [?], and Warahena-Liyannage and Pararai [?]. Several
other authors including Sankaran [?], Asgharzadeh et al. [?] and Nadarajah
et al. [?] proposed and developed the mathematical properties of various gen-
eralized Lindley distributions. The probability density function (pdf) of the
Lindley distribution is given by

f(y; β) =
β2

β + 1
(1 + y)e−βy, y > 0, β > 0.
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The power Lindley (PL) distribution proposed by Ghitany et al. [?] is an

extension of the Lindley (L) distribution. Using the transformation X = Y
1
α ,

Ghitany et al. [8] derived and studied the power Lindley (PL) distribution
with the probability density function (pdf) given by

f(x;α, β) =
αβ2

β + 1
(1 + xα)xα−1e−βx

α

, x > 0, α > 0, β > 0.

The cumulative distribution function (cdf) of the power Lindley distribution
is

F (x) = 1− S(x) = 1−
(

1 +
βxα

β + 1

)
e−βx

α

for x > 0, α, β > 0. Warahena-Liyanage and Pararai [?] studied the properties
of the exponentiated Power Lindley (EPL) distribution. The EPL cdf and pdf
are given by

G
EPL

(x;α, β, ω) =

[
1−

(
1 +

βxα

β + 1

)
e−βx

α

]ω
(1.1)

and

gEPL(x;α, β, ω) =
αβ2ω

β + 1
(1 + xα)xα−1e−βx

α

[
1−

(
1 +

βxα

β + 1

)
e−βx

α

]ω−1
,(1.2)

respectively, for x > 0, α > 0, β > 0, ω > 0. The hazard rate function of the
EPL distribution is given by

hGEPL(x;α, β, ω) =
g(x;α, β, ω)

G(x;α, β, ω)

=

αβ2ω
β+1

(1 + xα)xα−1e−βx
α
[
1−

(
1 + βxα

β+1

)
e−βx

α
]ω−1

1−
[
1−

(
1 +

βxα

β + 1

)
e−βx

α

]ω .

The rth moment of the EPL distribution is given by

E(Xr) =
∞∑
i=0

i∑
j=0

j+1∑
k=0

(
ω − 1

i

)(
i

j

)(
j + 1

k

)
(−1)iβj−k−rα

−1+1Γ(k + rα−1 + 1)

(β + 1)i+1(i+ 1)(k+rα−1+1)
.

The purpose of this paper is to develop a five-parameter alternative to several
lifetime distributions including the gamma, Weibull, exponentiated Weibull,
exponentiated Lindley, lognormal, beta Weibull geometric (BWG) [?], and
beta Weibull Poisson (BWP) [?] distributions. In this context, we propose
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and develop the statistical properties of the beta exponentiated power Lindley
(BEPL) distribution and show that it is a competitive model for reliability
analysis. Our aim in this paper is to discuss some important statistical prop-
erties of the BEPL distribution. This discussion includes the shapes of the
density, hazard rate and reverse hazard rate functions, moments, moment gen-
erating function and parameter estimation by using the method of maximum
likelihood. Finally, applications of the model to real data sets in order to illus-
trate the applicability and usefulness of the BEPL distribution are presented.

This paper is organized as follows. In section 2, the model, sub-models and
some of its statistical properties including shapes and behavior of the hazard
function are presented. Moments, conditional moments, reliability and related
measures are given in section 3. Mean deviations, Bonferroni and Lorenz curves
are presented in section 4. Section 5 contains distribution of order statistics
and measures of uncertainty. In section 6, we present the maximum likelihood
method for estimating the parameters of the distribution. Applications are
given in section 7 followed by concluding remarks.

2 The Model, Sub-models and Some Proper-

ties

In this section, we present the BEPL distribution and derive some properties
of this class of distributions including the cdf, pdf, expansion of the density,
hazard and reverse hazard functions, shape and sub-models. Let G(x) de-
note the cdf of a continuous random variable X and define a general class of
distributions by

F (x) =
BG(x)(a, b)

B(a, b)
, (2.1)

where BG(x)(a, b) =
∫ G(x)

0
ta−1(1 − t)b−1dt and 1/B(a, b) = Γ(a + b)/Γ(a)Γ(b).

The class of generalized distributions above was motivated by the work of
Eugene et al. [?]. They proposed and studied the beta-normal distribution.
Some beta-generalized distributions discussed in the literature include work by
Jones [?], Bidram et al. [?]. Nadarajah and Kotz [?], Nadarajah and Gupta [?],
Nadarajah and Kotz [?], Barreto-Souza et al. [?] proposed the beta-Gumbel,
beta-Frechet, beta-exponential (BE), beta-exponentiated exponential (BEE)
distributions, respectively. Gusmao et al. [?] presented results on the gen-
eralized inverse Weibull distribution. Pescim et al. [?] proposed and studied
the beta-generalized half-normal distribution which contains some important
distributions such as the half-normal and generalized half normal (Cooray and
Ananda [?]) as special cases. Furthermore, Cordeiro et al. [?] presented the
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generalized Rayleigh distribution and Carrasco et al. [?] studied the gener-
alized modified Weibull distribution with applications to lifetime data. More
recently, Oluyede and Yang [?] studied the beta generalized Lindley distribu-
tion with applications.

By considering G(x) as the cdf of EPL distribution we obtain the beta-
exponentiated power Lindley (BEPL) distribution with a broad class of dis-
tributions that may be applicable in a wide range of day to day situations
including applications in medicine, reliability and ecology. The cdf and pdf of
the five-parameter BEPL distribution are given by

FBEPL(x;α, β, ω, a, b) =
1

B(a, b)

∫ GEPL(x;α,β,ω)

0

ta−1(1− t)b−1dt

=
BG(x)(a, b)

B(a, b)
, (2.2)

and

fBEPL(x;α, β, ω, a, b) =
1

B(a, b)
[GEPL(x)]a−1 [1−GEPL(x)]b−1 gEPL(x),

=
αβ2ω

B(a, b)(β + 1)
(1 + xα)xα−1e−βx

α

×
[
1−

(
1 +

βxα

β + 1

)
e−βx

α

]ωa−1
×

{
1−

[
1−

(
1 +

βxα

β + 1

)
e−βx

α

]ω}b−1
, (2.3)

respectively, for x > 0, α > 0, β > 0, ω > 0, a > 0, b > 0. Plots of the pdf
of BEPL distribution for several combinations of values of α, β, ω, a and b are
given in Figure ??. The plots indicate that the BEPL pdf can be decreasing
or right skewed. The BEPL distribution has a positive asymmetry.

Figure 2.1: Plots of the PDF for different values of α, β, ω, a and b



Beta Exponentiated Power Lindley Distribution with Applications 5

2.1 Expansion of density

The expansion of the pdf of BEPL distribution is presented in this section.
For b > 0 a real non-integer, we use the series representation

(1−GEPL(x))b−1 =
∞∑
i=0

(
b− 1

i

)
(−1)i [GEPL(x)]i, (2.4)

where

GEPL(x;α, β, ω) =

[
1−

(
1 +

βxα

β + 1

)
e−βx

α

]ω
.

If a is an integer, from Equation (??) and the above expansion (??), we can
rewrite the density of the BEPL distribution as

fBEPL(x;α, β, ω, a, b) =
gEPL(x)

B(a, b)

∞∑
i=0

(
b− 1

i

)
(−1)i [GEPL(x)]a+i−1 (2.5)

=
αβ2ω

β + 1
(1 + xα)xα−1e−βx

α

[
1−

(
1 +

βxα

β + 1

)
e−βx

α

]ω−1
×

∞∑
i=0

(−1)i
(
b−1
i

)
B(a, b)

[
1−

(
1 +

βxα

β + 1

)
e−βx

α

]ω(a+i−1)
=

αβ2ω

β + 1
(1 + xα)xα−1e−βx

α

×
∞∑
i=0

li

[
1−

(
1 +

βxα

β + 1

)
e−βx

α

]ω(a+i)−1
, (2.6)

where the coefficients li are

li = li(a, b) =
(−1)i

(
b−1
i

)
B(a, b)

and
∑∞

i=0 li = 1, for x > 0, α > 0, β > 0, ω > 0, a > 0, b > 0.

If a is real non-integer, we can expand [GEPL(x)]a+i−1 as follows:

[GEPL(x)]a+i−1 = {1− [1−GEPL(x)]}a+i−1

=
∞∑
j=0

(
a+ i− 1

j

)
(−1)j [1−GEPL(x)]j ,

with

[1−GEPL(x)]j =

j∑
k=0

(
j

k

)
(−1)k [GEPL(x)]k ,



6 Mavis Pararai, Gayan Warahena-Liyanage and Broderick O. Oluyede

so that

[GEPL(x)]a+i−1 =
∞∑
j=0

j∑
k=0

(
a+ i− 1

j

)(
j

k

)
(−1)j+k [GEPL(x)]k . (2.7)

From Equations (??) and (??), the BEPL density can be rearranged in the
form

fBEPL(x;α, β, ω, a, b) = gEPL(x)
∞∑

i,j=0

j∑
k=0

li,j,k [GEPL(x)]k (2.8)

=
αβ2ω

β + 1
(1 + xα)xα−1e−βx

α

)

×
∞∑

i,j=0

j∑
k=0

li,j,k

[
1−

(
1 +

βxα

β + 1

)
e−βx

α

]ω(k+1)−1

,

where the coefficients li,j,k are

li,j,k = li,j,k(a, b) =
(−1)i+j+k

(
b−1
i

)(
a+i−1
j

)(
j
k

)
B(a, b)

and
∑∞

i,j=0

∑j
k=0 li,j,k = 1, for x > 0, α > 0, β > 0, ω > 0, a > 0, b > 0. Hence,

for any real non-integer, the BEPL density is given by three (two infinite
and one finite) weighted power series sums of the baseline cdf GEPL(x). By
changing

∑∞
j=0

∑j
k=0 to

∑∞
k=0

∑∞
j=k in Equation (??), we obtain

fBEPL(x;α, β, ω, a, b) = gEPL(x)
∞∑

i,k=0

pi [GEPL(x)]k

=
αβ2ω

β + 1
(1 + xα)xα−1e−βx

α

×
∞∑

i,k=0

pi

[
1−

(
1 +

βxα

β + 1

)
e−βx

α

]ω(k+1)−1

,

where the coefficient pi is

pi = pi(a, b) =
(−1)i

(
b−1
i

)
qk(a+ i− 1)

B(a, b)
,

with

qk = qk(a+ i− 1) =
∞∑
j=k

(
a+ i− 1

j

)(
j

k

)
(−1)j+k,

for x > 0, α > 0, β > 0, ω > 0, a > 0, b > 0, respectively. Note that the BEPL
density is given by three infinite weighted power series sums of the baseline
distribution function GEPL(x). When b > 0 is an integer, the index i in the
previous series representation stops at b− 1.
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2.2 Some sub-models of the BEPL distribution

Some sub-models of the BEPL distribution for selected values of the parame-
ters α, β, ω, a and b are presented in this section.

(1) a = b = 1
When a = b = 1, we obtain the exponentiated power Lindley (EPL)
distribution whose cdf and pdf are given in (1.1) and (1.2), (Warahena-
Liyannage and Pararai [?]).

(2) ω = 1
When ω = 1, we obtain the beta-power Lindley (BPL) distribution. The
BPL cdf is given by

FBPL(x;α, β, a, b) =
1

B(a, b)

∫ GPL(x;α,β)

0

ta−1(1− t)b−1dt

for x > 0, α > 0, β > 0, a > 0, b > 0. The corresponding pdf is given by

fBPL(x;α, β, a, b) =
αβ2

B(a, b)(β + 1)
(1 + xα)xα−1e−βx

α

×
[
1−

(
1 +

βxα

β + 1

)
e−βx

α

]a−1[(
1 +

βxα

β + 1

)
e−βx

α

]b−1
for x > 0, α > 0, β > 0, a > 0, b > 0.

(3) α = 1
When α = 1, we obtain beta-exponentiated Lindley (BEL) distribution
(Oluyede and Yang [?]). The BEL cdf is given by

FBEL(x; β, ω, a, b) =
1

B(a, b)

∫ GEL(x;β,ω)

0

ta−1(1− t)b−1dt

for x > 0, β > 0, ω > 0, a > 0, b > 0. The corresponding pdf is given by

fBEL(x; β, ω, a, b) =
β2ω

B(a, b)(β + 1)
(1 + x)e−βx

×
[
1−

(
1 +

βx

β + 1

)
e−βx

]ωa−1
×

{
1−

[
1−

(
1 +

βx

β + 1

)
e−βx

]ω}b−1
for x > 0, β > 0, ω > 0, a > 0, b > 0.
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(4) ω = α = 1
When ω = α = 1, we obtain beta-Lindley (BL) distribution (Oluyede
and Yang [?]). The BL cdf and pdf are given by

FBL(x; β, a, b) =
1

B(a, b)

∫ GL(x;β,ω)

0

ta−1(1− t)b−1dt

and

fBL(x; β, a, b) =
β2

B(a, b)(β + 1)
(1 + x)e−βx

×
[
1−

(
1 +

βx

β + 1

)
e−βx

]a−1[(
1 +

βx

β + 1

)
e−βx

]b−1
,

respectively, for x > 0, β > 0, ω > 0, a > 0, b > 0.

(5) ω = a = b = 1
When ω = a = b = 1, we obtain the power Lindley (PL) distribution
(Ghitany et al. [?]). The PL cdf and pdf are respectively given by

FPL(x;α, β) = 1−
(

1 +
βxα

β + 1

)
e−βx

α

and

fPL(x;α, β) =
β2

(β + 1)
(1 + xα)xα−1e−βx

α

for x > 0, α > 0, β > 0.

(6) α = a = b = 1
When α = a = b = 1, we obtain exponentiated-Lindley (EL) distribu-
tion. The EL cdf is given by

FEL(x; β, ω) =

[
1−

(
1 +

βx

β + 1

)
e−βx

]ω
for x > 0, β > 0, ω > 0. The corresponding pdf is given by

fEL(x; β, ω) =
β2ω

(β + 1)
(1 + x)e−βx

[
1−

(
1 +

βx

β + 1

)
e−βx

]ω−1
for x > 0, β > 0, ω > 0.
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(7) α = ω = a = b = 1
When α = ω = a = b = 1, we obtain Lindley distribution. The Lindley
cdf and pdf are respectively given by

FL(x; β) = 1−
(

1 +
βx

β + 1

)
e−βx

and

fL(x; β) =
β2

(β + 1)
(1 + x)e−βx

for x > 0, β > 0.

(8) ω = a = 1
When ω = a = 1, the cdf of BEPL distribution reduces to

FBPL(x;α, β, b) = 1−
[(

1 +
βxα

β + 1

)
e−βx

α

]b
for x > 0, α > 0, β > 0, b > 0. The corresponding pdf is

fBPL(x;α, β, b) =
bαβ2

(β + 1)
(1 + xα)xα−1e−βx

α

[(
1 +

βxα

β + 1

)
e−βx

α

]b−1
for x > 0, α > 0, β > 0, b > 0.

(9) α = a = 1
When α = a = 1, the cdf of BEPL distribution reduces to

FBEL(x;α, β, b) = 1−
{

1−
[
1−

(
1 +

βx

β + 1

)
e−βx

]ω}b
for x > 0, β > 0, ω > 0, b > 0. The corresponding pdf is given by

fBEL(x; β, ω, b) =
bωβ2

(β + 1)
(1 + x)e−βx

×
[
1−

(
1 +

βx

β + 1

)
e−βx

]ω−1
×

{
1−

[
1−

(
1 +

βx

β + 1

)
e−βx

]ω}b−1
,

for x > 0, β > 0, ω > 0, b > 0. This is the Kumaraswamy Lindley
distribution with parameters β, ω and b.
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(10) α = ω = a = 1
When α = ω = a = 1, the cdf of BEPL distribution reduces to

FBL(x; β, b) = 1−
[(

1 +
βx

β + 1

)
e−βx

]b
for x > 0, β > 0, b > 0. The corresponding pdf is given by

fBL(x; β, b) =
bβ2

(β + 1)
(1 + x)e−βx

[(
1 +

βx

β + 1

)
e−βx

]b−1
for x > 0, β > 0, b > 0.

2.3 Hazard and Reverse Hazard Functions

The hazard and reverse hazard functions of the BEPL distribution are pre-
sented in this section. Graphs of these functions for selected values of pa-
rameters α, β, ω, a and b are also presented. The hazard and reverse hazard
functions of the BEPL distribution are given respectively by

hBEPL(x;α, β, ω, a, b) =
fBEPL(x;α, β, ω, a, b)

FBEPL(x;α, β, ω, a, b)

=
gEPL(x) [GEPL(x)]a−1 [1−GEPL(x)]b−1

B(a, b)−BGEPL(x)(a, b)

and

τBEPL(x;α, β, ω, a, b) =
fBEPL(x;α, β, ω, a, b)

FBEPL(x;α, β, ω, a, b)

=
gEPL(x) [GEPL(x)]a−1 [1−GEPL(x)]b−1

BGEPL(x)(a, b)
,

for x > 0, α > 0, β > 0, ω > 0, a > 0, b > 0, where GEPL(x) and gEPL(x) are
the cdf and pdf of the EPL distribution given by Equations (??) and (??),
respectively. Plots of the hazard function for selected values of parameters
α, β, ω, a and b are given in Figures ?? and ??.
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Figure 2.2: Plots of the PDF for different values of α, β, ω, a and b

Figure 2.3: Plots of the PDF for different values of α, β, ω, a and b

The graphs of the hazard function for several combinations of the param-
eters represent various shapes including monotonically increasing, monoton-
ically decreasing, bathtub and upside down bathtub shapes. This attrac-
tive flexibility makes BEPL hazard rate function useful and suitable for non-
monotone empirical hazard behaviors which are more likely to be encountered
or observed in real life situations.
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2.4 Monotonicity Properties

The monotonicity properties of the BEPL distribution are discussed in this
section. Let

V (x) = GPL(x;α, β) = 1−
(

1 +
βxα

β + 1

)
e−βx

α

.

From Equation (??) we can rewrite the BEPL pdf as

fBEPL(x;α, β, ω, a, b) =
αβ2ω

B(a, b)(β + 1)
(1 + xα)xα−1e−βx

α

× [V (x)]ωa−1[1− V ω(x)]b−1

for x > 0, α > 0, β > 0, ω > 0, a > 0, b > 0. It follows that

log fBEPL(x) = log

(
αβ2ω

B(a, b)(β + 1)

)
+ log(1 + xα) + (α− 1) log(x)− βxα

+ (ωa− 1) log V (x) + (b− 1) log [1− V α(x)] , (2.9)

and

d log fBEPL(x)

dx
=

αxα−1

1 + xα
+
α− 1

x
− αβxα−1

+
(ωa− 1)(1− V ω(x))− ω(b− 1)V ω(x)

V (x) [1− V ω(x)]
V ′(x).

(2.10)

Substituting V ′(x) = dV (x)/dx = (αβ2/(β + 1))(1 + xα)xα−1e−βx
α

into Equa-
tion (??), we have

d log fBEPL(x)

dx
=

αxα−1

1 + xα
+
α− 1

x
− αβxα−1 +

αβ2

β + 1
(1 + xα)xα−1e−βx

α

×
{

(ωa− 1)(1− V ω(x))− ω(b− 1)V ω(x)

V (x) [1− V ω(x)]

}
.

Since α > 0, β > 0, ω > 0, a > 0 and b > 0, we have

V ′(x) =
dV (x)

dx
=

αβ2

β + 1
(1 + xα)xα−1e−βx

α

> 0,∀x > 0. (2.11)

If x −→ 0, then

V (x) = 1−
(

1 +
βxα

β + 1

)
e−βx

α −→ 0.
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If x −→∞, then

V (x) = 1−
(

1 +
βxα

β + 1

)
e−βx

α −→ 1.

Thus V (x) is monotonically increasing from 0 to 1. Note that, since 0 <
V (x) < 1, 0 < V ω(x) < 1,∀ω > 0,
0 < 1−V ω(x) < 1,∀ω > 0 and V ′(x) > 0, we have V ′(x)/V (x)[1−V ω(x)] > 0.
If α 6 1/2, ωa < 1 and b > 1. we obtain

d log fBEPL(x)

dx
=

αxα−1

1 + xα
+
α− 1

x
− αβxα−1

+
(ωa− 1)(1− V ω(x))− ω(b− 1)V ω(x)

V (x) [1− V ω(x)]
V ′(x) < 0

(2.12)

since [αxα−1/(1 + xα)] + [(α− 1)/x] = [(2α− 1)xα + (α− 1)]/x(1 + xα) < 0,
(ωa− 1)(1− V ω(x))− ω(b− 1)V ω(x) < 0 and V ′(x)/V (x)[1− V ω(x)] > 0.
In this case, fBEPL(x;α, β, ω, a, b) is monotonically decreasing for all x.
If α > 1/2, fBEPL(x;α, β, ω, a, b) could attain a maximum, a minimum or a
point of inflection according to whether

d2 log fBEPL(x)

dx2
< 0,

d2 log fBEPL(x)

dx2
> 0 or

d2 log fBEPL(x)

dx2
= 0.

3 Moments, Conditional Moments and Relia-

bility

In this section, moments, conditional moments and reliability and related mea-
sures including coefficients of variation, skewness and kurtosis of the BEPL
distribution are presented. A table of values for mean, variance, coefficient of
skewness (CS) and coefficient of kurtosis (CK) is also presented.

3.1 Moments

The rth moment of the BEPL distribution, denoted by µ′r is given by

µ′r = E(Xr) =

∫ ∞
−∞

xrf
BEPL

(x)dx for r = 0, 1, 2, . . . .

In order to find the moments of the BEPL distribution, consider the following
lemma.
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Lemma 1
Let

L1(α, β,m, r) =

∫ ∞
0

(1 + xα)xα+r−1
[
1−

(
1 +

βxα

β + 1

)
e−βx

α

]m−1
e−βx

α

dx,

then

L1(α, β,m, r) =
∞∑
j=0

j∑
k=0

k+1∑
l=0

(
m− 1

j

)(
j

k

)(
k + 1

l

)
(−1)jβkΓ(l + rα−1 + 1)

α(β + 1)j [β(j + 1)](l+rα
−1+1)

.

Proof. Using the series expansion

(1− z)a−1 =
∞∑
i=0

(
a− 1

i

)
(−1)izi, (3.1)

where | z |< 1 and b > 0 is a real non-integer, we have

L1(α, β,m, r) =
∞∑
j=0

(
m− 1

j

)
(−1)j

∫ ∞
0

[
1 + β(1 + xα)

β + 1

]j
e−jβx

α

(1 + xα)xα+r−1e−βx
α

dx

=
∞∑
j=0

(
m− 1

j

)
(−1)j

(β + 1)j

j∑
k=0

(
j

k

)
βk
∫ ∞
0

(1 + xα)k+1xα+r−1e(−jβx
α−βxα)dx

=
∞∑
j=0

(
m− 1

j

) j∑
k=0

(
j

k

) k+1∑
l=0

(
k + 1

l

)
(−1)jβk

(β + 1)j

∫ ∞
0

xα+αl+r−1e(−jβx
α−βxα)dx.

Now consider, ∫ ∞
0

xα+αl+r−1e(−jβx
α−βxα)dx. (3.2)

Let u = β(j + 1)xα, then du
dx

= αβ(j + 1)xα−1 and x =

[
u

β(j + 1)

]1/α
.

Consequently,

L1(α, β,m, r) =
∞∑
j=0

j∑
k=0

k+1∑
l=0

(
m− 1

j

)(
j

k

)(
k + 1

l

)
(−1)jβkΓ(l + rα−1 + 1)

α(β + 1)j [β(j + 1)](l+rα
−1+1)

.
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Therefore, the rth moment of the BEPL distribution from equation (??) is
given by

µ′r =
αβ2ω

B(a, b)(β + 1)

∞∑
i=0

(
b− 1

i

)
(−1)i

×
∫ ∞
0

xr(1 + xα)xα−1
[
1−

(
1 +

βxα

β + 1

)
e−βx

α

]ω(a+i)−1
e−βx

α

dx.

Now, using Lemma 1 with m = ω(a+ i), we have

µ′r =
αβ2ω

B(a, b)(β + 1)

∞∑
i=0

(
b− 1

i

)
(−1)iL1(α, β, ω(a+ i), r). (3.3)

The mean, variance, coefficient of variation (CV), coefficient of skewness (CS)
and coefficient of kurtosis (CK) are given by

µ = µ′1 =
αβ2ω

B(a, b)(β + 1)

∞∑
i=0

(
b− 1

i

)
(−1)iL1(α, β, ω(a+ i), 1), (3.4)

σ2 = µ′2 − µ2, (3.5)

CV =
σ

µ
=

√
µ′2 − µ2

µ
=

√
µ′2
µ2
− 1, (3.6)

CS =
E [(X − µ)3]

[E(X − µ)2]3/2
=
µ′3 − 3µµ′2 + 2µ3

(µ′2 − µ2)3/2
, (3.7)

and

CK =
E [(X − µ)4]

[E(X − µ)2]2
=
µ′4 − 4µµ′3 + 6µ2µ′2 − 3µ4

(µ′2 − µ2)2
, (3.8)

respectively.
Table 3.1 lists the first six moments of the BEPL distribution for selected

values of the parameters by fixing α = 1.5, β = 1.0 and ω = 1.5. These values
can be determined numerically using R and MATLAB. Algorithms to calcu-
late the pdf moments, reliability, mean deviations, Rényi entropy, maximum
likelihood estimators and variance-covariance matrix of the BEPL distribution
are provided in the appendix.
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Table 3.1: Moments of the BEPL distribution for some parameter values;
α = 1.5, β = 1.0 and ω = 1.5.

µ′s a = 0.5, b = 1.5 a = 1.5, b = 1.5 a = 1.5, b = 2.5 a = 2.5, b = 1.5

µ′1 0.8348214 1.407729 1.129684 1.685774

µ′2 1.035256 2.304562 1.472533 3.13659

µ′3 1.608199 4.258207 2.149913 6.366501

µ′4 2.928858 8.712316 3.450266 13.97437

µ′5 6.037089 19.4759 6.007677 32.94413

µ′6 13.77834 47.09621 11.24152 82.9509

Variance 0.33832923 0.322861063 0.19634706 0.294756021

Skewness 0.90987141 0.572390725 0.491885701 0.532003392

Kurtosis 3.760808259 3.40572536 3.236667109 3.434460209

3.2 Conditional Moments

For lifetime models, it is useful to know the conditional moments defined as
E(Xr | X > x). In order to calculate the conditional moments, we consider
the following lemma:
Lemma 2
Let

L2(α, β,m, r, t) =

∫ ∞
t

(1 + xα)xα+r−1
[
1−

(
1 +

βxα

β + 1

)
e−βx

α

]m−1
e−βx

α

dx.

then

L2(α, β,m, r, t) =
∞∑
j=0

j∑
k=0

k+1∑
l=0

(
m− 1

j

)(
j

k

)(
k + 1

l

)
(−1)jβkΓ(l + rα−1 + 1, β(j + 1)tα)

α(β + 1)j [β(j + 1)](l+rα
−1+1)

,

where Γ(a, t) =
∫∞
t
xa−1s−xdx is the upper incomplete gamma function.

Proof. Using the same procedure that was used in Lemma 1, this can be sim-
plified into the following form.

L2(α, β,m, r, t) =
∞∑
j=0

j∑
k=0

k+1∑
l=0

(
m− 1

j

)(
j

k

)(
k + 1

l

)
(−1)jβk

(β + 1)j
(3.9)

×
∫ ∞
t

xα+αl+r−1e(−jβx
α−βxα)dx. (3.10)



Beta Exponentiated Power Lindley Distribution with Applications 17

Now consider,
∫∞
t
xα+αl+r−1e(−jβx

α−βxα)dx, and let u = β(j + 1)xα, then

du
dx

= αβ(j + 1)xα−1 and x =

[
u

β(j + 1)

]1/α
. The above integral can be rewrit-

ten by using the complementary incomplete gamma function Γ(a, t) =
∫∞
t
xa−1e−xdx.

Consequently,

L2(α, β,m, r, t) =
∞∑
j=0

j∑
k=0

k+1∑
l=0

(
m− 1

j

)(
j

k

)(
k + 1

l

)
(−1)jβkΓ(l + rα−1 + 1, β(j + 1)tα)

α(β + 1)j [β(j + 1)](l+rα
−1+1)

.

Now using Lemma 2, the rth conditional moment of the BEPL distribution
is given by

E(Xr|X > x) =
αβ2ω

B(a, b)(β + 1)

∞∑
i=0

(
b− 1

i

)
(−1)i

L2(α, β, ω(a+ i), r, x)

1− FBEPL(x;α, β, ω, a, b)

=
αβ2ω

(β + 1)

∞∑
i=0

(
b− 1

i

)
(−1)i

L2(α, β, ω(a+ i), r, x)

B(a, b)−BGELP (x)(a, b)
.

The mean residual lifetime function is given by E(X|X > x)−x. The moment
generating function (MGF) of the BEPL distribution is given by

MX(t) =
αβ2ω

B(a, b)(β + 1)

∞∑
i=0

∞∑
n=0

(
b− 1

i

)
(−1)i

tn

n!
L1(α, β, ω(a+ i), n). (3.11)

3.3 Reliability

We derive the reliabilityR whenX and Y have independent BEPL(α1, β1, ω1, a1, b1)
and BEPL(α2, β2, ω2, a2, b2) distributions, respectively. Note from Equation
(??) that the BEPL cdf can be written as:

FBEPL(x;α, β, ω, a, b) =
1

B(a, b)

∫ GEPL(x;α,β,ω)

0

ta−1(1− t)b−1dt,

=
1

B(a, b)

∞∑
j=0

(
b− 1

j

)
(−1)j

a+ j

[
1−

(
1 +

βxα

β + 1

)
e−βx

α

]ω(a+j)
.

(3.12)
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Now, from Equations (??) and (??), we obtain

R = P (X > Y )

=

∫ ∞
0

fX(x;α1, β1, ω1, a1, b1)FY (x;α2, β2, ω2, a2, b2)dx

=

∫ ∞
0

α1β
2
1ω1

B(a1, b1)(β1 + 1)
(1 + xα1)xα1−1e−β1x

α1

×
[
1−

(
1 +

β1x
α1

β1 + 1

)
e−β1x

α1

]ω1a1−1

×
{

1−
[
1−

(
1 +

β1x
α1

β1 + 1

)
e−β1x

α1

]ω1
}b1−1

× 1

B(a2, b2)

∞∑
j=0

(
b2 − 1

j

)
(−1)j

a2 + j

[
1−

(
1 +

β2x
α2

β2 + 1

)
e−β2x

α2

]ω2(a2+j)

dx.

(3.13)

We apply the following series representations:[
1−

(
1 +

β1x
α1

β1 + 1

)
e−β1x

α1

]ω1a1−1

=
∞∑
k=0

(
ω1a1 − 1

k

)
(−1)k

(
1 +

β1x
α1

β1 + 1

)k
e−β1kx

α1

=
∞∑
k=0

k∑
m=0

(
ω1a1 − 1

k

)(
k

m

)
(−1)kβm1 x

mα1

(β1 + 1)m
e−β1kx

α1 ,

(3.14)

{
1−

[
1−

(
1 +

β1x
α1

β1 + 1

)
e−β1x

α1

]ω1
}b1−1

=
∞∑
l=0

∞∑
p=0

p∑
n=0

(
b1 − 1

l

)(
ω1l

p

)(
p

n

)
× (−1)l+pβn1 x

nα1

(β1 + 1)n
e−β1px

α1 (3.15)

and[
1−

(
1 +

β2x
α2

β2 + 1

)
e−β2x

α2

]ω2(a2+j)

=
∞∑
q=0

q∑
t=0

(
ω2(a2 + j)

q

)(
q

t

)
(−1)qβt2x

tα2

(β2)t
e−β2qx

α2 .

(3.16)
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By substituting Equations (??), (??) and (??) into Equation (??), we obtain

R =

∫ ∞
0

α1β
2
1ω1

B(a1, b1)(β1 + 1)
(1 + xα1)xα1−1e−β1x

α1

×
∞∑
k=0

k∑
m=0

(
ω1a1 − 1

k

)(
k

m

)
(−1)kβm1 x

mα1

(β1 + 1)m
e−β1kx

α1

×
∞∑
l=0

∞∑
p=0

p∑
n=0

(
b1 − 1

l

)(
ω1l

p

)(
p

n

)
(−1)l+pβn1 x

nα1

(β1 + 1)n
e−β1px

α1

× 1

B(a2, b2)

∞∑
j=0

(
b2 − 1

j

)
(−1)j

a2 + j

×
∞∑
q=0

q∑
t=0

(
ω2(a2 + j)

q

)(
q

t

)
(−1)qβt2x

tα2

(β2)t
e−β2qx

α2dx

=
α1ω1

B(a1, b1)B(a2, b2)

∞∑
k,l,p,j,q=0

k∑
m=0

p∑
n=0

q∑
t=0

(
ω1a1 − 1

k

)(
k

m

)(
b1 − 1

l

)(
ω1l

p

)

×
(
p

n

)(
b2 − 1

j

)(
ω2(a2 + j)

q

)(
q

t

)
(−1)k+l+p+j+qβm+n+2

1 βt2
(β1 + 1)m+n+1(β2 + 1)t(a2 + j)

×
∫ ∞
0

(1 + xα1)x(m+n+1)α1+tα2−1exp(− [β1(1 + p+ k)xα1 + β2qx
α2 ])dx.

(3.17)

Note that,∫ ∞
0

(1 + xα1)x(m+n+1)α1+tα2−1e−β1(1+p+k)x
α1−β2qxα2dx =

∞∑
s=0

∞∑
r=0

(
α1

r

)
(−1)sβs1(1 + p+ k)s

×
∫ ∞
0

x(m+n+s+1)α1+tα2+r−1e−β2qx
α2dx.

(3.18)

Using the definition of gamma function, we have

∞∫
0

x(m+n+s+1)α1+tα2+r−1e−β2qx
α2dx =

Γ((m+ n+ s+ 1)α1α
−1
2 + rα−12 + t)

α2(β2q)(m+n+s+1)α1α
−1
2 +rα−1

2 +t
.

(3.19)
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Substituting Equation (??) into Equation (??), we obtain∫ ∞
0

(1 + xα1)x(m+n+1)α1+tα2−1e−β1(1+p+k)x
α1−β2qxα2dx =

∞∑
s=0

∞∑
r=0

(
α1

r

)
(−1)sβs1(1 + p+ k)s

× Γ((m+ n+ s+ 1)α1α
−1
2 + rα−12 + t)

α2(β2q)(m+n+s+1)α1α
−1
2 +rα−1

2 +t
.

(3.20)

Finally, substituting Equation (??) into (??), we obtain

R =
α1ω1

B(a1, b1)B(a2, b2)

∞∑
k,l,p,j,q=0

k∑
m=0

p∑
n=0

q∑
t=0

(
ω1a1 − 1

k

)(
k

m

)(
b1 − 1

l

)(
ω1l

p

)

×
(
p

n

)(
b2 − 1

j

)(
ω2(a2 + j)

q

)(
q

t

)
(−1)k+l+p+j+qβm+n+2

1 βt2
(β1 + 1)m+n+1(β2 + 1)t(a2 + j)

×
∞∑
s=0

∞∑
r=0

(
α1

r

)
(−1)sβs1(1 + p+ k)s

× Γ((m+ n+ s+ 1)α1α
−1
2 + rα−12 + t)

α2(β2q)(m+n+s+1)α1α
−1
2 +rα−1

2 +t
.

=
α1ω1

B(a1, b1)B(a2, b2)

∞∑
k,l,p,j,q,s,r=0

k∑
m=0

p∑
n=0

q∑
t=0

(
ω1a1 − 1

k

)(
k

m

)(
b1 − 1

l

)(
ω1l

p

)

×
(
p

n

)(
b2 − 1

j

)(
ω2(a2 + j)

q

)(
q

t

)(
α1

r

)
(−1)k+l+p+j+q+sβm+n+s+2

1 βt2(1 + p+ k)s

(β1 + 1)m+n+1(β2 + 1)t(a2 + j)

× Γ((m+ n+ s+ 1)α1α
−1
2 + rα−12 + t)

α2(β2q)(m+n+s+1)α1α
−1
2 +rα−1

2 +t
.

4 Mean Deviations, Bonferroni and Lorenz Curves

In this section, we present the mean deviation about the mean, the mean devi-
ation about the median, Bonferroni and Lorenz curves. Bonferroni and Lorenz
curves are income inequality measures that are also useful and applicable in
other areas including reliability, demography, medicine and insurance. The
mean deviation about the mean and mean deviation about the median are
defined by

D(µ) =

∫ ∞
0

| x− µ | f(x)dx and D(M) =

∫ ∞
0

| x−M | f(x)dx,
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respectively, where µ = E(X) and M = Median(X) = F−1(1/2) is the median
of F. These measuresD(µ) andD(M) can be calculated using the relationships:

D(µ) = 2µF (µ)− 2µ+ 2

∫ ∞
µ

xf(x)dx = 2µF (µ)− 2

∫ µ

0

xf(x)dx,

and

D(M) = −µ+ 2

∫ ∞
M

xf(x)dx = µ− 2

∫ M

0

xf(x)dx.

Now using Lemma 2, we have

D(µ) = 2µFBEPL(µ)− 2µ+
2αβ2ω

B(a, b)(β + 1)

∞∑
i=0

(
b− 1

i

)
(−1)iL2(α, β, ω(a+ i), 1, µ)

and

D(M) = −µ+
2αβ2ω

B(a, b)(β + 1)

∞∑
i=0

(
b− 1

i

)
(−1)iL2(α, β, ω(a+ i), 1,M).

Lorenz and Bonferroni curves are given by

L(F
BEPL

(x)) =

∫ x
0
xf

BEPL
(x)dx

E(X)
, and B(F

BEPL
(x)) =

L(F
BEPL

(x))

F
BEPL

(x)
,

or

L(p) =
1

µ

∫ q

0

xf
BEPL

(x)dx, and B(p) =
1

pµ

∫ q

0

xf
BEPL

(x)dx,

respectively, where q = F−1
BEPL

(p). Using Lemma 2, we can re-write Lorenz and
Bonferroni curves as

B(p) =
1

pµ

∫ q

0

xfBEPL(x)dx

=
1

pµ

[∫ ∞
0

xf
BEPL

(x)dx−
∫ ∞
q

xf
BEPL

(x)dx

]
=

1

pµ

[
µ− αβ2ω

B(a, b)(β + 1)

∞∑
i=0

(
b− 1

i

)
(−1)iL2(α, β, ω(a+ i), 1, q)

]
,

and

L(p) =
1

µ

∫ q

0

xfBEPL(x)dx

=
1

µ

[∫ ∞
0

xf
BEPL

(x)dx−
∫ ∞
q

xf
BEPL

(x)dx

]
=

1

µ

[
µ− αβ2ω

B(a, b)(β + 1)

∞∑
i=0

(
b− 1

i

)
(−1)iL2(α, β, ω(a+ i), 1, q)

]
.
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5 Order Statistics and Measures of Uncertainty

In this section, we present distribution of order statistics, Shannon entropy
[?], [?], as well as Rényi entropy [?] for the BEPL distribution. The concept
of entropy plays a vital role in information theory. The entropy of a random
variable is defined in terms of its probability distribution and is a good measure
of randomness or uncertainty.

5.1 Distribution of Order Statistics

Order Statistics play an important role in probability and statistics. In this
section, we present the distribution of the order statistics for the BEPL dis-
tribution. Suppose that X1, X2, . . . , Xn is a random sample of size n from a
continuous pdf, f(x). Let X1:n < X2:n < . . . < Xn:n denote the corresponding
order statistics. If X1, X2, . . . , Xn is a random sample from BEPL distribution,
it follows from Equations (??) and (??) that the pdf of the kth order statistic,
say Yk = Xk:n is given by

fk(yk) =
n!

(k − 1)!(n− k)!
f
BEPL

(yk)
n−k∑
l=0

(
n− k
l

)
(−1)l

[
BGEPL(yk;α,β,ω)(a, b)

B(a, b)

]k+l−1
× αβ2ω

B(a, b)(β + 1)
(1 + yαk )yα−1k exp(−βyαk ) [V (yk)]

ωa−1 [1− V ω(yk))]
b−1

=
αβ2ωn!(1 + yαk )yα−1k exp(−βyαk )

(β + 1)(k − 1)!(n− k)!

n−k∑
l=0

b−1∑
m=0

(
n− k
l

)(
b− 1

m

)
× (−1)l+m

(B(a, b))k+l−1

(
BGEPL(yk;α,β,ω)(a, b)

k+l−1
)

[V (yk)]
ω(a+m)−1 ,

where V (yk) = GPL(yk;α, β, ω) = 1−
(

1 +
βyαk
β + 1

)
exp(−βyαk ) andGEPL(yk;α, β, ω) =

V ω(yk). The corresponding cdf of Yk is

Fk(yk) =
n∑
j=k

n−j∑
l=0

(
n

j

)(
n− j
l

)
(−1)l [F

BEPL
(yk)]

j+l

=
n∑
j=k

n−j∑
l=0

(
n

j

)(
n− j
l

)
(−1)l

[
BGEPL(yk;α,β,ω)(a, b)

B(a, b)

]j+l

=
n∑
j=k

n−j∑
l=0

(
n

j

)(
n− j
l

)
(−1)l

[B(a, b)]j+l
[
BGEPL(yk;α,β,ω)(a, b)

]j+l
.
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5.2 Shannon Entropy

Shannon entropy is defined by H [fBEPL] = E [− log(f
BEPL

(X;α, β, ω, a, b))].
Thus, we have

H [fBEPL] = log

[
B(a, b)(β + 1)

αβ2ω

]
− E [log(1 +Xα)]

− (α− 1)E [log(X)] + βE [Xα]

− (ωa− 1)E

[
log

{
1−

(
1 +

βXα

1 + β

)
e−βX

α

}]
− (b− 1)E

[
log

{
1−

[
1−

(
1 +

βXα

1 + β

)
e−βX

α

]ω}]
. (5.1)

Note that, for |x| < 1, using the series representation log(1+x) =
∑∞

q=1
(−1)q+1xq

q
,

we obtain

E [log(1 +Xα)] = −
∞∑
q=1

(−1)q

q
E [Xqα] , (5.2)

E [log(X)] = −
∞∑
p=1

p∑
s=0

(
p

s

)
(−1)s

p
E [Xs] , (5.3)

E

[
log

{
1−

(
1 +

βXα

1 + β

)
e−βX

α

}]
= −

∞∑
t=1

t∑
u=0

(
t

u

)
βu

t(β + 1)u

× E
[
Xuαe−βtX

α]
(5.4)

and

E

[
log

{
1−

[
1−

(
1 +

βXα

1 + β

)
e−βX

α

]ω}]
=

∞∑
c=1

∞∑
d=0

d∑
e=0

(
ωc

d

)(
d

e

)
(−1)d+1βe

c(β + 1)e

× E
[
Xeαe−βdX

α]
. (5.5)

By using the results in Lemma 1, we can calculate Equations (??), (??), (??)
and (??).
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Now, we obtain Shannon entropy for the BEPL distribution as follows:

H [fBEPL(X;α, β, ω, a, b)] = log

[
B(a, b)(β + 1)

αβ2ω

]
+

αβ2ω

B(a, b)(β + 1)

∞∑
i=1

(
b− 1

i

)
(−1)i

×
[ ∞∑
q=1

(−1)q

q
L1(α, β, ω(a+ i), qα)

+ (α− 1)
∞∑
p=1

∞∑
s=0

(
p

s

)
(−1)s

p
L1(α, β, ω(a+ i), s)

+ βL1(α, β, ω(a+ i), α)

+ (ωa− 1)
∞∑
t=1

∞∑
v=0

∞∑
u=0

(
t

u

)
βu+vtv−1(−1)v

(β + 1)u+1v!

× L1(α, β, ω(a+ i), α(u+ v))

+ (b− 1)
∞∑
c=1

∞∑
d=0

d∑
e=0

∞∑
f=0

(
ωc

d

)(
d

e

)
βe+fdf (−1)d+f

c(β + 1)e+1f !

× L1(α, β, ω(a+ i), α(e+ f))

]
. (5.6)

5.3 Rényi Entropy

Rényi entropy [?] is an extension of Shannon entropy. Rényi entropy is defined
to be

IR(v) =
1

1− v
log

(∫ ∞
0

f vBEPL(x;α, β, ω, a, b)dx

)
, v 6= 1, v > 0. (5.7)

Rényi entropy tends to Shannon entropy as v → 1. Note that by using the
series expansion in Equation (??), and Equation (??), we have∫ ∞
0

f vBEPL(x;α, β, ω, a, b)dx =

(
αβ2ω

B(a, b)(β + 1)

)v ∞∑
i,j,p,q=0

∞∑
k=0

q∑
r=0

(
v

i

)(
ωav − v

j

)
×

(
j

k

)(
bv − v
p

)(
ωp

q

)(
q

r

)
(−1)j+p+qβk+r

(β + 1)k+r)

×
∫ ∞
0

xα(i+k+r+v)−ve−β(v+j+q)x
α

dx.

Now let u = β(v + j + q)xα, then
∞∫
0

xα(i+k+r+v)−ve−β(v+j+q)x
α

dx =
Γ(i+ k + r + v − (v−1)

α
)

α [β(v + j + q)]i+k+r+v−
(v−1)
α

)
.
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Consequently, Rényi entropy is given by

IR(v) =
1

1− v
log

[(
αβ2ω

B(a, b)(β + 1)

)v ∞∑
i,j,p,q=0

∞∑
k=0

q∑
r=0

(
v

i

)(
ωav − v

j

)(
j

k

)
×

(
bv − v
p

)(
ωp

q

)(
q

r

)
(−1)j+p+qβk+r

(β + 1)k+r

×
Γ(i+ k + r + v − (v−1)

α
)

α [β(v + j + q)]i+k+r+v−
(v−1)
α

]
, (5.8)

for v 6= 1, v > 0.

5.4 s-Entropy

The s-entropy for the BEPL distribution is defined by

Hs [fBEPL(X;α, β, ω, a, b)] =


1

s− 1

[
1−

∫ ∞
0

f sBEPL(x;α, β, ω, a, b)dx

]
if s 6= 1, s > 0,

E [− log f(X)] if s = 1.

Now, using the same procedure that was used to derive Equation (??), we have∫ ∞
0

f sBEPL(x;α, β, ω, a, b)dx =

(
αβ2ω

B(a, b)(β + 1)

)s ∞∑
i,j,p,q=0

∞∑
k=0

q∑
r=0

(
s

i

)
×

(
ωas− s

j

)(
j

k

)(
bs− s
p

)(
ωp

q

)(
q

r

)
× (−1)j+p+qβk+r

(β + 1)k+r
Γ(i+ k + r + s− (s−1)

α
)

α [β(s+ j + q)]i+k+r+s−
(s−1)
α

.

Consequently, s-entropy is given by

Hs [fBEPL(X;α, β, ω, a, b)] =
1

s− 1
− 1

s− 1

(
αβ2ω

B(a, b)(β + 1)

)s
×

∞∑
i,j,p,q=0

∞∑
k=0

q∑
r=0

(
s

i

)(
ωas− s

j

)(
j

k

)
×

(
bs− s
p

)(
ωp

q

)(
q

r

)
(−1)j+p+qβk+r

(β + 1)k+r

×
Γ(i+ k + r + s− (s−1)

α
)

α [β(s+ j + q)]i+k+r+s−
(s−1)
α

for s 6= 1, s > 0.
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6 Maximum Likelihood Estimation

In this section, the maximum likelihood estimates of the BEPL parameters
α, β, ω, a and b are presented. If x1, x2, . . . , xn is a random sample from BEPL
distribution, the log-likelihood function is given by

logL(α, β, ω, a, b) = n log

(
αβ2ω

B(a, b)(β + 1)

)
+

n∑
i=1

log(1 + xαi )

+ (α− 1)
n∑
i=1

log(xi)− β
n∑
i=1

xαi + (ωa− 1)
n∑
i=1

log V (xi)

+ (b− 1)
n∑
i=1

log [1− V ω(xi)] ,

where V (xi) = GPL(xi;α, β) = 1−
(

1 +
βxαi
β + 1

)
exp (−βxαi ). The partial

derivatives of logL(α, β, ω, a, b) with respect to the parameters a, b, α, β and
ω are:

∂ logL(α, β, ω, a, b)

∂a
= n [ψ(a+ b)− ψ(a)] + ω

n∑
i=1

log V (xi),

∂ logL(α, β, ω, a, b)

∂b
= n [ψ(a+ b)− ψ(b)] +

n∑
i=1

log [1− V ω(xi)] ,

∂ logL(α, β, ω, a, b)

∂α
=

n

α
+

n∑
i=1

log(xi)

[
xαi

1 + xαi
− βxαi + 1

]
− (ωa− 1)

n∑
i=1

∂V (xi)/∂α

V (xi)

+ ω(b− 1)
n∑
i=1

[V (xi)]
ω−1 ∂V (xi)/∂α

1− V ω(xi)
,

∂ logL(α, β, ω, a, b)

∂β
=

n(β + 2)

β(β + 1)
−

n∑
i=1

xαi − (ωa− 1)
n∑
i=1

∂V (xi)/∂β

V (xi)

+ ω(b− 1)
n∑
i=1

[V (xi)]
ω−1 ∂V (xi)/∂β

1− V ω(xi)

and

∂ logL(α, β, ω, a, b)

∂ω
=

n

ω
− (b− 1)

n∑
i=1

V ω(xi) log V (xi)

1− V ω(xi)
+ a

n∑
i=1

log V (xi),
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respectively, where

∂V (xi)

∂α
=

β2

β + 1
log(xi)(1 + xαi )xαi exp(−βxαi )

and

∂V (xi)

∂β
=

[(
1 +

βxαi
β + 1

)
− 1

(β + 1)2

]
xαi exp(−βxαi ).

When all the parameters are unknown, numerical methods must be applied to
determine the estimates of the model parameters since the system of equations
is not in closed form. Therefore, the maximum likelihood estimates, Θ̂ of
Θ = (α, β, ω, a, b) can be determined using an iterative method such as the
Newton-Raphson procedure.

6.1 Fisher Information Matrix

In this section, we present a measure for the amount of information. This
information can be used to obtain bounds on the variance of estimators and as
well as approximate the sampling distribution of an estimator obtained from
a large sample. Moreover, it can be used to obtain an approximate confidence
interval in the case of a large sample.

Let X be a random variable with the BEPL pdf fBEPL(·; Θ), where Θ =
(θ1, θ2, θ3, θ4, θ5)

T = (α, β, ω, a, b)T . Then, Fisher information matrix (FIM) is
the 5× 5 symmetric matrix with elements:

Iij(Θ) = EΘ

[
∂ log(fBEPL(X; Θ))

∂θi

∂ log(fBEPL(X; Θ))

∂θj

]
.

If the density fBEPL(·; Θ) has a second derivative for all i and j, then an
alternative expression for Iij(Θ) is

Iij(Θ) = EΘ

[
∂2 log(fBEPL(X; Θ))

∂θi∂θj

]
.

For the BEPL distribution, all second derivatives exist; therefore, the formula
above is appropriate and most importantly significantly simplifies the compu-
tations. Elements of the FIM can be numerically obtained by MATLAB or
MAPLE software. The total FIM In(Θ) can be approximated by

Jn(Θ̂) ≈
[
− ∂2 logL

∂θi∂θj

∣∣∣∣
Θ=Θ̂

]
5×5

(6.1)

For real data, the matrix given in Equation (??) is obtained after the conver-
gence of the Newton-Raphson procedure in MATLAB or R software.
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6.2 Asymptotic Confidence Intervals

In this section, we present the asymptotic confidence intervals for the param-
eters of the BEPL distribution. The expectations in the Fisher Information
Matrix (FIM) can be obtained numerically. Let Θ̂ = (α̂, β̂, ω̂, â, b̂) be the
maximum likelihood estimate of Θ = (α, β, ω, a, b). Under the usual regularity
conditions and that the parameters are in the interior of the parameter space,

but not on the boundary, we have:
√
n(Θ̂ − Θ)

d−→ N5(0, I
−1(Θ)), where

I(Θ) is the expected Fisher information matrix. The asymptotic behavior is
still valid if I(Θ) is replaced by the observed information matrix evaluated
at Θ̂, that is J(Θ̂). The multivariate normal distribution with mean vector
0 = (0, 0, 0, 0, 0)T and covariance matrix I−1(Θ) can be used to construct confi-
dence intervals for the model parameters. That is, the approximate 100(1−η)%
two-sided confidence intervals for α, β, ω, a and b are given by

α̂± Zη/2
√

I−1αα(Θ̂), β̂ ± Zη/2
√

I−1ββ (Θ̂), ω̂ ± Zη/2
√

I−1ωω(Θ̂),

â± Zη/2
√

I−1aa (Θ̂) and b̂± Zη/2
√

I−1bb (Θ̂)

respectively, where I−1αα(Θ̂), I−1ββ (Θ̂), I−1ωω(Θ̂), I−1aa (Θ̂) and I−1bb (Θ̂) are diagonal

elements of I−1n (Θ̂) = (nIΘ̂))−1 and Zη/2 is the upper (η/2)th percentile of a
standard normal distribution.

We can use the likelihood ratio (LR) test to compare the fit of the BEPL
distribution with its sub-models for a given data set. For example, to test
α = ω = 1, the LR statistic is ω∗ = 2[ln(L(â, b̂, β̂, α̂, ω̂)) − ln(L(ã, b̃, β̃, 1, 1))],
where â, b̂, β̂, α̂ and ω̂ are the unrestricted estimates, and ã, b̃, and β̃ are
the restricted estimates. The LR test rejects the null hypothesis if δ∗ > χ2

ε
,

where χ2
ε

denote the upper 100ε% point of the χ2 distribution with 2 degrees
of freedom.

7 Applications

In this section, the BEPL distribution is applied to real data in order to illus-
trate the usefulness and applicability of the model. We fit the density functions
of the beta-exponentiated power Lindley (BEPL), beta exponentiated Lindley
(BEL), exponentiated power Lindley (EPL) [?], beta power Lindley (BPL),
power Lindley (PL), and Lindley (L) distributions. We provide examples to
illustrate the flexibility of the BEPL distribution in contrast to other models
including the BEL, BPL, PL, L, beta-Weibull (BW) [?], beta-exponential (BE)
[?] and Weibull (W) distributions for data modeling purposes. The pdf of the
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BW distribution [?] is given by

fBW (x;α, λ, a, b) =
αλα

B(a, b)
xα−1 exp(−b(λx)α)[1− exp(−(λx)α)]a−1,

for x > 0, α > 0, λ > 0, a > 0, b > 0. When α = 1, the beta exponential pdf
is obtained, [?].

Estimates of the parameters of the distributions, standard errors (in paren-
theses), Akaike Information Criterion (AIC = 2p−2 log(L)), Consistent Akaike

Information Criterion (AICC = AIC + 2p(p+1)
n−p−1 ), Bayesian Information Crite-

rion (BIC = p log(n)−2 log(L)), where L = L(Θ̂) is the value of the likelihood
function evaluated at the parameter estimates, n is the number of observations,
and p is the number of estimated parameters are obtained.

The first data set represents the maintenance data with 46 observations re-
ported on active repair times (hours) for an airborne communication transceiver
discussed by Alven [?], Chhikara and Folks [?] and Dimitrakopoulou et al. [?].
It consists of the observations listed below: 0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6,
0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2,
2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.3,
22.0, 24.5.

The second data set represents the remission times (in months) of a random
sample of 128 bladder cancer patients reported in Lee and Wang ([?]). See the
table below.

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 3.52
4.98 6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09 9.22 13.80
25.74 0.50 2.46 3.64 5.09 7.26 9.47 14.24 25.82 0.51 2.54
3.70 5.17 7.28 9.74 14.76 26.31 0.81 2.62 3.82 5.32 7.32
10.06 14.77 32.15 2.64 3.88 5.32 7.39 10.34 14.83 34.26 0.90
2.69 4.18 5.34 7.59 10.66 15.96 36.66 1.05 2.69 4.23 5.41
7.62 10.75 16.62 43.01 1.19 2.75 4.26 5.41 7.63 17.12 46.12
1.26 2.83 4.33 5.49 7.66 11.25 17.14 79.05 1.35 2.87 5.62
7.87 11.64 17.36 1.40 3.02 4.34 5.71 7.93 11.79 18.10 1.46
4.40 5.85 8.26 11.98 19.13 1.76 3.25 4.50 6.25 8.37 12.02
2.02 3.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76 12.07
21.73 2.07 3.36 6.93 8.65 12.63 22.69 - - - -

Table 7.1: Cancer Patients Data, Lee and Wang [?]

The third data set consists of the number of successive failures for the air
conditioning system of each member in a fleet of 13 Boeing 720 jet airplanes
(Proschan [?]). The data is presented in Table ??.
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Table 7.2: Air conditioning system data

194 413 90 74 55 23 97 50 359 50 130 487 57
102 15 14 10 57 320 261 51 44 9 254 493 33
18 209 41 58 60 48 56 87 11 102 12 5 14
14 29 37 186 29 104 7 4 72 270 283 7 61
100 61 502 220 120 141 22 603 35 98 54 100 11
181 65 49 12 239 14 18 39 3 12 5 32 9
438 43 134 184 20 386 182 71 80 188 230 152 5
36 79 59 33 246 1 79 3 27 201 84 27 156
21 16 88 130 14 118 44 15 42 106 46 230 26
59 153 104 20 206 5 66 34 29 26 35 5 82
31 118 326 12 54 36 34 18 25 120 31 22 18
216 139 67 310 3 46 210 57 76 14 111 97 62
39 30 7 44 11 63 23 22 23 14 18 13 34
16 18 130 90 163 208 1 24 70 16 101 52 208
95 62 11 191 14 71

Estimates of the parameters of BEPL distribution (standard error in paren-
theses), Akaike Information Criterion, Consistent Akaike Information Criterion
and Bayesian Information Criterion are given in Table ?? for the active repair
time data, in Table ?? for the cancer patient data and in Table ?? for the air
conditioning system data.

Table 7.3: Estimates of Models for Repair Times Data

Estimates Statistics
Model α β ω a b −2 logL AIC AICC BIC

BEPL(α, β, ω, a, b) 0.08792 7.5983 69.3171 41.0765 2.1953 199.3 209.3 210.8 218.5
(0.2992) (15.9158) (1260.74) (15.5515) (6.2258)

PL(α, β, 1, 1, 1) 0.7581 0.6757 1 1 1 210.0 214.0 214.3 217.7
(0.07424) (0.1016)

L(1, β, 1, 1, 1) 1 0.4664 1 1 1 220.0 222.0 222.1 223.8
(0.0499)

BL(1, β, 1, a, b) 1 1.6145 1 0.9513 0.2007 212.9 218.9 219.5 224.4
(0.03449) (0.2505) (0.03284)

BW(α, β, −, a, b) 0.5408 36.6023 - 41.4065 0.1263 198.0 206.0 207.0 213.3
(0.1821) (21.0749) (3.4654) (0.1214)

W(α, β, −, 1, 1) 0.8986 0.2949 - 1 1 208.9 212.9 213.2 216.6
(0.09576) (0.05138)

BE(1, β, −, a, b) 1 0.01218 - 0.9322 21.2530 209.9 215.9 216.4 221.3
(0.003109) (0.1793) (1.7710)

For the repair times data set, the LR statistic for the hypothesis H0:
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PL(α, β, 1, 1, 1) against Ha: BEPL(α, β, ω, a, b), is ω∗ = 10.7. The p-value is
0.01346379 < 0.05. Therefore, there is a significant difference between PL and
BEPL distributions. A LR test ofH0: L(1, β, 1, 1, 1) vsHa :BEPL(α, β, ω, a, b)
shows that ω∗ = 20.7, and p-value=0.00036312 < 0.001. Therefore, there is
a significant difference between L and BEPL distributions. There is also a
significant difference between PL and L distributions where ω∗ = 10.0. with a
p-value of 0.00107136 < 0.01. Moreover, the values of the statistics AIC and
AICC are smaller for the BEPL distribution and show that the BEPL distri-
bution is a “better” fit than its sub-models for the repair times data, however
a comparison of BEPL and BW distributions shows that the four parameter
BW distribution is slightly better.

The asymptotic covariance matrix of MLEs for BEPL model parameters,
which is the FIM I−1n (Θ̂), is given by

0.08952 −4.5464 −370.36 4.2174 −1.6999
−4.5464 253.31 19939 −184.68 74.4387
−370.36 19939 1589474 −15981 6439.33
4.2174 −184.68 −15981 241.85 −96.1693
−1.6999 74.4387 6439.33 −96.1693 38.761


and the 95% two-sided asymptotic confidence intervals for α, β, ω, a and b are
given by 0.08792±0.586432, 7.5983±31.194968, 69.3171±2471.0504, 41.0765±
30.48094 and 2.1953±12.202568, respectively. Plots of the fitted densities and
the histogram of the repair time data are given in Figure ??.
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Figure 7.1: Plot of the fitted densities for the Repair Times Data

Table 7.4: Estimates of Models for Cancer Patient Data

Estimates Statistics
Model α β ω a b −2 logL AIC AICC BIC

BEPL(α, β, ω, a, b) 0.9049 0.3352 34.3398 0.0358 0.3598 818.8736 828.8736 829.3659 843.1337
(0.2657) (0.2508) (0.0039) (0.0199) (0.2251)

BPL(α, β, 1, a, b) 0.60245 0.8686 1 2.5744 0.7605 820.8393 828.8393 829.1645 840.2474
(0.2299) (0.4169) - (1.5238) (1.1546)

PL(α, β, 1, 1, 1) 0.8302 0.2943 1 1 1 826.7076 830.7076 830.8636 836.4117
(0.0472) (0.0370)

L(1, β, 1, 1, 1) 1 0.19614 1 1 1 839.0596 841.0596 841.0916 843.9118
(0.0499)

BW(α, β, −, a, b) 0.6689 0.3304 - 2.7257 0.8808 821.3575 829.3575 829.6827 840.7657
(0.2368) (0.4177) (1.5572) (1.3743)

W(α, β, −, 1, 1) 1.0479 0.1046 - 1 1 828.1738 832.1738 832.2698 837.8778
(0.0676) (0.0093)
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For the cancer patients data, the LR statistics for the test of the hypotheses
H0 : PL(α, β, 1, 1, 1) against Ha : BEPL(α, β, ω, a, b) and H0 : L(1, β, 1, 1, 1)
against Ha : BEPL(α, β, ω, a, b) are 7.844 (p − value = 0.04956 < 0.05) and
20.186 (p − value = 0.000459 < 0.001), respectively. Consequently, we re-
ject the null hypothesis in favor of the BEPL distribution and conclude that
the BEPL distribution is significantly better than the PL and L distributions.
However, there is no significant difference between the BPL and BEPL distri-
butions based on the LR test. Also, based on the values of the statistics: AIC,
AICC and BIC, we conclude that the BPL distribution is the better fit for the
cancer patient data. The BPL distribution is also slightly better that the BW
distribution based on the values of these statistics. Plots of the fitted densities
and the histogram for the cancer patient data are given in Figure ??.

Figure 7.2: Plot of the fitted densities for the Cancer Patients Data
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Table 7.5: Estimates of Models for Air Conditioning System Data

Estimates Statistics
Model α β ω a b −2 logL AIC AICC BIC

BEPL(α, β, ω, a, b) 0.7945 0.1509 6.7278 0.2035 0.2303 2064.1 2074.1 2074.4 2090.2
(0.2706) (0.2102) (3.4546) (0.2146) (0.1512)

BPL(α, β, 1, a, b) 0.4316 0.4867 1 3.1251 0.9630 2066.7 2074.7 2074.9 2087.6
(0.0573) (0.1658) (0.4284) (0.8737)

BEL(1, β, ω, a, b) 1 0.0453 7.5488 0.1048 0.2034 2064.8 2072.8 2073.0 2085.8
(0.0194) (3.9156) (0.0623) (0.0649)

BL(1, β, 1, a, b) 1 0.02343 1 0.4842 0.5378 2080.6 2086.6 2086.7 2096.3
(0.00972) (0.0538) (0.2302)

PL(α, β, 1, 1, 1) 0.6609 0.1807 1 1 1 2071.4 2075.4 2075.5 2081.9
(0.0316) (0.0165)

L(1, β, 1, 1, 1) 1 0.0215 1 1 1 2165.3 2167.3 2167.3 2170.5
(0.00111)

BW(α, β, −, a, b) 0.7383 0.2719 - 2.7250 0.1188 2064.6 2072.6 2078.8 2085.6
(0.1114) (0.7861) (4.7308) (0.2421)

W(α, β, −, 1, 1) 0.9109 0.0114 - 1 1 2073.5 2077.5 2077.6 2084.0
(0.0504) (0.00097)

BE(1, β, −, a, b) 1 0.00129 - 0.9048 7.6602 2075.2 2081.2 2081.4 2090.9
(0.000184) (0.0864) (0.3651)

For the air conditioning system data, the LR statistics for the test of the
hypotheses H0 : BL(1, β, 1, a, b) against Ha : BEPL(α, β, ω, a, b) is 16.5 (p −
value = 0.000263 < 0.001.) Consequently, we reject the null hypothesis in
favor of the BEPL distribution and conclude that the BEPL distribution is
significantly better than the BL distribution. The LR test statistics for the
test of the hypotheses H0 : BL(1, β, 1, a, b) against Ha : BEL(1, β, ω, a, b)
is 15.8 (p − value = 0.000704 < 0.001), so that the null hypothesis of BL
model is rejected in favor of the alternative hypothesis of BEL model. The
BPL distribution is also significantly better than the PL and BL models based
on the LR test. However, there is no significant difference between the BPL
and BEPL distributions, as well as between the BEL and BEPL distributions
based on the LR test. The sub-models: BPL and BEL are better fits than
the BEPL distribution for the air conditioning system data. Also, the values
of the statistics: AIC, AICC and BIC, points to the BEL distribution, so we
conclude that the BEL distribution is the better fit for the air conditioning
system data. The BEL distribution also compares favorably with the BW
distribution based on the values of these statistics. Plots of the fitted densities
and the histogram for the air conditioning system data are given in Figure ??.

Based on the values of these statistics, we conclude that the BEPL distri-
bution and its sub-models can provide good fits for lifetime data. In the first
data set, the BEPL distribution performed better than the BL, PL, L, BE,
and Weibull distributions. The four parameter BW distribution was slightly
better based on the values of AIC, AICC and BIC. In the second data set,
the BPL distribution performed better than the other models including the
beta Weibull distribution. In the third data set, the BEL distribution as well
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as the BPL distribution seem to be the better fits, and the BEL distribution
compares favorably with the BW distribution. The BEPL and its sub-models
including the BEL and BPL distributions can provide better fits than other
common lifetime models.

Figure 7.3: Plot of the fitted densities for the Air Conditioning System Data

8 Concluding Remarks

We have developed and presented the mathematical properties of a new class
of distributions called the beta-exponentiated power Lindley (BEPL) distri-
bution including the hazard and reverse hazard functions, monotonicity prop-
erties, moments, conditional moments, reliability, entropies, mean deviations,
Lorenz and Bonferroni curves, distribution of order statistics, and maximum
likelihood estimates. Applications of the proposed model to real data in order
to demonstrate the usefulness and applicability of this class of distribution are
also presented.
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Appendices

A R Algorithms

#Def ine the pdf o f BEPL
f1=func t i on (x , alpha , beta , omega , a , b){y=(alpha ∗beta ˆ2∗omega
∗(1+x ˆalpha )∗x ˆ( alpha−1)∗exp(−beta ∗xˆalpha )
∗(1−(1+beta ∗x ˆalpha /(1+beta ) ) ∗exp(−beta ∗x ˆalpha ) ) ˆ( omega∗a−1))
∗(1−(1−(1+beta ∗x ˆalpha /(1+beta ) )
∗exp(−beta ∗x ˆalpha ) )ˆ omega ) ˆ(b−1) /( beta (a , b )∗ ( beta+1))
re turn (y )
}
#Def ine the cd f o f BEPL
F1=func t i on (x , alpha , beta , omega , a , b){
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y=pbeta ((1−(1+beta ∗xˆalpha/(1+beta ) )∗ exp(−beta ∗xˆalpha ) )ˆ omega , a , b )
re turn (y )
}
#Def ine the moments o f BEPL
moment=func t i on ( alpha , beta , omega , a , b , r ){
f=func t i on (x , alpha , beta , omega , a , b , r )
{( xˆ r )∗ ( f 1 (x , alpha , beta , omega , a , b ) )}
y=in t e g r a t e ( f , lower=0,upper=Inf , s ubd i v i s i o n s=100
, alpha=alpha , beta=beta , omega=omega , a=a , b=b , r=r )
re turn (y )
}
#Def ine the r e l i a b i l i t y o f BEPL
r e l i a b i l i t y=func t i on ( alpha1 , beta1 , omega1 , a1 , b1 , alpha2 ,
beta2 , omega2 , a2 , b2 ){
f=func t i on (x , alpha1 , beta1 , omega1 , a1 , b1 , alpha2 , beta2 , omega2 , a2 , b2 )
{ f 1 (x , alpha1 , beta1 , omega1 , a1 , b1 )∗ (F1(x , alpha2 , beta2 , omega2 , a2 , b2 ) )}
y=in t e g r a t e ( f , lower=0,upper=Inf , s ubd i v i s i o n s =100 , alpha1=alpha1 ,
beta1=beta1 , omega1=omega1 , a1=a1 , b1=b1 , alpha2=alpha2 ,
beta2=beta2 , omega2=omega2 , a2=a2 , b2=b2 )
re turn (y )
}
#Def ine Mean Deviat ion about the mean o f BEPL
de l ta1=func t i on ( alpha , beta , omega , a , b){
mu=moment( alpha , beta , omega , a , b , 1 ) $ value
f=func t i on (x , alpha , beta , omega , a , b ){ ( abs (x−mu)∗ f 1 ( x . alpha , beta , omega , a , b)}
y=in t e g r a t e ( f , lower=0,upper=Inf , s ubd i v i s i o n s=100
, alpha=alpha , beta=beta , omega=omega , a=a , b=b)
return (y )
}
#Def ine Mean Deviat ion about the median o f BEPL
de l ta2=func t i on ( alpha , beta , omega , a , b){
M=median ( c (X) ) #X i s the data s e t
f=func t i on (x , alpha , beta , omega , a , b ){ ( abs (x−M)∗ f 1 ( x . alpha , beta , omega , a , b)}
y=in t e g r a t e ( f , lower=0,upper=Inf , s ubd i v i s i o n s=100
, alpha=alpha , beta=beta , omega=omega , a=a , b=b)
return (y )
}
Def ine the Renyi entropy o f BEPL
t=func t i on ( alpha , beta , omega , a , b , gamma){
f=func t i on (x , alpha , beta , omega , a , b , gamma)
{( f 1 (x , alpha , beta , omega , a , b ) ) ˆ (gamma)}
y=in t e g r a t e ( f , lower=0,upper=Inf , s ubd i v i s i o n s=100
, alpha=alpha , beta=beta , omega=omega , a=a , b=b ,gamma=gamma) $ value
re turn (y )
}
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Renyi=func t i on ( alpha , beta , omega , a , b , gamma){
y=log ( t ( alpha , beta , omega , a , b , gamma))/(1−gamma)
return (y )
}
#Calcu la te the maximum l i k e l i h o o d e s t imato r s and var iance−covar iance matrx o f the BEPL
l i b r a r y ( ’ bbmle ’ ) ;
xvec<−c (X) #X i s the data s e t
fn1<−f unc t i on ( alpha , beta , omega , a , b){
−sum( log ( alpha ∗beta ˆ2∗omega/( beta (a , b )∗ ( beta+1)))+ log (1+xvecˆ alpha )
+(alpha−1)∗ l og ( xvec)−beta ∗xvecˆ alpha+(omega∗a−1)
∗ l og (1−(1+beta ∗xvecˆ alpha /( beta+1))
∗exp(−beta ∗xvecˆ alpha ))+(b−1)∗ l og (1−(1−(1+beta ∗xvecˆ alpha /( beta+1))
∗exp(−beta ∗xvecˆ alpha ) )ˆ omega ) )
}
mle . r e s u l t s 1<−mle2 ( fn1 , s t a r t=l i s t ( alpha=alpha , beta=beta ,
omega=omega , a=a , b=b ) , he s s i an . opt=TRUE)
summary(mle . r e s u l t s 1 )
vcov (mle . r e s u l t s 1 )
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