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Abstract

This study examines the interdependence of fourkgboices namely (KOSPI, NIKKEI225, SSE
and MSCI). The aim of this paper is to examine tilbgvdynamics of correlations between the major
stock prices evolved from January 01, 2000 to Déesf®, 2013. To this end, we adopt a dynamic
conditional correlation (DCC) model into a multie Fractionally Integrated Asymmetric Power
ARCH (FIAPARCH) framework, which accounts for longemory, power effects, leverage terms and
time varying correlations. The empirical findingslicate the evidence of time-varying comovement, a
high persistence of the conditional correlation Hreldynamic correlations revolve around a constant
level and the dynamic process appears to be meantirey. Moreover, the univariate FIAPARCH
models are particularly useful in forecasting marisk exposure for synthetic portfolios of stoeksd
currencies.

JEL classification:C13, C22, C32, C52.
Keywords: DCC-FIAPARCH, Asymmetries, Long memory, Stock psice

1. Introduction

Modeling volatility is an important issue of resdgarin financial markets. Leptokurtosis and
volatility clustering are common observation indicial time seriesMandelbrot, 196§ It is well
known that financial returns have non-normal disttion which tends to have fat-tailedandelbrot
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(1963 strongly rejected normal distribution for dataasfet returns, conjecturing that financial return
processes behave like non-Gaussian stable procéss@snonly referred to as “Stable Paretian”
distributions).

many high-frequency financial time series have bskawn to exhibit the property of long-
memory and Financial time series are often avadlala higher frequency than the other time series
(Harris & Sollis, 200%The long range dependence or the long memoryiesighat the present
information has a persistent impact on future ceuNbte that the long memory property is related to
the sampling frequency of a time series.

To circumvent the drawbacks of this literature erdcresearch on stock market returns linkages
focuses on their dynamic conditional correlatiomnsaitime-varying GARCH framework (sé&gle
and Sheppard, 2001; Tse and Tsui, 2002; Engle,)2d0b@ dynamic conditional correlation (DCC)
GARCH approach provides a robust analysis of tigesng linkages by allowing conditional
asymmetries in both volatilities and correlationg#hile investigates the second order moments
dynamics of financial time-series and overcomed#teroskedasticity problem (séerez-Rodriguez,
2006; Kitamura, 2010; Antonakakis, 20120ther sophisticated techniques, which avoid the
limitations of the standard approaches, are regiwitching models (seBoyer et al., 2005 copulas
with and without regime-switching (se€atton, 2006; Boero et al., 201and nonparametric
approaches (seeodriquez, 2007; Kenourgios et al., 2p11

In this paper, we empirically investigate the tiwarying linkages of four daily stock prices,
namely KOSPI composite index (Korea), NIKKEI225gda), SSE composite index (Chine) and
MSCI word index (MSCI) from January 01, 2000 uitécember 10, 2013. We use a DCC model into
a multivariate fractionally integrated APARCH frawmrk (FIAPARCH-DCC model), which provides
the tools to understand how financial volatilitresve together over time and across marketsirad
et al. (2011)applied a multivariate fractionally integrated msgetric power ARCH (FIAPARCH)
model that combines long memory, power transforonatiof the conditional variances, and leverage
effects with constant conditional correlations (QQ eight national stock market indices returns.
The long-range volatility dependence, the powendf@amation of returns and the asymmetric
response of volatility to positive and negative dtsoare three features that improve the modeling of
the volatility process of asset returns. We extdvair model by estimating time varying conditional
correlations among the stock prices.

The flexibility feature represents the key advaatagjithe FIAPARCH model of se (1998since
it includes a large number of alternative GARCH c#fimations. Specifically, it increases the
flexibility of the conditional variance specificati by allowing an asymmetric response of volatiidy
positive and negative shocks and long-range vitljatlependence. In addition, it allows the data to
determine the power of returns for which the priadile structure in the volatility pattern is the
strongest (se€onrad et al., 20)1 Although many studies use various multivaria®R&H models
in order to estimate DCCs among markets duringnfire crises (se€hiang et al., 2007; Celic, 2012;
Kenourgios et al., 20),1the forecasting superiority of FIAPARCH on oth@ARCH models is
supported byConrad et al. (2011Chkili et al. (2012)andDimitriou and Kenourgios (2013)

The present study investigates dynamics correlataonong stock prices from January 01, 2000
until December 10, 2013. We provide a robust amalysdynamic linkages among stock markets that
goes beyond a simple analysis of correlation breakd. The time-varying DCCs are captured from a
multivariate student-t-FIAPARCH-DCC model which ézkinto account long memory behavior,
speed of market information, asymmetries and |geeedfects.

The rest of the paper is organized as follows. i®&@@ presents the econometric methodology.
Section 3 provides the data and a preliminary amlBection 4 displays and discusses the empirical
findings and their interpretation, while sectioprdvides our conclusions.

2. Econometric methodology
2.1.Univariate FIAPARCH model

The AR(1) process represents one of the most conmualels to describe a time serig®f stock
returns. Its formulation is given as follow:



1-¢&L)rp=c+¢g, teN 1)

with

& = Zt\/h_t (2)

where|c| € [0, +oo], |§| < 1 and{z} are independently and identically distribuigd.d.) random
variables withE(z,) = 0. The varianceh; is positive with probability equal to unity and &
measurable function af,_,, which is thes —algebra generated biy;_4,7:_5,...}. Therefore,h;
denotes the conditional variance of the retdrpk that is:

Elre/Ze-q] = c+ &y 3
Var[r:/Zi-1] = h; (4)

Tse (1998uses a FIAPARCH(1,d,1) model in order to examireedonditional heteroskedasticity
of the yen-dollar exchange rate. Its specificatgogiven as follows:

=g (R* - w) =1 - 1) = (1 = $1)(1 = YA +ysDlecl® 5)

wherew € [0,0], |B| <1, |¢p| <1,0<d<1,s,=1if & <0 and0 otherwise,(1 — L)¢ is the
financial differencing operator in terms of a hygmwmetric function (se€onrad et al., 20)1y is the
leverage coefficient, andl is the power term parameter (a Box-Cox transfaionatthat takes (finite)
positive values. A sufficient condition for the ehtonal varianceh, to be positive almost surely for
all t is thaty > —1 and the parameter combinatiggp, d, ) satisfies the inequality constraints
provided inConrad et Haag (2006nd Conrad (201QWheny > 0, negative shocks have more
impact on volatility than positive shocks.

The advantage of this class of models is its fiékgbsince it includes a large number of
alternative GARCH specifications. When= 0, the process in Eq. (5) reduces to the APARCH(1,1)
oneof Ding et al. (1993) which nests two major classes of ARCH models.phrticular, a
Taylor/Schwert type of formulationT@ylor, 198¢Schwert, 199Jis specified whens =1, and a
Bollerslev(1986) type is specified whén= 2.Wheny = 0andé = 2, the process in Eq. (5) reduces
to theFIGARCH(1,d, 1) specification (se8aillie et al., 1996Bollerslev and Mikkelsen, 199&vhich
includes Bollerslev's (1986)GARCH model (wherd = 0) and the IGARCH specification (when
d = 1) as special cases.

2.2.Multivariate FIAPARCH model with dynamic conditional correlations

In what follow, we introduce the multivariate FIAREH process (M-FIAPARCH) taking into
account the dynamic conditional correlation (DC@pdthesis (se®imitriou et al., 2013 advanced
by Engle (2002) This approach generalizes the Multivariate Cantstaonditional Correlation (CCC)
FIAPARCH model ofConrad et al.(2011)The multivariate DCC model @ngle (2002)andTse and
Tsui (2002)involves two stages to estimate the conditionabdawvice matrip,. In the first stage, we
fit a univariate FIAPARCH(1,d,1) model in order dbtain the estimations Qfm The daily stock
returns are assumed to be generated by a multeAR{1) process of the following form:

Z(L)re = po + & (6)
where
- Mo = [Hoi)i=1,..n: theN —dimensional column vector of constants;
- |uo,| €10, 00[;
- Z(L) =diag{y(L)}: anN x N diagonal matrix ;
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- YW =[1-9Yilli=1,.n;
- il <1

- 1¢ = [1ri¢)i=1,. - theN —dimensional column vector of returns;
- & = [&t]i=1,.n: theN —dimensional column vector of residuals.

The residual vector is given by
& = Zt®ht/\1/2 (7)
where

- ©: the Hadamard product;
- A the elementwise exponentiation.

hy = [hit]i=1,. n1SZ;—; measurable and the stochastic vedpr [z;];=;  y IS independent and
identically distributed with mean zero and positdefinite covariance matrig = [p;;¢]; j=1,..n With
pij =1 for i = j.Note thatE(e./F,_,) = 0and H, = E(,&}/F,_1) = diag(hp"'?) p diag(hp"'?).
h:is the vector of conditional variances apgd ; = h; ¢/ hithj:Vi,j =1,..,N are the dynamic
conditional correlations.

The multivariate FIAPARCH (1,d,1) is given by

B(L) (h)?? - w) = [B(L) — AL)PW)] [y + Te]le|"? ®)

wherde,| is the vectoe; with elements stripped of negative values.

Besides, B(L) = diag{f (L)} with (L) = [1— B;L];=1,. yand |B;| < 1. Moreover, (L) =
dlag{cj)(L)} with (f)(L) = [1 - ¢iL]i=1,...,N and |¢L| < 1. In addition,w = [a)i]i=1qu with w; €
[0,00[ and A(L) = diag{d(L)} with d(L) =[(1—-L)%);=y, n VO<d;<1. Finally, T, =
diag{y©s.} withy = [y;];=1,.n ands; = [s;];=1,. v Wheres;; = 1if £, < 0 and 0 otherwise.

In the second stage, we estimate the conditionakledion using the transformed stock return
residuals, which are estimated by their standandatiens from the first stage. The multivariate
conditional variance is specified as follows:

Hy = D¢R Dy (9)

Where D, = diag (hiﬁ h,lv/,\ft) denotes the conditional variance derived from tmevariate
AR(1)-FIAPARCH(1,d,1) model and?; = (1 —6; — 6,)R + 0,Y,_1 + 6,R,_, is the conditional
correlation matrik

In addition,8; andé, are the non-negative parameters satisfyg+ 6,) <1, R = {pij} is a
time-invariant symmetridV X N positive definite parameter matrix withy; =1 and y,_; is the
N X N correlation matrix ok, fort =t —M,t —M + 1, ...,t — 1. Thei, j — th element of the matrix
Y._, is given as follows:

M .
ll)ij,t—l Ym=1Zit-mZjt-m ) 1<i <j <N (10)
\/(Zm 1 Lt m) Zm 1 ]l' m)

'Engle (2002)derives a different form of DCC model. The evalutiof the correlation in DCC is given bg; = (1—a — 8)Q + az,_, +
BQ;_1, whereQ = (g;j,) is theN x N time-varying covariance matrix of, Q = E[z:z{] denotes the x n unconditional variance matrix of
z,, while « andp are nonnegative parameters satisfyiagr 8) < 1. SinceQ, does not generally have units on the diagonalctmelitional
correlation matrixR, is derived by scaling@, as follows:R, = (diag(Q,))~*/2Q.(diag(Q,)) /2.
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wherez;, = €;:/+/hiir is the transformed stock return residuals by thstimated standard deviations
taken from the univariate AR(1)-FIAPARCH(1,d,1) nebd
The matrixip;_; could be expressed as follows:

Yoy = BiLe 4Ly 1BY 1j1

WhereB,_, is aN x N diagonal matrix withi — th diagonal element given by _; zZ%_,.) and
Lt—l = (Zt—l' ""Zl'—M) |S aN x N matrIX, Wicht = (th, ""ZNt),'

To ensure the positivity ap,_, and therefore aR;, a necessary condition is tHdt< N.Then,R;
itself is a correlation matrix iR,_;is also a correlation matrix. The correlation cméfht in a
bivariate case is given as:

Z%:lzl,t—mZZ,t—m (12)

\/(E%=1 Z%,t—m)(z%=1 Zzz,t—m)

P12t = (1 =01 —0,)p12 + 02012 + 64

3. Dataand preliminary analyses

The data comprises daily stock indexes: KOSPI (Kpr&lIKKEI225 (Japan), SSE (China) and
MSCI (Morgan Stanley Capital International). MSCanket classification consists of following three
criteria: size and liquidity, market accessibilitgd economic development. All data are sourced from
the (http//www.econstats.coynThe sample covers a period from January 01, 2060December 10,
2013, leading to a sample size of 3639 observatiemseach indexes, the continuously compounded
return is computed ag = 100 X In(p;/p;—,) fort = 1,2, ..., T, wherep,is the price on day.

Summary statistics for the stock market returnsdasplayed in Table 1(Panel A). From these
tables, KOSPI is the most volatile, as measurethbystandard deviation of 1.6544%, while MSCI is
the least volatile with a standard deviation of64.%%. Besides, we observe that NIKKEI225 has the
highest level of excess kurtosis, indicating thdteame changes tend to occur more frequently fer th
stock price. In addition, all stock market returaghibit high values of excess kurtosis. To
accommodate the existence of “fat tails”, we assstudent-t distributed innovations. Furthermore,
the Jarque-Bera statistic rejects normality at 1be level for all stock prices. Moreover, all stock
market return series are stationary, 1(0), and Huisble for long memory tests. Finally, they i
volatility clustering, revealing the presence ofeneskedasticity and strong ARCH effects.

In order to detect long-memory process in the datayse the log-periodogram regression (GPH)
test of Geweke and Porter-Hudak (1986 two proxies of volatility, namely squared reisirand
absolute returns. The test results are displaydabie 1 (Panel D). Based on these tests’ resuds,
reject the null hypothesis of no long-memory fosahte and squared returns at 1% significance .level
Subsequently, all volatilities proxies seem to bgegned by a fractionally integrated process. Thus,
FIAPARCH seem to be an appropriate specificationcépture volatility clustering, long-range
memory characteristics and asymmetry.

Fig. 1 illustrates the evolution of stock indexes durihg period from January 1, 2000 until
December 10, 2013. The figure shows significantat@ns in the levels during the turmoil, espegiall
at the time of Lehman Brothers failure (Septemlier2D08). Specifically, when the global financial
crisis triggered, there was a decline for all midég. 2 plots the evolution of stock market returns
over time. The figure shows that all stock indetxembled since 2008 with different intensity during
the global financial and European sovereign deisesr Moreover, the plot shows a clustering of
larger return volatility around and after 2008. Shineans that foreign exchange markets are
characterized by volatility clustering, i.e., larg@nall) volatility tends to be followed by largengall)
volatility, revealing the presence of heteroskedagt This market phenomenon has been widely
recognized and successfully captured by ARCH/GAR@iily models to adequately describe stock
market returns dynamics. This is important becahgeeconometric model will be based on the
interdependence of the stock markets in the forrseabnd moments by modeling the time varying
variance-covariance matrix for the sample.



Tablel
Summary statistics and long memory test’s results.

KOSPI NIKKEI225 SSE MSCI
Panel A: descriptive statistics
Mean 1.81E-02 -0.0053 0.0135 -1.77E-05
Maximum 11.284 13.235 9.4008 6.5246
Minimum -12.805 -12.111 -9.2562 -9.936
Std. Deviation 1.6544 1.5304 1.5456 1.4641
Skewness -0.54142%** -0.4348*** -0.0887*** -0.241%*
(0,0000) (0,0000) -0.0287 (0,0000)
ExcessKurtosis 5.7577** 6.8355*** 4.7723** 3.0688***
(0,0000) (0,0000) (0,0000) (0,0000)
Jarque-Bera 5204.3*** 7199.2%* 3458%** 1463.2%**
(0,0000) (0,0000) (0,0000) (0,0000)

Panel B: Serial correlation and LM-ARCH tests

LB(20) 31.6153** 14.4001 A44.7177*+* 72.6072***
(0.0475) (0.8096) (0.0012) (0,0000)

LB?%(20) 1339.54*** 3792.44**%* 695.483*** 1433.72***
(0,0000) (0,0000) (0.0000) (0,0000)

ARCH 1-10 48.134*** 141.66*** 25.233*** 44.,144%**
(0,0000) (0,0000) (0,0000) (0,0000)

Panel C: Unit Root tests

ADF test statistic -35.3164*** -36.819*** -33.7277** -33.1275%**
(-1.9409) (-1.9409) (-1.9409) (-1.9409)

Panel D: long memory tests (GPH tegtestimates)
Squared returns

m =T 0.4238 0.2687 0.4593 0.5946
[0.0698] [0.0573] [0.0813] [0.0900]
m=T0 0.3486 0.4649 0.3690 0.3955
[0.0464] [0.0498] [0.0620] [0.0580]

Absolute returns

m =T 0.5047 0.3403 0.4781 0.5623
[0.0742] [0.0812] [0.0838] [0.1050]
m =T% 0.4157 0.4487 0.37002 0.4381
[0.0509] [0.0570] [0.0568] [0.0697]

Notes: Stock market returns are in daily frequencyandr| are squared log return and absolute log return,
respectively.mdenotes the bandwith for the Geweke and Porter-kladd983) test. Observations for all
series in the whole sample period are 3639. Thebeusrin brackets are t-statistics and humbersrienplaeses
are p-values. *** ** and * denote statistical mificance at 1%, 5% and 10% levels, respectively.
LB(20)and.B?(20) are the 20th order Ljung-Box tests for serial efation in the standardized and squared
standardized residuals, respectively.
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Fig.1. Stock prices behavior over time.



4. Empirical results
4.1.Theunivariate FIAPARCH estimates

In order to take into account the serial correfa@md the GARCH effects observed in our time
series data, and to detect the potential long ralegendence in volatility, we estimate the student
AR(0)-FIAPARCH(1,d,1J model defined by Egs. (1) and (5). Table 2 repitwtsestimation results of
the univariate FIAPARCH (1,d,1) model for each ktowarket return series of our sample.

The estimates of the constants in the mean aiiststally significant at 1% level or better for all
the series except for the NIKKEI225. Besides, thestants in the variance are significant except for
KOSPI and MSCI currencies. In addition, for allreuncies, the estimates of the leverage t@rinare
statistically significant, indicating an asymmetriesponse of volatilities to positive and negative
shocks. This finding confirms the assumption thetreé is negative correlation between returns and
volatility. According toPatton (2006)such asymmetric effects could be explained byadynmetric
behavior of central banks in their currency intaet@ns. In other wordsPatton (2006)argues that
when central banks emphasize on competitivenesspoige stability, the exchange rates may display
higher volatility during periods of depreciationngpared to periods of appreciation.

Moreover, the estimates of the power t€@n are highly significant for all currencies and ranagy
from 1.4582 to 1.925Zonrad et al. (20113how that when the series are very likely to fel non-
normal error distribution, the superiority of a aged term (6 =2) is lost and other
powertransformations may be more appropriate. Thinese estimates support the selection of
FIAPARCH model for modeling conditional variance stbck market returns. Besides, all stock
indexes display highly significant differencing déteonal paramete(d), indicating a high degree of
persistence behavior. This implies that the impzicshocks on the conditional volatility of stock
market’ returns consistently exhibits a hyperboéite of decay. Interestingly, the highest powemter
is obtained for NIKKEI225 stock index, one is chdesized by the highest degree of persistence. In
all cases, the estimated degrees of freedom pasa(mdtis highly significant and leads to an estimate
of the Kurtosis which is equal &(v — 2)/(v — 4) and is also different from three.

In addition, all the ARCH parametel®) satisfy the set of conditions which guarantee the
positivity of the conditional variance. Moreovercarding to the values of the Ljung-Box tests for
serial correlation in the standardized and squateddardized residuals, there is no statistically
significant evidence, at the 1% level, of missgeatfon in almost all cases except for the MSCtkto
index.

Numerous studies have documented the persistenagatility in stock and exchange rate returns
(seeDing et al., 1993Ding et Granger, 199@mong others).The majority of these studies lsaesvn
that the volatility process is well approximated ay IGARCH process. Nevertheless, from the
FIAPARCH estimates reported in Table 2, it appéaas the long-run dynamics are better modeled by
the fractional differencing parameter.

2 Thez, random variable is assumed to follow a studertidigion (seeBollerslev, 198 with v > 2 degrees of freedom and with a density
given by:

r(v+3)

o) 1 42y
Oy LT

D(Ztl U) =

wherd’(v) is the gamma function andis the parameter that describes the thicknesheoflistribution tails. The Student distribution is
symmetric around zero and, for> 4, the conditional kurtosis equad$v — 2)/(v — 4), which exceeds the normal value of three. For large
values ofv, its density converges to that of the standardnabr
For a Studentdistribution, the log-likelihood is given adg.qen: =T {logF (”zll) —logTl’ (E) - %log[n(v - 2)]} —% T [log(ht) +

zf
(1 +v)log (1 + E)]
wherd is the number of observationsijs the degrees of freedo,< v < o andr'(.) is the gamma function.

% The lag orderd, d, 1)and (0,0) for FIAPARCH and ARMA models, respectively, ardested by Akaike (AIC) and Schwarz (SIC)
information criteria. The results are availablenfrthe author upon request.
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Table2
Univariate FIAPARCH(1,d,1) models (MLE).

KOSPI NIKKEI225 SSE MSCI

Coefficient t-prob Coefficient t-prob Coefficient t-prob Coefficient  t-prob
Estimate
¢ 0.0652%** 0.0004 0.0269 0.1760 0.0291* 0.0946 0.0483*+*  0.0046
1) 0.0334 0.4514 0.1353*** 0.0014 0.2771*%** 0.0080 0.0450 0.2037
d 0.2359*** 0.0024 0.4102%** 0.0000 0.3146%*= 0.0000 0.3132***  0.0000
¢ 0.1152 0.1572 0.1116** 0.0368 -0.1097 0.3816 0.1731**  0.0091
B 0.3142%*= 0.0134 0.4919%** 0.0000 0.1428 0.3486 0.4571*+*  0.0000
y 0.8930 0.0235 0.4465*** 0.0010 0.3323%** 0.0000 0.5574*+*  0.0032
g 1.5594*+* 0.0000 1.4582++* 0.0000 1.9252%+* 0.0000 1.6832**  0.0000
v 5.8608*** 0.0000 8.2601*** 0.0000 3.6846*** 0.0000 6.1827**  0.0000
Diagnostics
LB(20) 19.2243 0.5072 11.7653 0.9239 53.5749** 0.0000 45.0142**  0.0010
LB?(20) 22.5678 0.2077 31.2876** 0.0266 10.6958 0.9068 o%  0.0383

Notes:For each of the five exchange rates, Table 2 repbe Maximum Likelihood Estimates (MLE) for theidént-t-FIAPARCH(1,d,1)
model. LB(20)and.B?(20) indicate the Ljung-Box tests for serial correlatim the standardized and squared standardizedugdsi

respectively.vdenotes the the t-student degrees of freedom.ptearit&, ** and * denote statistical significance 4%, 5% and 10%
levels, respectively.

To test for the persistence of the conditional ilwetieedasticity models, we examine the
Likelihood Ratio (LR) statistics for the linear atraintsd = 0 (APARCH(1,1) model) and # 0
(FIAPARCH(1,d,1) model). We construct a series &t tests in which the restricted case is the
APARCH (1,1) modeld = 0) of Ding et al. (1993)Let[, be the log-likelihood value under the null
hypothesis that the true model is APARCH (1,1) anide log-likelihood value under the alternative
that the true model is FIAPARCH(1,d,1). Then, tHe test2(l — [,), has a chi-squared distribution
with 1 degree of freedom when the null hypothesisue.

For reasons of brevity, we omit the table with tbst results, which are available from the author
upon request. In summary, the LR tests providesaralejection of the APARCH (1,1) model against
the FIAPARCH(1,d,1) one for all stock prices. Thparely from the perspective of searching for a
model that best describes the volatility in thecktprice series, the FIAPARCH (1,d,1) model appears
to be the most satisfactory representation. Thidifig is important since the time series behavior o
volatility could affect asset prices through thekrpremium (seeChristensen and Nielsen, 2007
Christensen et al., 201Conrad et al., 20)1

With the aim of checking for the robustness of Ietesting results discussed above, we apply
the Akaike (AIC), Schwarz (SIC), Shibata (SHIC) l@&nnan-Quinn (HQIC) information criteria to
rank the ARCH type models. According to these datehe optimal specification (i.e., APARCH or
FIAPARCH) for all stock prices is the FIAPARCH onEne two common values of the power term
(6) imposed throughout much of the GARCH literatures&r= 2 (Bollerslev's model) and = 1 (the
Taylor/Schwert specification). According Byooks et al. (200Qxhe invalid imposition of a particular
value for the power term may lead to sub-optimaldelimg and forecasting performance. For that
reason, we test whether the estimated power terensignificantly different from unity or two using
Wald tests (results not reported).

We find that all five estimated power coefficiendge significantly different from unity.
Furthermore, each of the power terms is signifigaditferent from two. Hence, on the basis of these
findings, support is found for the (asymmetric) goviractionally integrated model, which allows an
optimal power transformation term to be estimafBide evidence obtained from the Wald tests is
reinforced by the model ranking provided by therfomodel selection criteria (values not reported).
This is a noteworthy result sinéé and Terasvirta (199@mphasized that if the standard Bollerlsev
type of model is augmented by the ‘heterosked#&gtiparameter, the estimates of the ARCH and
GARCH coefficients almost certainly change. Moreartantly,Karanasos and Schurer (20&Bow
that, in the univariate GARCH-in-mean level forntida, the significance of the in-mean effect is
sensitive to the choice of the power term.
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Fig. 2. Stock market returns behavior over time.

4.2.Thebivariate FIAPARCH(1,d,1)-DCC estimates

The analysis above suggests that the FIAPARCH figatidn describes the conditional variances
of the four stock prices well. Therefore, the nudtiate FIAPARCH model seems to be essential for
enhancing our understanding of the relationshipsvden the (co)volatilities of economic and
financial time series.

In this section, within the framework of the mu#tiiate DCC model, we analyze the dynamic
adjustments of the variances for the four stockgwi Overall, we estimate six bivariate specifaai
for our analysis. Table 3(Panels A and B) repdnts éstimation results of the bivariate student-t-
FIAPARCH (1,d,1)-DCC model. The ARCH and GARCH pas&ders ¢ and b) of the DCC(1,1)
model capture, respectively, the effects of stasidad lagged shocks and the lagged dynamic
conditional correlations effects on current dynaroanditional correlation. They are statistically
significant at the 5% level, except for the ARCHgraeter between (KOSPI-SSE) and (KOSPI-
MSCI), indicating the existence of time-varying @ations. Moreover, they are non-negative,
justifying the appropriateness of the FIAPARCH mod&hena = 0andb = 0, we obtain the
Bollerslev's (1990) Constant Conditional Correlation (CCC) model. Awmwn in Table 3, the
estimated coefficients andb are significantlypositive and satisfy the inequyati + b < 1 in each
of the pairs of stock prices. Besides, the t-stud#ggrees of freedom paramet@r)is highly
significant, supporting the choice of this disttibn.

The statistical significance of the DCC parameferandb) reveals a considerable time-varying
comovement and thus a high persistence of the vondi correlation. The sum of these parameters is
close to unity. This implies that the volatilityspiays a highly persistent fashion. Simce+ b < 1,
the dynamic correlations revolve around a condtaml and the dynamic process appears to be mean
reverting. The multivariate FIAPARCH-DCC model simportant to consider in our analysis since it
has some key advantages. First, it captures thg dlange dependence property. Second, it allows
obtaining all possible pair-wise conditional coatédn coefficients for the stock market returnghia
sample. Third, it's possible to investigate thedhavior during periods of particular interest, sash
periods of the global financial and European sagerdebt crises. Fourth, the model allows lookihg a
possible financial contagion effects between irdéamal foreign exchange markets.

Finally, it is crucial to check whether the selectstock price series display evidence of
multivariate Long Memory ARCH effects and to tediility of the Multivariate FIAPARCH
specification to capture the volatility linkages @rg stock pricesKroner and Ng (1998have
confirmed the fact that only few diagnostic tests kept to the multivariate GARCH-class models
compared to the diverse diagnostic tests devotenhit@riate counterparts. FurthermoBsuwens et



al. (2006)have noted that the existing literature on muitate diagnostics is sparse compared to the
univariate case. In our study, we refer to the rbosadly used diagnostic tests, namely the Hosking'
and Li and McLeod's Multivariate Portmanteau stiatis on both standardized and squared
standardized residuals. AccordingHosking (1980) Li and McLeod (1981)and McLeod and Li
(1983)autocorrelation test results reported in Tablegh@P B), the multivariate diagnostic tests allow
accepting the null hypothesis of no serial corretabn both standardized and squared standardized
residuals and thus there is no evidence of staistiisspecification.
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Fig.3. The DCC behavior over time.

Fig. 3 illustrates the evolution of the estimatgmaimic conditional correlations dynamics among
international stock markets. Compared to the pisesrperiod, the estimated DCCs show a decline
during the post-crises period. Such evidence icoimrast with the findings of previous research on
foreign exchange and stock markets, which showeas®s in correlations during periods of financial
turmoil (seeKenourgios et al., 2011; Dimitriou et al., 2013;nidiriou and Kenourgios, 20)3
Nevertheless, the different path of the estimat&CB displays fluctuations for all pairs of stock
prices across the phases of the global financi@dlEamopean sovereign debt crises, suggestinghbat t
assumption of constant correlation is not approg@rifihe above findings motivate a more extensive
analysis of DCCs, in order to capture contagionagiyics during different phases of the two crises.
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Table3

Estimation results from the bivariate FIAPARCH(1)dDCC model.

KOSPI-NIKKEI225 KOSPI-SSE KOSPI-MSCI NIKKEI225-SSE NIKKEI225-MSCI SSE-MSCI
coefficient  t-prob coefficient t-prob coefficient t-prob  coefficient t-prob Coefficient t-prob coefficient  t-prob
Pand A: Edtimates of Multivariate
DCC
a 0.0248**  0.0000 0.0042 0.1068 0.0124 0.1353 0.0030**+* 0.0003 0.0163** 0.0471 0.0040**  0.0462
b 0.9682**  0.0000 0.9956***  0.0000 0.9875**  0.0000 0.9969*** 0.0000 0.9833***  0.0000 0.9959**+*  0.0000
v 8.1989**  0.0000 5.4434** (0.0000 6.4155***  0.0000 6.3523*** 0.0000 8.2822***  (0.0000 5.5042***  (0.0000
Panel B : Diagnogtic tests
Hosking(20) 79.0740 0.5082 122.379** 0.0016 123.804** 0.0012 108.057** 0.0200 100.927* 0.0569 133.382** (0.0001
Hosking?(20) 85.0790 0.2730 81.4598 0.3721 127.368*** 0.0003 68.4734 0.7710 85.6401 0.2592  127.745** 0.0003
Li — McLeod(20) 79.0597 0.5087 122.266*** 0.0016 123.739*** (0.0012 107.993** 0.0202 100.849* 0.0576  133.274** (0.0001
Li — McLeod?(20) 85.0561  0.2736 81.4995 0.3709 127.317** 0.0003 68.4901 0.7705 85.6269 0.2595 127.549** 0.0003

Notes: The superscripts ***, ** and * denote the statisfisignificance at 1%, 5% and 10% levels,
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respebtivindicates the student’s distribution’s degreesreédlom Hosking (20)
and Hosking?(20) denote the Hosking's Multivariate PortmanteauiSites on both standardized and squared standardasidualsLi — McLeod (20)andLi — McLeod?(20)
indicate the Li and McLeod's Multivariate PortmanteStatistics on both Standardized and squaredastined Residuals.



In Fig. 4, we plot the rolling correlations betwesaich pair of stock prices with time spans of four
months, eight months, one year, two years and Years, respectively. Interestingly, we find more
fluctuations of the rolling correlations in downwladirections between each pair, particularly after
2007, regardless of the selected time spans. Mereave mainly detect sharp decreases in the
correlations between each pair since 2010.

(a) Four-month rolling correlation
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(c) Two-year rolling correlation
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(e) Four-year rolling correlation
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Fig.4. Rolling correlations between stock index pair. F@ur-month rolling correlation. (b) Eight-
month rolling correlation. (c) Two-year rolling eefation. (d) Two-year rolling correlation. (e) Feu
year rolling correlation.

5. Conclusions

This study examines the dynamic correlations amatgynational stock prices namely KOSPI,
NIKKEI225, SSE and MSCI. Specifically, we employnaltivariate FIAPARCH-DCC model, during
the period from January 01, 2000 to December 1@,320ocusing on the estimated dynamic
conditional correlations among the stock markekds Bpproach allows investigating the second order
moments dynamics of stock prices taking into actéumy range dependence behavior, asymmetries
and leverage effects.

The FIAPARCH model is identified as the best speaifon for modeling the conditional
heteroscedasticity of individual time series. Wentlextended the above univariate GARCH models to
a bivariate framework with dynamic conditional @ation parameterization in order to investigate
the interaction between stock markets. Our resdlisument strong evidence of time-varying
comovement, a high persistence of the conditiomatetation (the volatility displays a highly
persistent fashion) and the dynamic correlation®lve around a constant level and the dynamic
process appears to be mean reverting.

More interestingly, the univariate FIAPARCH modale particularly useful in forecasting market
risk exposure for synthetic portfolios of stockslaurrencies. Our out-of-sample analysis confirms
the superiority of the univariate FIAPARCH modeldathe bivariate DCC-FIAPARCH model over
the competing specifications in almost all cases
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