
MISSPECIFICATION OF FRAILTY
RANDOM EFFECTS IN A

CLUSTERED SURVIVAL DATA.

John Kiche1, Oscar Ngesa2, George Orwa3

1 Pan Africa University Institute for Basic Sciences, Technology and Innovation
Email:kicheopiyo07@gmail.com

2Taita Taveta University
Email:oscanges@ttu.ac.ke

3Jomo Kenyatta University of Agriculture and Technology
Email:gorwa@fsc.ac.ke

September 28, 2018

Abstract

Survival Analysis models the time it takes until an event occurs. The prototypical event
is death, from which the name Survival Analysis is derived.Accordingly, each time Survival
Analysis is studied, aspects of some selected rates or reliability of some study are usually
considered. Frailty modelling has been used in this study as the statistical tool for analysing
the time-event data. Parametric and non-parametric models and the frailty models are fitted to
help derive the required conclusions.The impact of misspecification of frailty random effects
in a survival data using parametric frailty modelling approach were determined during this
research study.It is expected that these approaches would produce less bias estimates compared
to the results achieved of the estimates when the misspecification of the frailty random effects
are ignored.
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I. Introduction

Study of clustered survival data has become one of the most important research issues of the
developing countries. Some of the reviewed literature based on frailty models and misspecification
of the frailty random effects are discussed as follows. Correlated or clustered failure time data
occur in many fields such as medical studies (Cai and Prentice, 1995; Kalbfleisch and Prentice,
2002). In many cases the failure times of interest may not be observed exactly but are known only
to belong to certain intervals. Such data are usually referred to as interval-censored failure time
data, and they could arise naturally in, for example, periodic follow-up studies where each study
subject is observed only at discrete time points (Finkelstein and Wolfe, 1986; Sun, 2006; Wang
et al., 2006). Regression analysis of clustered interval-censored data where the failure times of
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interest may be related to the cluster size. In other words, the cluster size may be informative
for the failure times of interest and thus obviously needs to be taken into account in the analysis.
The general idea of frailty gives a possible way of introducing unobserved heterogeneity and
associations into models for a given survival data, upon which, the chance of misspecification
when using the resulting frailty model is high. More so,tackling the foregoing misspecification by
use of parametric frailty model approaches has not been thoroughly explored.

Parameter estimation is done by maximising the marginal log-likelihood. Survival analysis
generally constitute methods for analyzing data where the outcome variable is the time until the
occurrence of an event of interest. The event can be death, occurrence of a disease, marriage,
divorce, etc. The time to event or survival time can be measured in days, weeks, years, etc Data
that measures lifetime or the length of time until the occurrence of an event are called failure time,
lifetime or survival data. For example variables of interest might be the survival time for patients.
A frailty model is a random effects model for time variables, where the random effect (the frailty)
has a multiplicative effect on the hazard. It can be used for univariate (independent) failure times,
that is to describe the influence of unobserved covariates in a proportional hazard model. Frailty
models are the survival data analog to regression models, which account for heterogeneity and
random effects.Frailty random effects need to have spatial components because they vary from
one region to another.

Study of clustered survival data has become one of the most important research issues of the
developing countries. Some of the reviewed literature based on frailty models and misspecification
of the frailty random effects are discussed as follows. Correlated or clustered failure time data
occur in many fields such as medical studies (Cai and Prentice, 1995; Kalbfleisch and Prentice,
2002). In many cases the failure times of interest may not be observed exactly but are known only
to belong to certain intervals. Such data are usually referred to as interval-censored failure time
data, and they could arise naturally in, for example, periodic follow-up studies where each study
subject is observed only at discrete time points (Finkelstein and Wolfe, 1986; Sun, 2006; Wang
et al., 2006). Regression analysis of clustered interval-censored data where the failure times of
interest may be related to the cluster size. In other words, the cluster size may be informative for
the failure times of interest and thus obviously needs to be taken into account in the analysis.

In essence, the frailty concept goes back to work of Greenwood and Yule(1920) on accident
proneness. The concept of frailty was introduced by Vaupel and Stallard (1979) showing that
some individuals are more frail or susceptible or at risk than others although they may appear
to be similar while considering the observable or measurable attributes like sex, age and weight.
Frailty models are extensions of the proportional hazards model which is best known as the Cox
model(Cox,1972),the most popular model in survival analysis. Log-normal frailty models are
especially useful in modelling dependence structures innmultivariate frailty models, for example
in McGilchrist and Aisbett (1991), McGilchrist(1993), Lillard (1993), Lillard et al. (1995), Xue
and Brookmeyer (1996), Sastry (1997),Gustafson (1997), Ripatti and Palmgren (2000); Ripatti et al.
(2002), Huang and Wolfe (2002). However, the log-normal distribution has also been applied in
univariate cases, for example by Flinn and Heckman (1982).

The inverse Gaussian (inverse normal) distribution was introduced as an alternative to the
gamma distribution by Hougaard (1984) and has been used for example by Manton et al. (1986),
Klein et al. (1992), Keiding et al. (1997) and Price and Manatunga (2001). Positive stable frailty
model was introduced as a frailty distribution by Hougaard (1986b) and applied for example by
Wang et al. (1995) and Manatunga and Oakes (1999). Fine et al. (2003) and Martinussen and Pipper
(2005) recently suggested new estimation procedures in the shared positive stable frailty model.
It was further extended by Hougaard’s power variance function distribution (Hougaard, 1986a)
and Aalen’s compound Poisson distribution (Aalen 1988, 1992). All moments of this distribution
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are infinite. This result is important with respect to identifiability issues treated by Elbers and
Ridder(1982). They found that a finite mean of the frailty distribution is one condition (among
others) for identifiability of univariate frailty models.

II. Methods

i. Baseline hazards

The Weibull hazard(dist="weibull") is:

h(t; ρ, λ = ρλtρ−1) (1)

with ρ, λ > 0 .

The inverse Weibull (or Frechet) hazard (dist="inweibull" or dist="frechet") is :

h(t; ρ, λ) =
ρλt−p−1

exp(λt−p − 1)
(2)

with ρ, λ > 0.

The exponential hazard(dist="exponential") is :

h(t; λ) = λ (3)

with λ > 0.

The Gompertz hazard(dist="gompertz") is;

h(t; γ, λ) = λexp(γt) (4)

with γ, λ > 0.

The lognormal hazard (dist="lognormal") is :

h(t; µ, σ) =
φ( log(t)−µ

σ )

σt[1−Φ( log(t)−µ
σ )]

(5)

with µεR, σ > 0 , and where φ and Φ are the density and distribution functions of a standard
Normal random variable.

III. Frailty modelling

Frailty is an unobserved random proportionality factor that modifies the hazard function of an
individual or a group of related individuals. The notion of frailty provides a convenient way to
introduce random effects, association and unobserved heterogeneity into models for survival data.
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Frailty models are survival models with at least one random effect. For example, a proportional
hazards model can be written as:

λj(t) = λ0(t)eβ
′
Xj(t) (6)

The subscript j indexes the individual. This model becomes a frailty model by adding a random
effect as in:

λij(t) = λ0(t)eβ
′
Xij(t)+ωi (7)

The subscript i indexes a cluster of individuals and ω is the random effect.
This model now becomes a spatial frailty model by adding a spatial structure as in:

λij(t) = λ0(t)eβ
′
Xij(t)+ωi+νi (8)

The subscript i indexes a cluster of individuals and ωi is the random effect while νi is the spatial
structured heterogeneity.

i. Univariate frailty models

In a univariate model, the random effect pertains to an individual with one observation and
accounts for unobserved heterogeneity at the level of the individual. For example, a common
response of interest in oncology is disease free survival (DFS). A common scenario in clinical trials
in oncology is one in which each patient’s tumors are removed at the start of the trial (baseline),
a treatment is administered, and then the patient’s disease status is recorded at pre-specified
intervals. The time to the first recurrence of the disease is the response of interest.

ii. Positive stable frailty model

A distribution is called positive stable if the appropriately normalized sum of n independent
random variables from this distribution has the same distribution. The normalizationis given by
n1/γ , where the index γ must be in the range of (0; 1]to get a distribution on positive numbers.
Despite the fact that no closed form expressions exist for the probability density or the survival
function of a random variable with positive stable distribution, the Laplace transform has a very
simple form:

L(s) = e
−ksγ

γ (9)

For reasons of identiability, we restrict the two-parameter frailty distribution to the case of
k = γ .

Consequently,

s(t) = L(Λ)0(t)) = e−Λ0(t)γ
(10)

f (t) = γλ0(t)Λ0(t)γ−1e−Λ0(t)γ
(11)

γ(t) = γλ0(t)Λ0(t)γ−1 (12)
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iii. PVT frailty model

An extended family of frailty distributions, including gamma, inverse Gaussian as well as positive
stable distributions, is the family of power variance function distributions,suggested by Tweedy
(1984) and later derived independently by Hougaard (1986a). This is a three parameter family
denoted by PVF(γ, k, λ). The Laplace transform is

L(s) = e
−k
γ ((λ+s)γ−λγ)

.
Expectation and variance of a PVF distributed random variable Z are

E(Z) = kλγ−1

and

V(Z) = k(1− γ)λγ−2

The resulting survival function is given by

S(t) = e
−k
γ ((λ+Λ0(t))γ−λγ)

and the unconditional hazard function is

λ(t) = kλ0(t)(λ + Λ0(t))γ−1

iv. Compound Poisson frailty model

The notation cP(γ, k, λ) is used for a compound Poisson distribution.
The marginal survival and hazard function in case of a compound Poisson frailty model is

given by:

S(t) = e
−1−γ

γσ2 ((1+ σ2
1−γ Λ0(t))γ−1)

and

λ(t) = λ0(t)

(1+ σ2
1−γ Λ0(t))1−γ

v. Log-normal models

Two variants of the log-normal model exist. We assume a normally distributed random variable
W to generate frailty as Z = eW . The two variants of the model are given by the restrictions
EW = 0 and EZ = 1 , where the first one is much more popular in the literature. Unfortunately,
no explicit form of the unconditional likelihood exists. Consequently, estimation strategies based
on numerical integration in the maximum likelihood approach are required.
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vi. Multivariate frailty models

A second important application of frailty models is in the field of multivariate survival data. Such
kind of data occurs for example if lifetimes (or times of onset of a disease) of relatives (twins,
parent-child) or recurrent events like infections in the same individual are considered. In such
cases independence between the clustered survival times can not be assumed. Multivariate models
are able to account for the presence of dependence between these event times. A commonly used
and very general approach is to specify independence among observed data items conditional
on a set of unobserved or latent variables (Hougaard, 2000). The dependence structure in the
multivariate model arises from a latent variable in the conditional models for multiple observed
survival times, for example let S(t1|Z, X1) and S(t2|Z, X2) be the conditional survival functions of
two related individuals with different vectors of observed covariates X1 and X2 , respectively.

Averaging over an assumed distribution for the latent variables (e.g., using a gamma, log-
normal, stable distribution) then induces a multivariate model for the observed data. In the case
of paired observations, the two-dimensional survival function is of the form

S(t1, t2) =
∫ ∞

0
S(t1|Z, X1)S(t2|Z, X2)g(z)dz (13)

where g denotes the density of the frailty Z . In the case of twins, S(t1, t2) denotes the fraction of
twins pairs with twin 1 surviving t1 and twin 2 surviving t2 . Frailty models for multivariate sur-
vival data are derived under conditional independence assumption by specifying latent variables
that act multiplicatively on the baseline hazard.

IV. Semi-Parametric model.

.
In statistics, a semi parametric model is a model that has parametric and non-parametric compo-
nents. A parametric model is one in which the indexing parameter is a finite-dimensional vector (
in k -dimensional Euclidean space for some integer k; i.e. the set of possible values for θ is a subset
of Rk, or Θ ⊂ Rk In this case we say thatθ is finite-dimensional. In non-parametric models, the set
of possible values of the parameter θ is a subset of some space, not necessarily finite-dimensional.
For example, we might consider the set of all distributions with mean 0. Such spaces are vector
spaces with topological structure, but may not be finite-dimensional as vector spaces.

Thus,Θ ⊂ F for some possibly infinite-dimensional space F in semi parametric models, the
parameter has both a finite-dimensional component and an infinite-dimensional component (often
a real-valued function defined on the real line). Thus the parameter space Θ in a semi parametric
model satisfies Θ ⊂ RkXF , where F is an infinite-dimensional space.

It may appear at first that semi parametric models include non-parametric models, since
they have an infinite-dimensional as well as a finite-dimensional component. However, a semi
parametric model is considered to be "smaller" than a completely non-parametric model because
we are often interested only in the finite-dimensional component of θ . That is, we are not interested
in estimating the infinite-dimensional component. In non-parametric models, by contrast, the
primary interest is in estimating the infinite-dimensional parameter.

Thus the estimation task is statistically harder in nonparametric models.These models often use
smoothing or kernels. A well-known example of a semi parametric model is the Cox proportional
hazards model. If we are interested in studying the time T to an event such as death due to cancer
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or failure of a light bulb, the Cox model specifies the following distribution function for T :

F(t) = 1− exp(−
∫ t

0
λ0(u)eβ

′x
du) (14)

where x is the covariate vector, and β andλ0(u) are unknown parameters. θ = (β, λ0(u)) . Hereβ
is finite-dimensional and is of interest;λ0(u) is an unknown non-negative function of time (known
as the baseline hazard function) and is often a nuisance parameter. The collection of possible
candidates for λ0(u) is infinite-dimensional.

.

i. The Cox model

.
Let Yi denote the observed time (either censoring time or event time) for subject i. Let Ci be the
indicator that the time corresponds to an event (i.e. if Ci = 1 the event occurred and ifCi = 0 the
time is a censoring time).

Let Xi = {Xi1, . . . Xip be the realized values of the covariates for subject i. The hazard function
for the Cox proportional hazard model has the form

λ(t/Xi) = λ0(t)exp(β1Xi1 + . . . + βpXip) = λ0(t)exp(Xiβ) (15)

This expression gives the hazard rate at time t for subject i with covariate vector (explanatory
variables) Xi

Ignoring ties for the moment, conditioned upon the existence of a unique event at some
particular time t the probability that the event occurs in the subject i for which Ci = 1 andYi = t is

Li(β) =
θi

∑j:Yj≥Yi
θj

(16)

Where θj = exp(Xj.β) . Observe that the factors of λ0(t) that would be present in both the
numerator and denominator have canceled out.

Treating the subjects’ events as if they were statistically independent, the joint probability of all
realized events conditioned upon the existence of events at those times is the partial likelihood:

L(β) = ∏
i:Ci=1

θi

∑j:Yj≥Yi
θj

(17)

The corresponding log partial likelihood is

l(β) = ∑
i:Ci=1

Xiβ− log ∑
j:Yj≥Yi

θj

 (18)

This function can be maximized over β to produce maximum partial likelihood estimates of
the model parameters.
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The partial score function is

l
′
(β) = ∑

i:Ci=1

(
Xi −

∑j:Yj≥Yi
θjXj

∑j:Yj≥Yi
θj

)
(19)

and the Hessian matrix of the partial log likelihood is

l
′′
(β) = − ∑

i:Ci=1

∑j:Yj≥Yi
θjXjX

′
j

∑j:Yj≥Yi
θj

−

[
∑j:Yj≥Yi

θjXj

] [
∑j:Yj≥Yi

θjX
′
j

]
[
∑j:Yj≥Yi

θj

]2

 (20)

Using this score function and Hessian matrix, the partial likelihood can be maximized using the
Newton-Raphson algorithm.

The inverse of the Hessian matrix, evaluated at the estimate of β , can be used as an approximate
variance-covariance matrix for the estimate, and used to produce approximate standard errors for
the regression coefficients.

.

ii. Tied times.

.
Several approaches have been proposed to handle situations in which there are ties in the time
data.Breslow’s method describes the approach in which the procedure described above is used
unmodified, even when ties are present.

An alternative approach that is considered to give better results is Efron’s method.
Lettj denote the unique times, letHj denote the set of indices i such that Yi = tj and Ci = 1 ,

and let mj = |Hj|
Efron’s approach maximizes the following partial likelihood.

L(β) = ∏
j

∏iεHjθi

∏m−1
l=0

[
∑j:Yj≥tj

θi − l
m ∑iεHjθi

] (21)

The corresponding log partial likelihood is

l(β) = ∑
j

∑
iεHi

Xiβ−
m−1

∑
l=0

log

 ∑
i:Yi≥tj

θi −
l
m ∑

iεHj

θi

 (22)

the score function is

l
′
(β) = ∑

∑
iεHi

Xi −
m−1

∑
l=0

∑i:Yi≥tj
θiXi − l

m ∑iεHj
θiXi

∑i:Yi≥tj
θi − l

m ∑iεHj
θi


j

(23)

.
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and the Hessian matrix is

l′′(β) = −∑
j

m−1

∑
l=0

∑i:Yi≥Yj
θiXiX

′
i −

l
m ∑iεHj

θiXiX
′
i

φj,l,m
−

Zj,l,mZ
′
j,l,m

φ2
j,l,m

 (24)

Where
φj,l,m = ∑

i:Yi≥tj

θi −
l
m ∑

iεHj

θi (25)

Zj,l,m = ∑
i:Yi≥tj

θiXi −
l
m ∑

iεHj

θiXi (26)

Note that when Hj is empty (all observations with timetj are censored), the summands in these
expressions are treated as zero.

iii. Generation of the data

.

The function genfrail in the package frailtySurv can be used to generate survival times under a
wide variety of conditions. The survival function at time t of the jth observation of cluster i , when
given time-independent covariate Zij and frailty variate ωi, is given by

Sij(t/Zij, ωi) = exp{−Λ0(t)ωie
βT Zij} (27)

where Λ0(t) =
∫ t

0 λ0(u)du is the unspecified cumulative baseline hazard function.
.

V. The Log-likelihood approach of the frailty models

.
For many applications, the natural logarithm of the likelihood function, called the log-likelihood,
is more convenient to work with. Because the logarithm is a strictly increasing function, the
logarithm of a function achieves its maximum value at the same points as the function itself, and
hence the log-likelihood can be used in place of the likelihood in maximum likelihood estimation
and related techniques. Finding the maximum of a function often involves taking the derivative
of a function and solving for the parameter being maximized, and this is often easier when the
function being maximized is a log-likelihood rather than the original likelihood function.

Likelihood function can be written as

L(β, θ, Λ0) =
n

∏
i=1

∫ mi

∏
j
{λij(Tij/Zij, ω)}δij Sij(Tij/Zij, ω) f (ω)dω (28)

=
n

∏
i=1

mi

∏
j=1
{λ0(Tij)e

βT Zij}δij
n

∏
i=1

L(Ni .(τ)){Hi.(τ)} (29)
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.
where τ is the end of follow-up period, f is the frailty’s density function,
Nij(t) = δij I(Tij ≤ t), Ni.(t) = ∑mi

j=1 Nij(t), Hij(t) = Λ0(Tij
∧

t)eβT Zij , and

Hi.(t) = ∑mi
j=1 Hij(t), j = 1, · · · , mj, i = 1, · · · , n.

.

We note that the mth derivative of the Laplace transform evaluated at Hi.(τ) equals
∫

ωNi .(τ)exp{−ωHi.(τ)} f (ω)dω, i =
1, · · · , n..

The log-likelihood equals

ι(β, θ, Λ0) =
n

∑
i=1

mi

∑
j=1

δijlog{λ0(Tij)e
βT Zij}+

n

∑
i=1

logL{Ni .(τ)}{Hi.(τ)} (30)

.

i. Score Equations

. In some cases , we can solve the score equations instead of maximizing the log-likelihood .
The score function with respect to β can be given by ;

Uβ =
∂

∂β
`(β, θ, Λ0) =

n

∑
i=1
{

mi

∑
j=1

δijZij +

∂

∂β
Hi.(τ)

∂

∂Hi.(τ)
LNi .(τ)(Hi(τ))

LNi .(τ)(Hi.(τ))
} (31)

=
n

∑
i=1
{

mi

∑
j=1

δijZij +
mi

∑
j=1

Hij(Tij)Zij
LNi .(τ)+1(Hi(τ))

LNi .(τ)(Hi.(τ))
} (32)

Note that

L(Ni .(τ)+1)Hi.(τ)/L(Ni .(τ))Hi.(τ) (33)

corresponds to ψi in Gorfine et al. (2006).

The score function with respect to θ is given by

Uθ =
∂

∂θ
`(β, θ, Λ0) =

n

∑
i=1

∂

∂θ
LNi .(τ)(Hi(τ))

LNi .(τ)(Hi.(τ))
} (34)

.
The score equations are given by U(β, θ, Λ0) = (Uβ, Uθ) = 0 and the estimator of γ = (βT , θ) is
defined as the value of βT , θ that solves the score equations for any given Λ0 .

VI. Major Frailty distributions

. The frailty distributions have the support ωε(0, ∞) The gamma and Power variance function
have a closed-form analytic expression for the Laplace transform , but the log-normal and inverse
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Gaussian Laplace transforms must be evaluated numerically . For the gamma , log-normal , and
inverse Gaussian , there is a positive relationship between the distribution parameter θ and the
strength of dependence between cluster members. As θ increases , intra-cluster failure -times
dependency increases. The opposite is true for the PVF(Power variance function), and as θ
increases , the dependence between failure-times of the cluster’s members decreases.

i. Log-normal

.
The log-normal distribution is denoted by LN(θ) and with density function

f (ω); θ) =
1

ω
√

θ2π
exp{−(lnω)2

2θ
} (35)

so the mean and variance are exp(θ/2) and exp(2θ)− exp(θ), respectively.
The Laplace transform and its derivatives equal

Lm(s) =
∫ ∞

0
(−ω)me−sω f (ω; θ)dω; m = 0, 1, 2, · · · (36)

Similar to the gamma distribution, the special case of θ = 0 implies that ω ≡ 1
The densit’s partial derivative with respect to θ is given by

∂

∂θ
f (ω; θ) =

ln2(ω)exp(
−ln2ω

2θ
)

2
√

2πθ5/2ω
−

exp(
−ln2ω

2θ
)

2
√

2πθ3/2ω
(37)

.

ii. Inverse Gaussian

.

The inverse Gaussian distribution is denoted by IG(θ), with mean 1 and variance θ. .

The density is given by

f (ω; θ) = (2πθω3)−1/2exp{−(ω− 1)2

2θω
} (38)

where θ > 0.
The Laplace transform and its derivatives equal

Lm(s) =
∫ ∞

0
(−ω)me−sω f (ω; θ)dω; m = 1, 2, · · · (39)

Similar to the gamma and log-normal , ω ≡ 1 when θ = 0
The partial derivative of the density function with respect to θ is given by

∂

∂θ
f (ω; θ) =

(ω− 1)2exp{− (ω− 1)2

2θω
}

2
√

2πθ2ω
√

θω3
−

ω3exp{− (ω− 1)2

2θω
}

2
√

2π(θω3)3/2
(40)
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.

iii. Power Variance Function

.

The power variance function distribution is denoted by PVF(θ, δ, µ) and with density

f (ω; θ, δ, µ) = exp(−µω +
δθ

θ
)

1
π

∞

∑
k=1

Γ(kθ + 1)
k!

(− 1
ω
)θk+1sin(θkπ) (41)

where 0 < θ ≤ 1 , µ ≥ 0, δ > 0
To avoid identifiability problems , we let δ = µ = 1 as in Hanagal (2009), and get a one-

parameter PVF density

f (ω; θ) = exp(−ω + θ−1)
1
π

∞

∑
k=1

Γ(kθ + 1)
k!

(− 1
ω
)θk+1sin(θkπ) (42)

When θ = 1, the degenerate distribution with ω ≡ 1 is obtained.
PVF has expectation 1 and variance 1− θ.

The Laplace transform is given by

L(s) = exp[−{(1 + s)θ − 1}/θ] (43)

The Laplace transform derivatives are given by .

Lm(s) = (−1)mL(s)
m

∑
j=1

cm,j(θ)(1 + s)jθ−m; m = 1, 2, · · · (44)

with coefficients
cm,m(θ) = 0.

cm,1(θ) =
Γ(m− θ)

Γ(1− θ)
.

cm,j(θ) = cm−1,j−1(θ) + cm−1,j(θ){(m− 1)− jθ}.

The partial derivative of the Laplace transform with respect to θ are given by

∂

∂θ
Lm(s) =

∂

∂θ
[(−1)mL(s)

m

∑
j=1

cm,j(θ)(1 + s)jθ−m] (45)
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= (−1)m{ ∂

∂θ
L(s)}

m

∑
j=1

cm,j(θ)(1+ s)jθ−m +(−1)mL(s)
m

∑
j=1
{ ∂

∂θ
cm,j(θ)(1+ s)jθ−m + cm,j(θ)j(1+ s)jθ−mln(1+ s)}

(46)
where

∂

∂θ
L(s) = exp{1− ()s + 1)θ

θ
}{−−1− (s + 1)θ

θ2 − (s + 1)θ log(s + 1)
θ

} (47)

and the partial derivatives of the coefficients are
∂

∂θ
cm,m(θ) = 0.

∂

∂θ
cm,1(θ) =

Γ(m− θ){ψ(0)(1− θ)− ψ0(m− θ)}
Γ(1− θ)

.

∂

∂θ
cm,j(θ) =

∂

∂θ
cm−1,j−1(θ) +

∂

∂θ
cm−1,j(θ){(m− 1)− jθ} − jcm−1,j(θ)

.

iv. Expectation-maximization (EM) Algorithm

Expectation-maximization (EM) is an iterative method used to find maximum likelihood estimates
of parameters in probabilistic models, where the model depends on unobserved, also called
latent, variables. EM alternates between performing an expectation (E) step, which computes an
expectation of the likelihood by including the latent variables as if they were observed, and a
maximization (M) step, which computes the maximum likelihood estimates of the parameters by
maximizing the expected likelihood found in the E step. The parameters found on the M step are
then used to start another E step, and the process is repeated until some criterion is satisfied. EM
is frequently used for data clustering like for example in Gaussian mixtures or in the Baum-Welch
training of a Hidden Markov Model.

v. Model Selection

There are different methods for selecting the most appropriate model in statistical analysis. The
most commonly used methods include information and likelihood based criteria. To compare the
different frailty models used in the study and the corresponding baseline hazard functions , the
information based criteria is applied . The most commonly used model selection criteria are the
Akaike information criterion (AIC) and Bayesian information criterion (BIC). AIC is given by the
expression,

AIC = −2log(L) + 2k (48)

where L is the maximized likelihood value and k is the number of parameters in the model.
BIC is given by the expression

BIC = −2log(L) + kln(N) (49)

,
where N is the total sample size.

The model with the smallest AIC value is considered a better fit.
RESULTS
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coef se(coef) Chisq p

age 0.00318 0.0111 0.0814 0.775
sex -1.48 0.358 0.171 0.000035
diseaseGN 0.088 0.406 0.0468 0.829
diseaseAN 0.351 0.400 0.770 0.023
diseasePKD -1.43 0.631 5.14 0.023
frailty(id) 0.0000271 0.933

Table 1: Table Showing frailty results

coef se(coef) Chisq p

age 0.005 0.02 0.107 0.744
sex -1.697 0.461 13.56 0.00023
diseaseGN 0.18 0.545 0.109 0.741
diseaseAN 0.393 0.545 0.770 0.471
diseasePKD -1.14 0.825 0.52 0.19
frailty(id, dist = "gauss 12.1

Table 2: Table of frailty results with Gaussian

AIC gamma ingau possta lognor

exponential 674 676 682 675
weibull 674 677 682 676
inweibull 692 692 692 692
loglogistic 685 685 686 685
lognormal 679 679 681 679
logskewnormal 681 681 682 681

Table 3: Table comparing AIC of the models used.

BIC gamma ingau possta lognor

exponential 684 685 692 685
weibull 686 688 694 687
inweibull 703 702 703 702
loglogistic 697 697 697 696
lognormal 691 691 692 691
logskewnormal 695 695 696 695

Table 4: Table of the BIC of the models used.
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Figure 1: Plots of AIC and BIC values
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Figure 2: Plots for the spatial aspects
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Figure 3: Plots of different patterns in spatial analysis
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ESTIMATE SE p-val

theta 0.301 0.156
lambda 0.025 0.014
sex -1.485 0.396 <.001 ***
age 0.005 0.011 0.657

Table 5: Table of Gamma frailty and Exponential as the baseline hazard distribution.
Frailty distribution: Gamma
Baseline hazard distribution: Exponential
Loglikelihood: -333.248

Kendall’s Tau: 0.131

ESTIMATE SE p-val

theta 0.342 0.197
lambda 0.020 0.011
sex -1.356 0.382 <=001 ***
age 0.005 0.011 0.679

Table 6: Table showing results of Lognormal frailty and Exponential baseline hazard distribution
Frailty distribution: Lognormal
Baseline hazard distribution: Exponential
Loglikelihood: -333.606

VII. Discussion

i. Model Section Result.

• The best combination of the model to be used is when the frailty distribution is gamma and
the baseline hazard distribution is exponential since it gives the minimum AIC value of 674 .

• We can also make use of the frailty distribution as gamma while the baseline hazard
ditribution is weibull since it is also giving us a minimum value of AIC of 674.

• However from the BIC results , we can make use of the frailty distribution as gamma and
the baseline hazard distribution as exponential since it gives a lower value of BIC as 684 as
compared to the one of Weibull distribution as the baseline hazard fuction.

• Standard errors are computed as the square roots of the diagonal elements of the observed
information matrix. According to this model, sex has a significant impact on the hazard of
infection while it is not affected by age. Conditional on the patient’s frailty and on the age,
the hazard of infection for a female at any time tis estimated to be exp(-1.485) =0.227 times
that of a male, with Wald confdence interval

ii. Choice of Frailty model.

Importance of quality control is well known as one of the areas in statistical analysis hence the
need need to deal with missing data and the misspecification of frailty random effects in a given
study. The choice of the correct frailty model remains a main area of concern hence the need of
this study which will give comprehensive results and the required policies to the practitioners on
how to deal with missing data effects and on the misspecification of the frailty random effects.
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