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1. Introduction 

After Zadeh [16] introduced the concept of fuzzy sets in 1965, many authors have 
extensively developed the theory of fuzzy sets and its applications. Specially to 
mention, fuzzy metric spaces were introduced by Deng [3], Erceg [4], Kaleva and 
Seikkala [8], Kramosil and Michalek [10]. In this paper we use the concept of fuzzy 
metric space introduced by Kramosil and Michalek [10] and modified by George and 
Veeramani [5] to obtain Hausdorff topology for this kind of fuzzy metric space. 

Recently Singh et. al. [13] introduced the notion of semi-compatible maps in fuzzy 
metric space and compared this notion with the notion of compatible map, compatible 
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map of type (), compatible map of type () and obtain some fixed point theorems in 
complete fuzzy metric space in the sense of Grabiec [6]. 

In the present paper, we prove fixed point theorems in complete fuzzy metric space by 
replacing continuity condition with a weaker condition called reciprocal continuity.  

2. Preliminaries 

In this section we recall some definitions and known results in fuzzy metric space. 

Definition 2.1. [13]  A binary operation * : [0, 1] × [0, 1]  [0, 1] is called a  
t-norm  if   ([0, 1], *) is an abelian topological monoid with unit 1 such that  
a * b   c *d   whenever   a   c   and   b   d   for   a, b, c, d  [0, 1]. 

 Examples of  t-norms are   a * b = ab     and   a * b = min{a, b}. 

Definition 2.2. [13]  The 3-tuple (X, M, *) is said to be a Fuzzy metric space if X is an 
arbitrary set, * is a continuous t-norm and M is a Fuzzy set in X2 × [0, ) satisfying 
the following conditions :  

   for all  x, y, z  X   and  s, t > 0. 

(FM-1)  M(x, y, 0) = 0, 

(FM-2)  M(x, y, t) =1  for all t > 0  if and only if   x = y, 

(FM-3)  M (x, y, t) =  M (y, x, t), 

(FM-4)  M(x, y, t) * M(y, z, s)  M(x, z, t + s), 

(FM-5)  M(x, y, .) : [0, )  [0, 1] is left continuous,   

(FM-6)  
t
lim
  

M(x, y, t) =1. 

 Note that M(x, y, t) can be considered as the degree of nearness between x and 
y with respect to t.  We identify x = y with M(x, y, t) = 1  for all t > 0. The following 
example shows that every metric space induces a Fuzzy metric space. 

Example 2.1. [5] Let (X, d) be a metric space.  Define a * b = min  {a, b} and 
tM(x, y, t)

t d(x, y)


   for all x, y  X  and all t > 0.  Then (X, M, *) is a Fuzzy metric 

space.  It is called  the Fuzzy metric space induced by d. 
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Definition 2.3. [6]  A sequence {xn}  in a Fuzzy metric space  (X, M, *) is said to be  
a Cauchy sequence   if and only if for each  > 0,  t > 0, there exists n0  N such that   
M(xn, xm, t) > 1 -    for all  n, m   n0.   

 The sequence {x
n
} is  said to converge  to a point x in X  if and only if  for each  

 > 0,  t > 0 there exists  n0  N  such that M(xn, x, t) > 1 -   for all  n  n
0
.  

 A Fuzzy metric space (X, M, *) is said to be complete if every  Cauchy  
sequence in it converges to a point in it. 

Definition 2.4. [14]  Self mappings A and S of a Fuzzy metric space  (X, M, *)  are 
said to be compatible  if and only  if  M(ASx

n
, SAx

n
, t)  1 for all t > 0, whenever 

{x
n
} is a sequence in X such that Sx

n
, Ax

n
  p  for some  p in X as n . 

Definition 2.5. [11] Two self maps A and B of a fuzzy metric space  

(X, M, *) are said to be weak compatible if they commute at their 

coincidence points, i.e. Ax = Bx  implies ABx = BAx.  

Definition 2.6. Self maps A and S of a Fuzzy metric space (X, M, *) are said to be 

occasionally weakly compatible (owc) if and only if there is a point x in X which 

is coincidence point of A and S at which A and S commute. 

Definition 2.7. [13] Suppose A and S be two maps from a Fuzzy metric space  

(X, M, *) into itself.  Then they are said to be semi-compatible if  
n
lim


ASxn=Sx, 

whenever {xn} is a sequence  such that 
n
lim
  

Axn= 
n
lim
  

Sxn = x  X.   

Definition 2.8. [12] Suppose A and S be two maps from a Fuzzy metric space  

(X, M, *) into itself.  Then they are said to be reciprocal continuous if 
n
lim


ASxn= Ax 

and 
n
lim


SAxn= Sx whenever {xn} is a sequence  such that 
n
lim
  

Axn= 
n
lim
  

Sxn = x  X.  

 If A and S are both continuous then they are obviously reciprocally continuous  

but the converse need not be true.  

Lemma 2.1. [6] Let (X, M, *) be a fuzzy metric space. Then for all x, y  X,  

M(x, y, .) is a non-decreasing function.  
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Lemma 2.2. [11] Let  (X, M, *) be a fuzzy metric space.  If there exists k  (0, 1) 

such that for all x, y  X,   M(x, y, kt)     M(x, y, t)   t > 0, then  x = y. 

Lemma 2.3. [16]  Let {x
n
} be a sequence in a fuzzy metric space   (X, M, *).  If there 

exists a number k  (0, 1) such that 

 M(x
n+2

, x
n+1

, kt)    M(x
n+1

, x
n
, t)    t > 0   and  n  N.  

Then {x
n
} is  a Cauchy sequence in X. 

3.  Main Results 

In the following theorem we replace the continuity condition by weaker notion of 
reciprocal continuity to get more general form of result 4.1, 4.2 and 4.9 of [13]. 

Theorem 3.1. Let A, B, S and T be self maps on a complete fuzzy metric space 
(X,M,*) where * is a continuous t-norm defined by a * b = min{a, b} satisfying : 

(3.1)  A(X)  T(X), B(X) S(X), 

(3.2)  (B,T) is occasionally weak compatible, 

(3.3)  for all x, y X and t > 0, M(Ax, By, t) (M(Sx, Ty, t)), where  
 : [0,1]  [0,1] is a continuous function such that (1) = 1, (0) = 0 and (a) > a 
for each 0 < a < 1. 

If (A,S) is semi-compatible pair of reciprocal continuous maps then A, B, S and T 
have a unique common fixed point. 

Proof.  Let x0  X be any arbitrary point. Then for which there exists x1, x2  X such 
that Ax0 = Tx1 and Bx1 = Sx2. Thus we can construct a sequences {yn} and {xn} in X 
such that y2n+1 = Ax2n = Tx2n+1,  y2n+2 = Bx2n+1 = Sx2n+2 for n = 0, 1, 2, 3, . . . . .  . 

By contractive condition, we get 

    M(y2n+1, y2n+2, t) = M(Ax2n, Bx2n+1, t ) 

(M(Sx2n, Tx2n+1, t)) 

=  (M(y2n, y2n+1, t )) 

> M(y2n, y2n+1, t). 

Similarly, we get 

   M(y2n+2, y2n+3, t ) >  M(y2n+1, y2n+2, t). 
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In general, 

                   M(yn+1, yn, t) (M(yn, yn-1, t)) 

                                         > M(yn, yn-1, t).  

Therefore {M(yn+1, yn, t )} is an increasing sequence of positive real numbers in [0,1] 
and tends to limit l  1. We claim that l = 1.  

If l < 1 then M(yn+1, yn, t )  M(yn, yn+1, t).  

On letting n we get 

n
lim


 M(yn+1, yn, t ) (
n
lim


M(yn, yn-1, t )) 

i.e. l  (l) = l, a contradiction. Now for any positive integer p, 

M(yn, yn+p, t ) M(yn, yn+1, t/p) * M(yn+1, yn+2, t/p)  * … * M(yn+p-1, yn+p, t/p). 

Letting n we get 

n
lim


M(yn, yn+p, t) 1 * 1 * 1 * … * 1 = 1. 

Thus, 

n
lim


 M(yn, yn+p, t ) = 1. 

Thus {yn} is a Cauchy sequence in X. Since X is complete, {yn} converges to a point z 
in X. Hence the subsequences {Ax2n}, {Sx2n}, {Tx2n+1} and {Bx2n+1} also converge to 
z. 

Now since A and S are reciprocal continuous and semi-compatible then we have  

n
lim


 ASx2n = Az, 
n
lim


SAx2n = Sz and 
n
lim


M(ASx2n,Sz, t ) = 1.  

Therefore we get Az = Sz.  

Now we will show Az = z. For this suppose Az  z. Then by contractive condition, 
we get 

M(Az, Bx2n+1, t )  (M(Sz, Tx2n+1, t)). 

Letting n , we get 

M(Az, z, t ) (M(Az, z, t )) > M(Az, z, t), 
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a contradiction, thus  z = Az = Sz.   

Since A(X) T(X), there exists u X such that z = Az = Tu. 

Putting x = x2n and y = u in (3.3) we get, 

M(Ax2n, Bu, t )   (M(Sx2n,Tu, t)). 

Letting n , we get 

M(z, Bu, t) (M(z, z, t )) = (1) = 1, 

i.e. z = Bu = Tu and the occasionally weak-compatibility of  (B, T) gives TBu = BTu, 
i.e. Tz = Bz.  

Again by contractive condition and assuming Az Bz, we get Az = Bz = z.  

Hence finally, we get 

z = Az = Bz = Sz = Tz, i.e. z is a common fixed point of A, B, S and T. The 
uniqueness follows from contractive condition. This completes the proof. 

Now we prove an another common fixed point theorem with different contractive 
condition: 

Theorem 3.2. Let A, B, S and T be self maps on a complete fuzzy metric space  
(X, M, *) satisfying: 

(3.4)  A(X) T(X),  B(X) S(X), 

(3.5)  (B, T) is occasionally weak compatible, 

(3.6)  for all x, y  X and t > 0, 

       M(Ax, By, t) {min(M(Sx, Ty, t), M(Ax, Sx, t), M(By, Ty, t), M(Ax, Ty, t))}, 

where  : [0,1] [0,1] is a continuous function such that (1) = 1, (0) = 0 and 
(a) > a for each 0 < a < 1. If (A, S) is semi-compatible pair of reciprocal continuous 
maps then A, B, S and T have a unique common fixed point. 

Proof.  Let x0  X be any arbitrary point. Then for which there exists x1, x2  X such 
that Ax0 = Tx1 and Bx1 = Sx2. Thus we can construct sequences {yn} and {xn} in X 
such that y2n = Ax2n  = Tx2n+1,  y2n+1 = Bx2n+1 = Sx2n+2 for n = 0, 1, 2, 3, … .  

By contractive condition, we get 

M(y2n+1, y2n+2, t ) = M(Ax2n, Bx2n+1, t) 
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{min(M(Sx2n, Tx2n+1, t), M(Ax2n, Sx2n, t), 

M(Bx2n+1, Tx2n+1, t), M(Ax2n, Tx2n+1, t))} 

       = {min(M(y2n-1, y2n, t), M(y2n, y2n-1, t), 

M(y2n+1, y2n, t), M(y2n, y2n, t))} 

                           =  {min(M(y2n-1, y2n, t), M(y2n+1, y2n, t))} 

       =  {M(y2n+1, y2n, t)} 

       M(y2n-1, y2n, t).  

Similarly, we get 

M(y2n+2, y2n+3, t) M(y2n+1, y2n+2, t). 

In general, 

M(yn+1, yn, t)  (M(yn, yn-1, t)) M(yn, yn-1, t). 

Therefore {M(yn+1, yn, t)} is an increasing sequence of positive real numbers in [0,1] 
and tends to limit l  1 then by the same technique of above theorem we can easily 
show that {yn} is a Cauchy sequence in X. Since X is complete {yn} converges to a 
point z in X. Hence the subsequences {Ax2n}, {Sx2n}, {Tx2n+1} and {Bx2n+1} also 
converge to z. 

Now since A and S are reciprocal continuous and semi-compatible then we have  

n
lim


ASx2n = Az, 
n
lim


SAx2n = Sz and 
n
lim


 M(ASx2n, Sz, t ) = 1.  

Therefore, we get Az = Sz.  

Now we will show Az = z. For this suppose Az  z.  

Then by (3.6), we get a contradiction, thus Az = z. 

Hence by similar techniques of above theorem we can easily show that z is a common 
fixed point of A, B, S and T  i.e. z = Az = Bz = Sz = Tz. Uniqueness of fixed point can 
be easily verify by contractive condition. This completes the proof. 

We now give an example which not only illustrate our Theorem 3.1 but also shows 
that the notion of reciprocal continuity of maps is weaker than the continuity of maps. 
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Example 3.1. Let (X, d) be usual metric space where X = [2, 20] and M be the usual 
fuzzy metric on (X, M, *) where * = min be the induced fuzzy metric space with  

tM(x, y, t)
t d(x, y)




 for x, y  X, t > 0.  

We define mappings A, B, S and T by  

A2 = 2, Ax = 3 if x > 2,    S2 = 2, Sx = 6 if x > 2,  

Bx = 2 if x = 2 or > 5,   Bx = 6 if 2 < x  5,  

Tx = 2, Tx = 12 if 2 < x  5,  (x 1)T(x)
3


  if x > 5. 

Then A, B, S and T satisfy all the conditions of the above theorem with 
7a(a) a,

3a 4
  


 where a = 1/{1+d(Sx, Ty)}  and have a unique common fixed 

point x = 2.  

It may be noted that in this example A(X) = {2,3}  T(X) =  [2,7] {12} and  
B(X) = {2,6}  S(X) = {2,6}. 

Also A and S are reciprocally continuous compatible mappings. But neither A nor S is 
continuous not even at fixed point x = 2. The mapping B and T are non-compatible 
but occasionally weak-compatible since they commute at their co-incidence points. To 
see B and T are non-compatible, let us consider the sequence {xn} in X defined by 

{xn} = 
15
n

       
; n 1. Then, limnTxn = 2, lim nBxn = 2, lim nTBxn = 2 and  

lim nBTxn = 6. Hence B and T are non-compatible. 

Remark 3.1. The maps A, B, S and T are discontinuous even at the common fixed 
point x = 2. 

Remark 3.2. The known common fixed point theorems involving a collection of maps 
in fuzzy metric spaces require one of the mapping in compatible pair to be continuous. 
For example in [2], Chug assume one of the mapping A, B, S or T to be continuous. 
Similarly Singh et. al. [13, 14] and Khan et. al. [9] assume one of the mappings in 
compatible pairs of maps is continuous. The present theorem however does not 
require any of the mappings to be continuous and hence all the results mentioned 
above can be further improved in the spirit of our Theorem 3.1. 
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