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Abstract
Many problems in theory of elastic stability and kinetic reactions lead to

nonlinear multi-point boundary value problems. Therefore in this paper, we
present Embedded Perturbed Chebyshev Integral Collocation Method(EPCICM)
for solving nonlinear second-order multi-point boundary value problems. The
approaches in this work are of two-fold: First, we employed Newton-Raphson-
Kantorovich linearization procedure to linearise the problems before solving
them. Second, we solved the nonlinear systems directly without linearization
by Newton’s method to obtain the unknown coefficients. Our investigations
showed that the second approach produced better results than Newton-Raphson-
Kantorovich linearization approach.

Keywords: Chebyshev approximation, Multi-point boundary value prob-
lems, Newton’s linearization scheme,nonlinear problems.

1 Introduction

Multi-point boundary value problems play important role in many fields es-
pecially in science and engineering. They occur in a wide variety of problems
including modeling of railway systems, construction of large bridges with many
supports and problems arising from electric power networks. Several numer-
ical methods have been developed and used to approximate the solution of
multi-point boundary value problems. Some of these methods are Homotopy
Perturbation Method [1], Reproducing Kernel Method [2, 3], Adomain Decom-
position Method [4], the Shooting Method [5, 6], Weighted Residual Method
[7], Homotopy Perturbation and Variation Iteration Method [8]. The main
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aim of this paper is to develop a new algorithm for solving second-order multi-
point boundary value problems. We employed Newton-Raphson-Kantorovich
linearization process to linearise the nonlinear problems after which we re-
placed all the derivatives and the original function by integrated Chebyshev
polynomials. Also, we solved the problems without linearising them and this
resulted to system of nonlinear algebraic equations which are solved using
Newton’s method. In this work, nonlinear second-order multi-point boundary
value problem

u′′(x) + g(u, u′) = f(x), 0 ≤ x ≤ 1, (1)

u(0) = α, u(1) =
m∑
i=1

αiu(ηi) + γ, (2)

(see [3]) will be investigated by using EPCICM where ηi ∈ (0, 1), i = 0, 1, · · · ,m,
α and γ are constants.
The structure of this paper is as follows: In the next section, we give some
relevant properties of Chebyshev polynomials of the first kind. In section 3,
we describe the construction process of EPCICM . The numerical examples
are presented in section 4 to show the effectiveness, applicability and validity
of the method. Some concluding remarks are given in section 5.

2 Chebyshev Polynomials

The Chebyshev Polynomials of the first kind are polynomials in x of degree n,
defined by the relation:

Tn(x) = cos(nθ),when x = cos θ. (3)

The Chebyshev polynomials can be determined with the aid of the following
recurrence formula:

Tn+1(x) = 2xTn(x)− Tn−1(x), n = 1, 2, · · · (4)

with the initial conditions

T0(x) = 1, T1(x) = x. (5)

In order to use these polynomials on the interval [0,1], we define shifted Cheby-
shev polynomials by introducing the change of variable x = 2x−1. The shifted
Chebyshev polynomial is denoted by T ∗n(x) and T ∗n(x) = Tn(2x− 1). Thus, we
have

T ∗0 (x) = 1, T ∗1 (x) = 2x− 1, (6)

and the recurrence relation for shifted Chebyshev polynomials in [0,1] is given
by

T ∗n+1(x) = 2(2x− 1)T ∗n(x)− T ∗n−1(x), n = 1, 2, · · · (7)
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3 Description of EPCICM

To solve problem (1) with the boundary conditions (2), the second-order
derivative is sought in truncated Chebyshev series form with perturbation term
added and then integrated twice to obtain expressions for first-order derivative
and the function u itself. Thus, the process is described as follows:

d2u(x)

dx2
=

N∑
n=0

anTn(x) + χvHN(x). (8)

Integrating (8) successively, we obtain

du(x)

dx
=

N∑
n=0

an

∫
Tn(x)dx+ χv

∫
HN(x)dx+ c1

=
N+1∑
n=0

δn,1φ
[1]
n (x) + χvψ

[1](x) (9)

u(x) =
N∑
i=n

an

∫
φ[1]
n (x)dx+ χv

∫
ψ[1](x)dx+ c1x+ c2

=
N+2∑
n=0

δn,0φ
[0]
n (x) + χvψ

[0](x), (10)

where χv =

{
1, v = 2
0, v 6= 2

, and HN(x) = τ1TN(x) + τ2TN−1(x)

Substituting equations (8)- (10) into equation (1), we have

N∑
n=0

anTn(x)+χvHN(x)

+g

((
N+2∑
n=0

δn,0φ
[0]
n (x) + χvψ

[0](x)

)(
N+1∑
n=0

δn,1φ
[1]
n (x) + χvψ

[1](x)

))
= f(x).

(11)
Thus collocating equation (11) at point x = xj, we have

N∑
n=0

anTn(xj)+χvHN(xj)

+g

((
N+2∑
n=0

δn,0φ
[0]
n (xj) + χvψ

[0](xj)

)(
N+1∑
n=0

δn,1φ
[1]
n (xj) + χvψ

[1](xj)

))
= f(xj),

(12)
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where

xj = a+
(b− a)j

N + 4
, j = 1, 2, · · · , N + 3. (13)

Thus, equation (12) gives a system of (N + 3) linear or nonlinear algebraic
equations in (N + 5) unknown constants. Extra two equations are obtained
from the boundary conditions. Altogether, we have a system of (N + 5) linear
or nonlinear algebraic equations. These (N + 5) algebraic equations are solved
by using Guassian elimination method for linear case while Newton’s method
is employed for nonlinear case to obtain the unknown coefficients. These co-
efficients are then substituted into equation (10) to obtain the approximate
solution.

4 Numerical Examples

In this section, to show the effectiveness, applicability and validity of our pro-
posed method, we consider three examples.

Example 1: Consider the nonlinear multi-point boundary value problem [3]

u′′(x) +
x2(1− x)

2
u′(x) + u2(x) = f(x) (14)

u(0) = 0, u(1) =
4∑

i=0

(
1

1 + i

)
u

(
i

5

)
+ 0.708667 (15)

with the exact solution u(x) = x2, when f(x) = x3 + 2.

Method 1: Linearisation Approach
The nonlinear multi-point boundary value problem (14) is linearised by the
Newton-Raphson-Kantorovich technique to obtain:

u′′k+1(x) + 2uk(x)uk+1 +
1

2
x2(1−x)u′k(x)− (uk(x))2 = x3 + 2, k = 0, 1, · · · (16)

subject to the boundary conditions:

uk+1(0) = 0, uk+1(1) =
4∑

i=0

(
1

1 + i

)
uk+1

(
i

5

)
+ 0.708667 (17)

Using the initial approximation

u0(x) = −0.099793138x+ x2 +
1

20
x5
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and after four iterations(k=3) we obtain the following approximate solution
for case N = 4:

u(x) = 0.0000009816368107x+ 0.9999970673x2 + 0.00003165830867x3

−0.00008025332007x4 + 0.00007761704736x50− 00002606288578x6

Method 2: Nonlinearisation Approach
In this case, we solved Problem (14) together with its boundary conditions
(15) directly by using our proposed method which eventually resulted to a
system of nonlinear algebraic equations. These equations are solved by using
Newton’s method to obtain the unknown coefficients. Thus, for the case N = 2
we obtain u(x) = x2 which is the exact solution.
Table 1 shows comparison of absolute errors in numerical results by Method 1
and [3].

Table 1: Comparison of Absolute Errors for Example 1

x Exact Solution Das et al [3] Method I
0 0.0000 0.0000 0.0000

0.1 0.0100 - 9.3220E-08
0.2 0.0400 2.0000E-07 2.2705E-07
0.3 0.0900 - 4.0488E-07
0.4 0.1600 4.0000E-07 5.8310E-07
0.5 0.2500 - 7.1740E-07
0.6 0.3600 6.0000E-07 7.9010E-07
0.7 0.4900 - 8.1890E-07
0.8 0.6400 8.0000E-07 8.4710E-07
0.9 0.8100 - 9.1390E-07
1.0 1.0000 1.0000E-06 1.0090E-06

Example 2: Consider the following nonlinear multi-point boundary value
problem [3]

u′′(x) + xu(x)u′(x)− 2u(x) = f(x) (18)

u(0) = 0, u(1) =
4∑

i=0

(
1

1 + i

)
u

(
i

5

)
+ 0.252 (19)

with exact solution u(x) = x(1− x), when f(x) = x3 − x2 + 2

Method 1: Linearisation Approach
The linearised form of equation (18) is given as:
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u′′k+1(x) + 2 (uk(x))2 + x
(
u′k+1uk(x) + uk+1(x)u′k(x)− u′k(x)uk(x)

)
−4uk+1(x)uk(x) = x3 − x2 + 2 (20)

subject to the boundary conditions:

uk+1(0) = 0, uk+1(1) =
4∑

i=0

(
1

1 + i

)
uk+1

(
i

5

)
+ 0.252 (21)

Similarly, using the initial approximation

u0(x) = −0.9398765936x+ x2 − 1

12
x4 +

1

20
x4 +

1

20
x5

and iterating five times(k=4), we obtain the following approximate solution
for case N = 4.

u5(x) = −1.000000114x+ 0.9999995128x2 + 0.000003160165775x3

−0.000004743845332x4+0.000002528617272x5−0.0000003597136402x6

Method 2: Nonlinearisation Approach
On solving Problem (18) together with its boundary conditions (19) for case
N = 2 using our proposed method, we obtain a system of 5 nonlinear algebraic
equations. Extra 2 equations are obtained from the boundary conditions and
altogether we solved 7 nonlinear algebraic equations to obtain the unknown
coefficients by using Newton’s method. Thus, the unknown values are obtained
and substituting these values into (10), we obtain u(x) = x(x−1) which is the
exact solution to this problem.

Table 2: Comparison of Absolute Errors for Example 2

x Exact Solution Das et al [3] Method I
0 0.0000 0.0000 0.0000

0.1 -0.0900 - 1.3560E-08
0.2 -0.1600 2.0000E-07 2.3800E-08
0.3 -0.2100 - 2.5300E-08
0.4 -0.2400 4.0000E-07 1.8300E-08
0.5 -0.2500 - 6.9000E-09
0.6 -0.2400 6.0000E-07 3.8000E-09
0.7 -0.2100 - 9.1000E-09
0.8 -0.1600 8.0000E-07 6.2000E-09
0.9 -0.0900 - 3.9000E-09
1.0 0.0000 0.0000 1.6800E-08
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Example 3: Consider the nonlinear multi-point boundary value
problem [3]

u′′(x) + u(x)u′(x) = f(x) (22)

u(0) = 0, u(1) =
4∑

i=0

(
1

1 + i

)
u

(
i

5

)
+ 0.3277 (23)

with exact solution u(x) = sinx, when f(x) = (cos x− 1) sinx

Using the same procedures discussed in Examples 1 and 2, we obtain the
following approximate solutions for linearised approach when N = 6, k = 1
and nonlinearised approach when N = 6, respectively

u2(x) = 1.000000533x+ 0.0000194625x2 − 0.1668681082x3 + 0.00053786012x4

+0.007784932282x5 + 0.0001943941854x6 − 0.0001964096722x7

and

u(x) = x− 0.000000842679x2 − 0.166657638920005x3 − 0.0000399488764x4

+0.008387154885641x5−0.0000153843780x6−0.0002210499975x7+0.00001706990995x8

Table 3: Comparison of Absolute Errors for Example 3

x Exact Solution Das et al [3] Method I Method II
0 0.00000000000 0.0000 0.0000 0.0000

0.1 0.09983341665 - 6.3123E-07 6.2957E-07
0.2 0.1986693308 0.00005 1.2595E-06 1.2555E-06
0.3 0.2955202067 - 1.8654E-06 1.8573E-06
0.4 0.3894183423 0.00010 2.4269E-06 2.4115E-06
0.5 0.4794255386 - 2.9339E-06 2.9092E-06
0.6 0.5646424734 0.00015 3.3908E-06 3.3566E-06
0.7 0.6442176872 - 3.8054E-06 3.7638E-06
0.8 0.7173560909 0.00020 4.1777E-06 4.1314E-06
0.9 0.7833269096 - 4.4964E-06 4.4462E-06
1.0 0.8414709848 0.00025 4.7538E-06 4.6995E-06

5 Conclusion

In this paper, an algorithm for obtaining numerical solution of nonlinear
second-order multi-point boundary value problems is presented. The deriva-
tion of our proposed method is essentially based on Chebyshev integral collo-
cation and the accuracy and applicability of the method were investigated by
considering three examples. The numerical results showed that the accuracy of
the obtained solutions is satisfactory and it is also observed that nonlinearised
approach produced better results compared to linearized approach.
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