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Abstract

Tikhonov regularization is a popular method for linear discrete ill-
posed problems. This paper is concerned with the iterative method
based on a partial range restricted Arnoldi decomposition of the given
matrix. Theoretical analysis and numerical examples are presented to
illustrate the benefit of the proposed method.

Keywords: Tikhonov regularization, Arnoldi decomposition, dis-
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1 Introduction

Consider a linear least squares problem

min
x∈Rn

∥Ax− b∥, A ∈ Rm×n, m ≥ n, (1)

where A is severely ill-conditioned. Usually, A has many singular values of dif-
ferent orders of magnitude close to zero and some singular values may vanish.
Minimization problems with a matrix of ill-determined rank are often referred
to as linear discrete ill-posed problems. They may be obtained by discretizing
linear ill-posed problems, such as Fredholm integral equations of the first kind
with a smooth kernel. This type integral equations arise in science and engi-
neering when one seeks to determine the cause (the solution) of an observed
effect represented by the right-hand side b (the data). Because the entries of
b are obtained through observation, they typically are contaminated by mea-
surement errors and also by discretization errors. We denote these errors by
e ∈ Rn and the unavailable error-free right-hand side associated with b by
b̂ ∈ Rn, i.e.,

b = b̂+ e. (2)

We assume that a bound δ for which

∥e∥ ≤ δ

1E-mail address: yxjwyz@163.com

1



is available, and the linear system of equations with the unavailable error-free
right-hand side

Ax = b̂ (3)

to be consistent. Let x̂ denote a desired solution of (3), e.g., the solution
of minimal Euclidean norm. We seek to obtain an approximation of x̂ by
computing an approximate solution of the available linear system of equations
(1). Due to the severe ill-conditioning of A and the error e in b, straightfor-
ward solution of (1) generally does not yield a meaningful approximation of x̂.
A common approach to remedy this difficulty is to replace the least-squares
problem by a nearby problem that is less sensitive to perturbations. One of
the most popular replacement approaches is known as Tikhonov regularization
method, which is to solve the minimization problem of the form

min
x∈Rn

{∥ Ax− b ∥2 +1

µ
∥ Lx ∥2}, (4)

where and throughout this paper, ∥ · ∥ denotes the Euclidean vector norm or
the associated induced matrix norm. The scalar µ > 0 is the regularization
parameter and the matrix L ∈ Rp×n, p ≤ n is referred to as the regularization
matrix. Common regularization matrices L are the identity matrix I and finite
difference matrices such as

L :=


1 −1

1 −1
. . . . . .

1 −1

 ∈ R(n−1)×n, (5)

L :=


−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

 ∈ R(n−2)×n. (6)

The minimization problem (4) is said to be in standard form when L = I and
in general form otherwise. Many examples of regularization matrices can be
found in [1, 2, 9, 21,23].

The matrix L is assumed to be chosen such that

N(A) ∩N(L) = {0},

where N(M) denotes the null space of the matrix M . Let MT denote the
transpose of the matrix M . Then the Tikhonov minimization problem (4) has
the unique solution

xµ = (ATA+
1

µ
LTL)−1AT b.
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When the matrices A and L are of small to moderate sizes, (4) can be
solved with the aid of the Generalized Singular Value Decomposition (GSVD)
of the matrix pair {A,L}, see, e.g., [13,17,18] for details. The main drawback
of the GSVD is that it is quite expensive to compute for matrices of large sizes.

Kilmer et al. [19] proposed an inner-outer iteration method which comput-
ed a partial GSVD of the matrix pair {A,L}. However, this method required
large number of matrix-vector product evaluations with A and AT . Lewis and
Reichel [20] presented an Arnoldi-Tikhonov method based on reducing A by
a range-restricted Arnoldi scheme which required L to be a square matrix.
Automatic parameter setting for Arnoldi-Tikhonov methods was recently pro-
posed by Gazzola and Novati [14], and this new strategy can work without
restrictions on the choice of the regularization matrix. Another method based
on reducing both A and L by an Arnoldi-type method was proposed in [22],
and this method required both A and L are square matrices. In [12], Dykes
and Reichel suggested a simplified GSVD method which described how the
standard methods for the computation of the GSVD of a matrix pair can be
simplified in the context of Tikhonov regularization.

Approximations of the solution xµ of problem (4) in standard form can
be computed by partial Lanczos bidiagonalization of A based on the Krylov
subspace

Kk(A
TA,AT b) = span{AT b, (ATA)AT b, · · · , (ATA)k−1AT b}, (7)

which is independent of the regularization matrix L. This method carries
out k steps of Lanczos bidiagonalization of the matrix A to determine the
decompositions

AṼk = Ũk+1C̃k, A
T Ũk = ṼkC

T
k ,

for a suitable k > 0. Here, the matrices Ũk+1 ∈ Rm×(k+1) and Ṽk ∈ Rn×k

have orthonormal columns, Ũk consists of the first k columns of Ũk+1, and
C̃k ∈ R(k+1)×k is lower bidiagonal. See, e.g., [4, 5, 7, 8] for several solution
methods based on this approach.

When L ̸= I, Hochstenbach and Reichel [15] proposed a iterative method
by first computing a partial Lanczos bidiagonalization of the matrix A, and
then projecting L onto the space.

The method in this paper differs from [15] in that the space in which we
determine an approximate solution of (4) is the Krylov subspace

Kk(A,Ab) = span{Ab,A2b, · · · , Akb}. (8)

This method requires A to be a square matrix, which can be satisfied by zero-
padding if necessary.

Our interest in the space (8) stems from the fact that for many linear dis-
crete ill-posed problems the spaces (7) and (8) can be chosen to be of about the
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same dimension, and the computation of an orthonormal basis for the space (8)
requires fewer matrix-vector product evaluations than for the space (7). The
main reason is that each iteration with the space (7) demands the evaluation of
one matrix-vector product with the matrix A and one matrix-vector product
with AT , while each iteration with the space (8) requires the evaluation of only
one matrix-vector product with A. These evaluations typically constitute the
dominant computational effort required. Moreover, the matrix-vector product
with A is easier to evaluate than that with AT .

This paper is organized as follows. Section 2 discusses the proposed it-
erative method. The determination of the regularization parameter µ and
Arnoldi steps k are presented in Section 3. Numerical examples are described
in Section 4.

2 The projected Range-Restricted Arnoldi it-

erative method

We reduce the problem (4) to a problem of smaller size by application of k
steps of the Arnoldi process to A with the initial vector u1 = Ab/ ∥ Ab ∥ .
This yields the decomposition

AUk = Uk+1H̄k, (9)

where Uk+1 = [u1, u2, · · · , uk+1] ∈ Rm×(k+1) has orthonormal columns, which
span the Krylov subspace (8). We call this decomposition as range restricted
Arnoldi decomposition. The matrix Uk ∈ Rm×k consists of the first k columns
of Uk+1. We assume that k is chosen sufficiently small so that H̄k ∈ R(k+1)×k is
a upper Hessenberg matrix with nonvanishing subdiagonal entries. Then H̄k

is of rank k.
We use the QR factorization

LUk = QkRk, (10)

where Qk ∈ Cp×k has orthonormal columns and Rk ∈ Ck×k is upper triangular.
The computation of the decomposition (9) requires the evaluation of k+1

matrix-vector products with the matrix A. Since the matrix L generally is
very sparse, the computational effort needed to evaluate LUk typically is much
smaller than for the evaluation of k + 1 matrix-vector products with A.

We seek to determine an approximate solution of (1) in the Krylov sub-
space (8). Substituting x = Uky, y ∈ Rk into (4) and using (10), we get the
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reduced minimization problem

min
x∈Rn

{∥ Ax− b ∥2 +1

µ
∥ Lx ∥2}

= min
y∈Rk

{∥ AUky − b ∥2 +1

µ
∥ LUky ∥2}

= min
y∈Rk

{∥ Uk+1H̄ky − b ∥2 +1

µ
∥ QkRky ∥2}

= min
y∈Rk

∥∥∥( H̄k
1√
µ
Rk

)
y −

(
UT
k+1b
0

)∥∥∥2

. (11)

Since the subspace dimension k is quite small, we evaluate the solution

y
(µ)
k of (11) by first transforming the matrix

( H̄k
1√
µ
Rk

)
into upper triangular

form by application of a judiciously chosen sequence of Givens rotations, and
then followed by back substitution. Having determined the solution y

(µ)
k , we

obtain an associated approximate solution x
(µ)
k = Uky

(µ)
k of (1).

We will apply the discrepancy principle to determine a suitable value of
µ. By simple calculation, we have

∥Ax(µ)
k − b∥2 = ∥AUky

(µ)
k − b∥2 = ∥H̄ky

(µ)
k − UT

k+1b∥2 + ∥(I − Uk+1U
T
k+1)b∥2.

The norm of the residual error is a function of both the residual error norm
for the reduced problem and the projection error norm ∥(In − Uk+1U

T
k+1)b∥.

Similar to [22], we use the projected discrepancy principle to determine
µ, so that

∥H̄ky
(µ)
k − UT

k+1b∥ = ηδ, (12)

where η ≥ 1 is a user-specified constant independent of δ and is usually fairly
close to unity, and y

(µ)
k solves (11). Let µk denote the solution of (12), and

clearly ∥Ax(µ)
k − b∥ ≥ ηδ.

When the number of Arnoldi step k increases, the QR factorization of LUk

has to be updated. Formulas for updating a QR factorization are described
by Daniel et al. [10]; see also [13]. Note that only the upper triangular ma-
trices Rk, k = 1, 2, · · · , are required, but not the associated matrices Qk with
orthonormal columns.

3 Determining the regularization parameter

and iterative step

In this section, we discuss the computation of µ = µk and the Arnoldi step
k so that yk = y

(µk)
k and k statisfies (12) and ∥Axk − b∥ ≤ ηδ respectively.
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Introduce the function

ϕk(µ) = ∥H̄kyk − UT
k+1b∥2, (13)

where yk = y
(µ)
k is the solution of (11). Then equation (13) can be expressed

as

ϕk(µ) = η2δ2. (14)

The QR factorization of H̄k is

H̄k = Q̃kR̃k,

where Q̃k ∈ C(k+1)×k has orthonormal columns and R̃k ∈ Ck×k is upper trian-
gular.

The following theorem discusses some properties of the equation (14).

Theorem 3.1. Assume that the matrix Rk in (10) is nonsingular. Let R̂ =
R̃kR

−1
k . Then the function (13) can be expressed as

ϕk(µ) = ∥(µR̂R̂T + I)−1Q̃T
kU

T
k+1b∥2 + ∥(I − Q̃kQ̃

T
k )U

T
k+1b∥2. (15)

Consequently, ϕk(µ) is strictly decreasing and convex, and equation (14) has a
unique solution 0 < µk < ∞, provided that

∥PN(Q̃k)
UT
k+1b∥ < ηδ < ∥b∥, (16)

where PN(Q̃k)
denotes the orthogonal projector onto N(Q̃k).

Proof. The representation (15) follows from

ϕk(µ) = ∥H̄kyk − UT
k+1b∥2

= ∥Q̃kR̃kyk − UT
k+1b∥2

= ∥R̃kyk − Q̃T
kU

T
k+1b∥2 + ∥(I − Q̃kQ̃

T
k )U

T
k+1b∥2

= ∥R̃k(H̄
T
k H̄k +

1

µ
RT

kRk)
−1H̄T

k U
T
k+1b− Q̃T

kU
T
k+1b∥2 + ∥(I − Q̃kQ̃

T
k )U

T
k+1b∥2

= ∥[R̃k(R̃
T
k R̃k +

1

µ
RT

kRk)
−1R̃T

k − I]Q̃T
kU

T
k+1b∥2 + ∥(I − Q̃kQ̃

T
k )U

T
k+1b∥2

= ∥{R̃k[R
T
k (R̂

T R̂ +
1

µ
I)Rk]

−1R̃T
k − I}Q̃T

kU
T
k+1b∥2 + ∥(I − Q̃kQ̃

T
k )U

T
k+1b∥2

= ∥(µR̂R̂T + I)−1Q̃T
kU

T
k+1b∥2 + ∥(I − Q̃kQ̃

T
k )U

T
k+1b∥2, (17)

where we have used the expression

y = (H̄T
k H̄k +

1

µ
RT

kRk)
−1H̄T

k U
T
k+1b
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for the forth equality and the formula

R̂ = R̃kR
−1
k , R̂(R̂T R̂ +

1

µ
I)−1R̂T = I − (µR̂R̂T + I)−1

for the last equality.
Define the spectral factorization

R̂R̂T = WΛW T ,

where Λ = diag[λ1, λ1, · · · , λk] and W ∈ Rk×k is orthonormal. Then (17) is
equal to

b̃T (µΛ + I)−2b̃+ ∥(I − Q̃kQ̃
T
k )U

T
k+1b∥2,

where b̃ = W−2Q̃T
kU

T
k+1. Thus ϕk is decreasing and convex. Moreover, we

obtain from (15) that

lim
µ→0

ϕk(µ) = ∥b∥2, lim
µ→∞

ϕk(µ) = ∥PN(Q̃k)
UT
k+1b∥2.

Therefore, when the bounds (16) hold, the equation (14) has a unique bounded
solution.

The stopping index k for the Arnoldi process can be determined by the
discrepancy principle, i.e., the iterations are terminated as soon as an approx-
imate solution xk satisfies

∥Axk − b∥ ≤ ηδ, (18)

where η ≥ 1 is a user-specified constant independent of δ. See [6] for a validity
of this stopping criterion.

4 Numerical experiments

We consider five linear discrete ill-posed problems that arise from the dis-
cretization of Fredholm integral equation of the first kind with a smooth k-
ernal. We use these numerical examples to illustrate the performance of our
method described in Section 2. The error-free b̂ is available by

b̂ = Ax̂.

The error vector e has normally distributed entries with zero mean and is
scaled so that the contaminated b, defined by (2), has a specified noise level
relative error

ϵ = ∥e∥/∥b̂∥.
We let ϵ = 1 · 10−3 and determine the regularization parameter µ by (12) in
all examples.
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We denote the projected Lanczos bidiagonalization-Tikhonov iterative
method in [15] as PLBDT and our projected range-restricted Arnoldi-Tikhonov
iterative method as PRRAT respectively. In all examples, we compare the rel-
ative errors ∥x−x̂∥/∥x̂∥, iteration steps and the CPU time of the two methods.

Example 4.1. The Fredholm integral equation of the first kind∫ π

0

K(s, t)x(t)dt = g(s), 0 ≤ s ≤ π

2
, (19)

with the kernel and solution given by

k(s, t) := exp(scos(t)),

x(t) := sin(t).

The right-hand side function g(s) is defined by (19). This integral equation is
discussed by baart [3].

We discretize the integral equation by the Galerkin method with orthonor-
mal box functions as test and trial functions using the MATLAB code baart
from [16] and obtain the matrix A ∈ R1000×1000 and the discretized solution x̃
of the error-free linear system (3). The associated contaminated vector b in
(1) is obtained by adding 0.1% normally distributed zero mean “noise” e to b̂;
cf.(2).

Method Regularization matrix Relative error Iterative step CPU(s)
PLBDT I 1.14 · 10−1 4 0.163s
PRRAT I 3.58 · 10−2 3 0.097
PLBDT (5) 1.14 · 10−1 4 0.136
PRRAT (5) 3.88 · 10−2 4 0.131
PLBDT (6) 9.89 · 10−2 38 5.711
PRRAT (6) 3.39 · 10−2 3 0.087

Table 1: Relative errors, iterative steps and CPU time of the numerical solu-
tions for example 4.1.

Example 4.2. Consider the Fredholm integral equation of the first kind∫ 1

0

K(s, t)x(t)dt = g(s), 0 ≤ s ≤ 1, (20)

with the kernel and solution given by

k(s, t) :=

{
s(t− 1), s < t,

t(s− 1), s ≥ t,

8



x(t) := t.

The right-hand side function g(s) is defined by (20). This integral equation is
discussed by Delves and Mohamed [11].

We discretize the integral equation by the Galerkin method with orthonor-
mal box functions as test and trial functions using the MATLAB code deriv2
from [16] and obtain the matrix A ∈ R1000×1000 and the discretized solution x̃
of the error-free linear system (3). The associated contaminated vector b in
(1) is obtained by adding 0.1% normally distributed zero mean “noise” e to b̂;
cf.(2).

Method Regularization matrix Relative error Iterative step CPU(s)
PLBDT I 1.37 · 10−1 21 2.338
PRRAT I 1.35 · 10−1 12 0.526
PLBDT (5) 1.30 · 10−1 110 44.005
PRRAT (5) 1.35 · 10−1 12 0.459
PLBDT (6) 1.31 · 10−1 43 7.353
PRRAT (6) 1.37 · 10−1 13 0.638

Table 2: Relative errors, iterative steps and CPU time of the numerical solu-
tions for example 4.2.

Example 4.3. The Fredholm integral equation of the first kind∫ ∞

0

K(s, t)x(t)dt = g(s), s ≥ 0, (21)

with the kernel and solution given by

k(s, t) := exp(−st),

x(t) := exp(−t/2).

The right-hand side function g(s) is defined by (21). This integral equation is
discussed by Varah [25].

We discretize the integral equation by the Galerkin method with orthonor-
mal box functions as test and trial functions using the MATLAB code ilaplace
from [16] and obtain the matrix A ∈ R1000×1000 and the discretized solution x̃
of the error-free linear system (3). The associated contaminated vector b in

(1) is obtained by adding 0.1% normally distributed zero mean “noise” e to b̂;
cf.(2).
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Method Regularization matrix Relative error Iterative step CPU(s)
PLBDT I 7.61 · 10−1 22 2.019
PRRAT I 4.22 · 10−1 8 0.444
PLBDT (5) 7.58 · 10−1 30 3.095
PRRAT (5) 4.22 · 10−1 8 0.391
PLBDT (6) 7.69 · 10−1 > 200 100.851
PRRAT (6) 4.22 · 10−1 8 0.368

Table 3: Relative errors, iterative steps and CPU time of the numerical solu-
tions for example 4.3.

Example 4.4. The Fredholm integral equation of the first kind∫ π
2

−π
2

K(s, t)x(t)dt = g(s), −π

2
≤ s ≤ π

2
, (22)

with the kernel and solution given by

k(s, t) := (cos(s) + cos(t))(
sin(u)

u
)2, u = π(sin(s) + sin(t)).

x(t) := sin(t).

The right-hand side function g(s) is defined by (22). This integral equation is
discussed by shaw [24].

We discretize the integral equation by the Galerkin method with orthonor-
mal box functions as test and trial functions using the MATLAB code shaw
from [16] and obtain the matrix A ∈ R1000×1000 and the discretized solution x̃
of the error-free linear system (3). The associated contaminated vector b in
(1) is obtained by adding 0.1% normally distributed zero mean “noise” e to b̂;
cf.(2).

Method Regularization matrix Relative error Iterative step CPU(s)
PLBDT I 4.73 · 10−2 8 0.468
PRRAT I 4.75 · 10−2 7 0.362
PLBDT (5) 4.63 · 10−2 12 0.793
PRRAT (5) 4.59 · 10−2 8 0.365
PLBDT (6) 5.96 · 10−1 > 200 119.566
PRRAT (6) 3.46 · 10−2 8 0.460

Table 4: Relative errors, iterative steps and CPU time of the numerical solu-
tions for example 4.4.
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Example 4.5. The Fredholm integral equation of the first kind∫ 1

0

K(s, t)x(t)dt = g(s), 0 ≤ s ≤ 1, (23)

with the kernel and solution given by

k(s, t) := d(d2 + (s− t)2)−3/2, d = 0.25.

x(t) := sin(πt) +
1

2
sin(2πt).

The right-hand side function g(s) is defined by (23). This integral equation is
discussed by Wing [26].

We discretize the integral equation by the Galerkin method with orthonor-
mal box functions as test and trial functions using the MATLAB code gravity
from [16] and obtain the matrix A ∈ R1000×1000 and the discretized solution x̃
of the error-free linear system (3). The associated contaminated vector b in
(1) is obtained by adding 0.1% normally distributed zero mean “noise” e to b̂;
cf.(2).

Method Regularization matrix Relative error Iterative step CPU(s)
PLBDT I 1.04 · 10−2 11 0.752
PRRAT I 9.20 · 10−3 9 0.546
PLBDT (5) 4.92 · 10−1 > 200 121.801
PRRAT (5) 9.60 · 10−3 9 0.455
PLBDT (6) 9.50 · 10−3 > 200 116.906
PRRAT (6) 9.80 · 10−3 10 0.534

Table 5: Relative errors, iterative steps and CPU time of the numerical solu-
tions for example 4.5.

We can see that in some cases the relative error by these two methods is
about the same (such as examples 4.2, 4.3 and 4.4), however, the computational
time required by the proposed method is less than that required by PLBDT.
On the other hand, the results from examples 4.1 and 4.5 are superior to that
by PLBDT in terms of the relative error, iterative step and CPU time. It is
clear that PRRAT is more efficient (in iterations and computational times)
than PLBDT. Furthermore, we can see that the change of the regularization
matrix has greater influences on PLBDT than on PRRAT in terms of iterative
step and CPU time.
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