An algorithm for a link-based variational inequality model of
dynamic user optimal route choice

Tianze Xu*,1, Binghua Wu1, Bin Ran2

1 Henan University of Urban Construction, China
2 University of Wisconsin at Madison, USA
* Corresponding author. Email: selecxtz@126.com

ABSTRACT
In this paper, we have presented a new relaxation with Frank-Wolfe (FW) algorithm to solve the link-based variational inequality model of ideal dynamic user optimal route choice problem. It is a modified version of Ran’s algorithm and has corrected some critical mistakes in the original algorithm. The algorithm does not need time-space network expansion and is efficient in solving real problem.
Key words: dynamic user optimal route choice, relaxation, Frank-Wolfe algorithm, dynamic shortest path.

1. INTRODUCTION
Transportation network models can be classified into two categories: static models and dynamic models. The static models, with the User Equilibrium (UE) (Beckmann, 1956) as the most fundamental one, are applicable to long-term transportation planning. LeBlanc et al. (1975) have shown the Frank-Wolfe (FW) algorithm can be used to solve the UE model. However, the resultant link volume of a static model may be several times more than the capacity of a link, which is not consistent with actual situation. In addition, the static models cannot provide the real time traffic volume and travel time and cannot reflect the time-dependent variation of traffic on a road network. Thus, the application of static models on the operation of a transportation network is limited. As the dynamic generalization of static models, the dynamic models can provide the real time link/path traffic volume and link/path travel time, which are the necessary data for the implementation of any travel guidance systems. Thus, dynamic transportation network models are useful in managing the real time operation or assessing the performance of a transportation system. Dynamic models are also applicable to long-term transportation planning.
The Dynamic User Optimal (DUO) route choice model is the dynamic generalization of UE model. It can be described as: Given time-dependent OD demand of each OD pair, determine the flow pattern on the network such that for each OD pair at each instant of time, the actual travel times experienced by travelers departing at the same time are equal and minimal (this state is called ideal or predictive user optimal state), or for any departure flow from each decision node (intersection) to each destination node at each instant of time, the instantaneous travel times equal the minimal instantaneous route travel time (this state is called reactive or instantaneous user optimal state) (Ran and Boyce, 1996).
The approaches used to model dynamic traffic assignment (DTA) can be classified into two types: simulation-based approach and analytical approach. Each has its characteristics. The most distinguishable characteristics of analytical models is solution properties such as existence and uniqueness are provable and the convergence is guaranteed (Ran, 2002). The analytical approach includes mathematical programming, optimal control, and variational inequality. The variational inequality (VI) method can overcome the limitations of mathematical programming (Ziliaskopoulos and Peeta, 2001) and optimal control (Boyce, Lee and Ran, 2001) and has been a useful tool to model dynamic transportation networks.
Ran and Boyce (1996) have proved that the FW algorithm is appropriate to solve the dynamic traffic assignment problem if a time-space network is considered. Many VI models and solution algorithms have been presented for dynamic user optimal route choice problem (Friesz et al., 1993; Smith and Wisten, 1995; BYUNG-WOOK et al. 1995; Ran and Boyce, 1996a, 1996c; Chen and Hsueh, 1998; Wie, 2002; Jang, Ran, et al. 2005; Bellei et al. 2005; Michiel et al. 2000; Ran et al. 2002; Akamatsu, 2001; Kim and Jayakrishnan, 2006; Mahut et al. 2008; Ramadurai et al. 2008; Liu et al. 2003; Ran et al. 2002; Lo et al. 2002; YOUNES et al. 2004; Deren et al. 2004). However, no solution algorithm has been perfect and solved all the critical issues. Further effort on developing new algorithms is still needed to efficiently solve dynamic transportation network models.
In this paper, a new relaxation algorithm is proposed for the link-based variational inequality model of ideal dynamic user optimal route choice problem. It is a modified version of Ran’s algorithm and has corrected some critical mistakes in the original algorithm. The algorithm does not need time-space network expansion and is thus efficient in solving real problem. The notations used in this paper are consistent with those used by Ran and Boyce (1996) and Ran (2002).
The rest of the paper is organized as follows: Section 2 covers the literature review. Section 3 presents the link-based VI model of DUO. Section 4 proposes the relaxation algorithm for the link-based VI DUO model. Section 5 introduces dynamic shortest path algorithm. Section 6 presents a numerical example. Section 7 concludes the paper.

2. LITERATURE REVIEW
Friesz et al. (1993) formulated a continuous time, infinite-dimensional VI model for the departure time/route choice problem but did not provide solution to the model.
Smith and Wisten (1995) introduced a smooth day-to-day dynamic user-equilibrium assignment VI model. BYUNG-WOOK et al. (1995) formulated the dynamic network user equilibrium problem as a variational inequality problem in discrete time in terms of unit path cost functions. A heuristic algorithm is presented to solve the model. Ran and Boyce (1996a) propose a link-based discretized VI formulation for the ideal DUO problem with fixed departure times. In the paper, the traffic network constraints and link-based DUO route choice conditions are presented, and the necessity and sufficiency of the VI is proved. Ran and Boyce (1996b) used the FW algorithm to solve the dynamic traffic assignment problem on a time-space network. Chen and Hsueh (1998) propose a link-based VI formulation and a solution algorithm for the DUO problem. Wie (2002) developed an algorithm to solve the user equilibrium route choice problem. Jang, Ran and Choi (2005) proposed a route-based discrete variational inequality model of ideal dynamic user optimal (DUO) route choice. They presented a projection-based approach with column generation to solve the model. Bellei, Gentile and Papola (2005) formulated within-day dynamic traffic assignment as a fixed-point problem. The fixed-point problem is solved through the Bather’s method. In the solution process, an implicit path enumeration network loading procedure is used as an extension of Dial’s algorithm.
Bliemer and Bovy (2003) proposed a multiple-user-class macroscopic dynamic traffic assignment model. The model is specified as a quasi-variational inequality problem. A nested modified projection method is proposed to solve the assignment problem. The solution algorithm requires path enumeration. Ran, Lee, and Shin (2002) proposed a link-based variational inequality model of dynamic traffic assignment with the extended capability of performing rolling horizon implementation. The model can be solved to convergence by a relaxation /diagonalization algorithm. Akamatsu（2001）presents an algorithm for solving nonlinear complementarity formulation of the dynamic user equilibrium (DUE) traffic assignment for a one-to-many origin-destination network. Kim and Jayakrishnan (2006) studied dynamic traffic assignment based on arrival time-based OD demand. Mahut, Florian and Tremblay (2008) formulated dynamic traffic assignment model as a time discrete variational inequality problem and use the MSA and a gradient-like method to solve the model. Ramadurai et al. (2008) developed a linear complementarity formulation for the single bottleneck model. Liu et al. (2003) proposed a fuzzy dynamic traffic assignment model. A fuzzy shortest path algorithm is used to find the fuzzy shortest paths and assign traffic to each of them by using the C-logit method. Ran et al. (2002) presented a new algorithm for solving the dynamic route choice problems without time-space network expansion. Lo and Szeto (2002) developed a cell-based nonlinear complementarity formulation of dynamic traffic assignment (DTA). HAMDOUCH et al. (2004) proposed a VI model of dynamic traffic assignment where strategic choices are an integral part of user behaviour. Han and Lo (2004) developed a descent direction of the merit function for co-coercive variational inequality (VI) problems and implemented the solution method for traffic assignment problems. Rong et al. (2018) proposed a continuum dynamic model for autonomous vehicles in a polycentric urban city by considering the environment impact of traffic emission. Mao et al. (2019) established a multi-objective dynamic traffic assignment model with the objectives of not only minimum travel time but minimum decline of present serviceability index for pavements. ZHANG et al. (2019) proposed a dynamic traffic assignment method based on the connected transportation system to express the time-varied traffic flows caused by uncertain traffic demand and supply in the real traffic network accurately.

3. LINK-BASED VARIATIONAL INEQUALITY (VI) DUO MODEL

3.1 Some Definitions and notations
Some definitions for are given as follows:

Departure Horizon: The time period in which there are vehicles departing from an origin and entering the network. Denote it as. All departing flow rate from any origins is zero after.

Assigning Horizon: The time period from the beginning to the time point at which the last vehicle entering the network reaches its destination. Denote it as. is the whole analysis time period.

Time Increment: The length of the time interval used to partition and. Denote it as. Each time increment is a unit of time. The time interval is.

Let, where is the set of natural number. Similarly, let.

Time-Space Network: The network with time dimension, showing the network state at each time interval.

Fig. 2 shows an example of time-space network with 4 time interval for the 3-link network in Fig. 1. is the number of vehicles on link at interval .

Fig. 1. A 3-link network.

Fig. 2. Time-space network with 4 time intervals for the 3-link network

Notations used in this paper are given as follows:

: number of vehicles on link at beginning of interval

: inflow into link during interval

: exit flow from link during interval

: inflow into link from origin to destination at time

: outflow from link from origin to destination at time

: departure flow from origin toward destination during interval

: actual travel time over link for flows entering link at time

: actual travel time for route between O-D pair for flows departing origin at time

: actual travel time for route between origin and node for flows departing origin at time

: minimal actual route travel time between O-D pair for flows departing origin at time
The above notations are for discrete case. The time interval is taken as time point when the notations are used in continuous case. Other notations will be defined when needed.

3.2 Link-based VI Formulation of DUO

Assume the network is empty at, and only travel demands departing within the departure horizon are considered. The link-based DUO continuous VI model can be expressed as

 (1a)

where , , , , and are the cardinalities of the set nodes, links and O-D pairs, etc. ,
or in expanded form as

 (1b)
where

, (1c)
This formulation is equivalent to the following link-based DUO route choice conditions:

 (2a)

 (2b)

 (2c)
The above formulation and conditions comes from Ran and Boyce (1996) with some modification. In Ran and Boyce (1996), the link cost term is defined as

 (3)
which is different from (1c).

(2a) states that if time-space link is on the minimal actual route (dynamic shortest path) from origin to destination at time,; otherwise, . (2b) states that if time-space link is on the minimal actual route from origin to destination at time, or if,; otherwise, or if , . (2c) is nonnegative condition for inflow.
Below we prove traffic status satisfying (1) is in a DUO status or equivalent to (2a), (2b), (2c).
Proof:
(i)

Necessity. By (2a) and (2c),, , this implies . By

(2b), . Thus, holds. Integrating it over , we have (1).
(ii) Sufficiency. (2a) and (2c) hold by definition. Let the optimal solution of

(1) be. To prove (2b) holds for, we first find a feasible solution such that (2b) holds, or. Suppose (2b) does not hold for, we have. We further has, or . This contradicts (1). Thus (2b) holds for.

4. SOLUTION ALGORITHMS FOR LINK-BASED VI DUO MODEL
4.1Discrete Link-based VI DUO Model

To solve the DUO problem, the continuous VI formulation is discretized with each time interval being time increment. The estimated actual travel time on each time-space link is a multiple of the time increment and is fixed at each time increment, i.e.,

 (4)

whereis an integer and , is time increment.. This round-off method is used only in the flow propagation constraints. The round-off error can be made as small as desired by making the time increment smaller (Ran and Boyce, 1996).
The link-based DUO discrete-time VI formulation is

 (5a)
or in expanded form as

 (5b)

where, , and

, (6)

is the feasible region defined by the following constraint.
Path flow conservation constraint:

 (7)
Link inflow conservation constraint:

 (8)
Link outflow conservation constraint:

 (9)
Node flow conservation constraint:

 (10)

where is the set of links whose tail node is (after) and is the set of links whose head node is (before).
Link flow propagation constraint:

 (11)
The link state equation:

 (12a)
or

 (12b)
(12a) is forward formula, (12b) is backward formula.
Path-link flow incidence constraint:

 (13)

whereis defined as:

 (14)
Nonnegative constraint:

 (15)

With flow propagation constrain (11), outflow and link volume can be expressed by inflow as follows (Ran, 2002; Chen, 1998):

 (16)
where

 (17)
and

 (18)
where

 (19)

4.2 Relaxation
At each relaxation, we temporarily fix (Ran and Boyce, 1996; Ran, 2002):
1.

Actual travel time in the link flow propagation constraints as and corresponding actual route travel time as ;
2.

Actual travel time in the VI cost term as and
3.

Minimal travel times as, as and as for each link and each origin and destination.
At each relaxation, a time-space network is implicitly formed with fixed link flow propagation constraints and fixed actual route travel time. Via relaxation, the VI cost term becomes

 (20)
4.3 Optimization Problem
An optimization problem which is equivalent to the discrete VI under relaxation can thus be formulated, as follows:

 (21)
The gradient of (21) is shown to be

 (22)
(21) is equivalent to the cost term of discrete VI (5b) under relaxation. This indicates the above optimization program is equivalent to the discrete VI (5).
By using (18), we have

 (23a)

where

Letting and, (23a) can be expressed as

 (23b)
(23b) can be rewritten as

 (23c)

Letting
(23c) can be rewritten as

 (23d)
Substitute (23d) into (21), we have

 (24)

Since all cross effects are fixed in each relaxation, is the only variable for each summation term of (21) and (24). At each relaxation, the VI formulation of DUO problem was transformed into a series of static user equilibrium traffic assignment problems over the time-space network of the relaxation, which can be solved by Frank-Wolfe algorithm. Call the relaxation as outer iteration and solving static user equilibrium traffic assignment problems over the time-space network of the relaxation as inner iteration.

At the iteration of the inner iteration (Frank-Wolfe algorithm), the descending direction of nonlinear programming (21) can be found by solving the following linear program:

 (25)

in.

whereis sub-problem variable, is gradient of with respect to evaluated at .
(25) is equivalent to:

 (26)

in.
where

 (27)

(27) can be decomposed by origin-destination pair. The resulting sub-problem for O-D pair is:

 (28)

in.

(28) can be further decomposed by each O-D flow,. The resulting sub-problem for O-D flow is:

 (29)

in.

(29) can be viewed as a shortest path problem over the time-space network of the relaxation. The minimum of (29) is found by assigning to the actual minimum cost route (dynamic shortest path) of O-D pair at time interval. The cost of each time-space link is defined as (27). The shortest path for (27) can be found on the original network, with the time interval for each link recorded on the original network to track the shortest path on time-space network. As an example, Fig. 3 shows how to record time interval on the original network for demand.

Fig. 3. An example of recording time intervals on original network.

Cost term (27) contains the fixed actual travel time and at each relaxation for every link,. They are dynamic shortest path on time-space network. Section (2.3) describes an efficient algorithm to find dynamic shortest paths on the original network based on time-space link travel times.

Notice the difference between cost term (27) and. If does not contribute to, the shortest paths based on (27) and are the same. To see this, let be the set of the actual minimum cost route of O-D pair at time interval at the iteration of the inner iteration, where is the number of the actual minimum cost route of. Consider the path cost of any, , with , where are sequential links on route , is the number of links on route . The path cost of (denote it as) is the sum of all the cost of time-space links on the path, or

 (30a)

If is the same path as the minimum route (with path cost) under the relaxation, then we have

 (30b)
(16a) reduces to

 (31)

Since and is fixed at each relaxation, equation (31) implies is also the minimum cost route if cost term is used. However, if contributes to, the shortest paths based on (27) and are not necessarily the same. To see this, now let be the actual minimum cost route of O-D pair at time interval at the iteration of the inner iteration based on cost term. For any with,, its path cost based on cost term is

Its path cost based on cost term (27) is

Because may not be the same path as the minimum route (with path cost) under the relaxation, (30b) do not necessarily hold, and the shortest paths based on (27) and are not necessarily the same.

The step size along the descending direction can be decided by solving the following one-dimensional search problem:

 (32)

After the optimal step size is found, the solution at the inner iteration can be updated as

 (33)

4.4 Solution Algorithm
The algorithm for solving the ideal DUO route choice model (5) is summarized as follows.
Step 0: Outer Initialization.

Compute, where is the static minimum travel time of O-D.

Set. Set, . Find an initial

feasible solution . Set outer iteration counter. Set an outer iteration

convergence criterion.
Step 1: Relaxation.

Step 1.0: Find a new estimation of actual link travel times:, find

 , where * denotes the solution obtained from the

most recent inner iteration or from outer initialization. Findand.

Step 1.1: Find,, and by using dynamic shortest

path algorithm, ,.
Step 2: Inner Iteration

Step 2.0: Inner Initialization. reset the inner initial feasible solution to be consistent with the flow propagation constrain at the current relaxation. Set an inner iteration counter(or a convergence criterion).

Step 2.1: Update. Compute. Update by equation (27).

Step 2.2: Direction Finding. Based on, search for shortest routes for all OD
pairs over the physical network without time-space expansions. Perform an all-or-
nothing assignment following the link flow propagation constrain, yielding

sub-problem solution .
Step 2.3: Line Search. Solve the one-dimensional search problem (32) using a line

search procedure such as the bisection method and find the optimal step size .

Step 2. 4: Move. Find a new solution by (33).
Step 2. 5: Convergence Test for Inner Iteration.

If >, set, go to Step

2.1.; otherwise, set,, go to Step 3.

Step 3: Convergence Test for Outer Iteration. If, stop. The

current Solution , , is in a near optimal state; otherwise, set

 and go to Step 1.

In the above algorithm, are solutions at outer iteration. is the estimation of link travel time at outer iteration . is the floored link travel time. and are solutions at inner iteration . is the estimation of link travel time based on them. The number of inner iterations at each relaxation can also be pre-specified.
All inflow of the time-space link is zero and the corresponding link travel time is free flow travel time unless the link is assigned flow. The initial feasible solution in outer initialization can be found by performing all-or-nothing assignment on the dynamic shortest path based on free flow link travel time for all OD pairs.

At each relaxation, a time-space network is implicitly formed. The algorithm then performs FW iteration on the time-space network. The, and at the relaxation are calculated using the solution at the relaxation. Notice the solution at the outer iteration cannot be used as the initial solution in the inner iteration of the relaxation unless andat the two relaxations are exactly the same (which indicates the implicit time-space networks of the two relaxations are the same). If andat the two relaxations are different, the solution at the outer iteration is not a feasible solution in the inner iteration of the relaxation. A procedure to reset the initial feasible solution for the inner iteration at each relaxation is needed to make the initial feasible solution consistent with the current flow propagation. Ran’s (1996) original relaxation with FW algorithm lacks this critical step, which leads to wrong solution that is not consistent with the definition and constraint of DUO.

In inner iterations, the shortest paths with link cost term can be found by dynamic shortest path algorithm. Or they can be found by static shortest path algorithm with arrival time interval for each link recorded on the original network as shown in Fig. 3. When performing all-or-nothing assignment for,, the assigned value should be instead of . As an example, Fig. 4 shows how should be assigned on the time-space network. The time-space links on the dynamic shortest paths are highlighted as thick black. The assigned volumes resulting from are ,, and .

Fig. 4 Assigned volumes on the time-space expansion network.

Since any route on the time-space network corresponds to a unique route on the original physical network, the assignment of any time-dependent demand can also be performed on the original network if arrival time interval for the link is recorded. Fig. 5 shows how should be assigned on the original network for the 3-link network. The same method is used to assign all time dependent demand, on the original network.

Fig. 5. Assigned volumes on the original network.

The departure horizon is the same for all relaxations. The assignment horizon and the time-space network is fixed at each relaxation but may change from relaxation to relaxation. The assignment horizon and time-space network will finally tend to be
fixed. A necessary condition of the convergence of the algorithm is that the time-space
network remains the same at successive relaxations. As explained above, the
algorithm does not need time-space network. The introduction of time-space network
is for better explaining and understanding the solution process.

The actual assignment horizon at the end of the solution is,

where. When FIFO condition holds, departure horizon

 and assignment horizon have the following relationship under DUO

status: , where =, is the minimal actual

route travel time from origin to destination at time .

5. DYNAMIC SHORTEST-PATH ALGORITHM

Let G = (V, A) be a directed network with node set V and arc set A. Any link a is indexed by (), or a=,where and are the ‘from node’ and ‘to node’. Denote link a=at time interval asor, node at time interval as, the travel time on linkat time interval as ,

.is its floored value. Denote by the minmum travel time

to destination departing node at time . The optimality condition of
minimum travel times are defined by the following functional form (Cooke and
Halsey, 1966; Ziliaskopoulos and Mahmassani, 1993; ISMAIL CHABINI, 1998)

When the FIFO condition is valid, the label-correcting algorithm can be generalized
to solve the time-dependent minimum paths (dynamic shortest paths) problem with
the same time complexity as the static shortest paths problem (Dreyfus,1969;
Kaufman and Smith,1993; ISMAIL CHABINI, 1998). Below we introduce an
algorithm to find the dynamic shortest path without time-space network. The
algorithm is a generalization of Moore algorithm to find the time-dependent minimum
paths problem. Readers may refer to Sheffi (1985) for the detailed description of
Moore algorithm. In order to describe our algorithm for dynamic shortest path, we
introduce the following denotations.

Denote =, where, and

=

Further denote =,, where

=

Denote

Let, or

Our algorithm to find the dynamic shortest path between any node r and s at timeis described as follows:
Step 0: Initialization.

Set =0, , =, =,=0,,.

Set and =.

Step 1: Set =, choose such that

=min.

Label, ,.

Set= and =. If =or =

or, stop; otherwise, go to Step 2.
Step 2:

Step 2.1: Search among and choose such that

Label,,.

Step 2.2: Set =. Set =. If =or = or, stop; otherwise, go to Step 2.1

The above shortest path algorithm is the forward label-correcting method. It finds the dynamic shortest path from a given origin at time to any other nodes in the network. A travel cost is associated with each link a=at. Each

node has three labels: , and . is the minimum cost from the origin

node to node along the shortest path at . is the time interval when one

departing node at and traveling along the shortest path reaches node .

is the node just preceding node along the shortest path. A sequence list is used to
help keep track of the nodes. The list includes all the nodes that have yet to be
examined as well as the nodes requiring further examination.

In initialization, the algorithm sets allandto infinity and all to zero. And place the origin nodeon the sequence list with label =0, . Each iteration starts with the selection of a node from the sequence list for examination. All nodes,, that can be reach from by traversing only a single link are tested in the examination process. If the minimum path to through at is shorter than the previous path to , then and are updated. In other words, if + <, then the current shortest path form the origin node to can be improved by going through node . To reflect this change, the label list is updated by setting :=+, :=+, the predecessor list is updated by setting : =, and the sequence list is updated by adding to it. Once all the nodes (that can be reached from) are tested, the examination of node is complete and it is deleted from the sequence list. The algorithm terminates when the sequence list is empty. The dynamic shortest path from the origin at to any other node can be found by tracing the predecessor list back to the origin node. The corresponding time interval for each node on the shortest path is given by .

6. A NUMERICAL EXAMPLE
An example is presented below to show the application of the above algorithms.
The configuration of the network is shown in Fig.6. In the network, each link is
assumed as a one-lane street with a length of 0.5 mi. The free flow speed is assumed
to be 25 miles / hour. The following linear travel time function is used to enforce

FIFO condition:, where is the length of link,is free

flow speed, is link travel time on link at time , is number of vehicles

on link at time . Four O-D pairs are considered. Five 20 s departure time
intervals are specified. The OD flows are 10 vehicle units per time interval. The O-D
pairs and the time-dependent O-D demand are shown in Table 1. In this example, the
departure horizon is 5 time increments, and the time increment is 20 seconds.

Fig.6. Simulation network for sample problem 1
Table 1 O-D pairs and time-dependent O-D demand for example 1
	O-D

	Departure time interval k

	
	1
	2
	3
	4
	5

	1-9
	10
	10
	10
	10
	10

	9-1
	10
	10
	10
	10
	10

	3-7
	10
	10
	10
	10
	10

	7-3
	10
	10
	10
	10
	10

The program of the algorithm was run on a computer with 1.5 GHz frequency processor. The inner iteration (FW algorithm) convergence test method was set as a prespecified number. The outer iteration (Relaxation) convergence test method was set as

where is the actual travel time difference of link a at time k
between successive relaxations. The operation of the program is shown in Table 2.

Table 5.2. Convergence criterion and computation time for sample problem 5.1
	Inner iteration convergence criterion
	Outer iteration convergence criterion
	Total relaxations
(Outer iterations)
	Total computation time (minute)

	n=4
	0.002
	8
	25.8

The assignment horizon K is found to be 21 time increments. Table 4a shows the

output of . Table 4 shows the output of, , links on each path and
the arrival time interval for each link on a path.
We take the following examples to verify that the solution satisfies the constraints and the dynamic user-optimal conditions.
Path flow conservation constraint (7):

=
=3.4424+1.865+3.1786+1.1275+0.2891+0.0974
=10
Link inflow conservation constraint (8):

+=2.1353+2.1353=4.2706=
Link outflow conservation constraint (9):

+=2.1353+2.1353=4.2706=
Node flow conservation constraint (10):

=4.7216+0+5.2784=10

=3.3945+3.1047+3.5008=10
Link flow propagation constraint (11):

===2.1353

===2.1353

Where =1.2428 minutes. For a time increment of 20 seconds, =4.
The link state equation (12b):

=+= 4.3082 + = 8.5788
The actual travel times on the used paths from origin 1 toward destination 9 departing at time increment 1 are as follows:

=
= 1.2232+1.2171+1.2171+1.2242
= 4.8816 minutes

Similarly, we have 4.8888 minutes, 4.8841 minutes, 4.878 minutes, 4.8871 minutes, 4.8798 minutes. They are nearly equal, which is consistent with the DUO route choice condition.
As can be checked in the same way, all the solution output satisfies the constraints and the ideal dynamic user optimal conditions. This verifies the rationale of the above model and solution algorithm.

7. CONCLUSIONS
In this paper, we have presented a new relaxation algorithm to solve the link-based variational inequality model of ideal dynamic user optimal route choice problem based on previous studies. It is a modified version of Ran’s algorithm and has corrected some critical mistakes in the original algorithm. The algorithm does not need time-space network expansion and is efficient in solving real problem.
Further research can be conducted in several directions: 1) consider the stochastic factors in link travel times and develop stochastic DUO models and solution algorithms; 2) combine other stages of travel choice and develop combined dynamic transportation network models and solution algorithms; 2) adopting accelerating techniques to accelerate the convergence of the algorithm.

[bookmark: _GoBack]Competing interests
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Availability of Data and Materials
The datasets generated and/or analyzed during the current study are not publicly available due to moderate confidentiality but are available from the corresponding author on reasonable request.

Funding
There is no funding for this study.

Authors' contributions
All authors wrote the main text and reviewed the manuscript. Tianze Xu made the figures and tables.

Acknowledgements
 No

REFERENCES

Athanasios K. Ziliaskopoulos and Srinivas Peeta. (2002). Foundations of Dynamic Traffic Assignment: The Past, the Present and the Future. 2002 Annual Transportation Research Board Meeting.
Beckmann M., McGuire C.B. and Winsten C.B. (1956). Studies in the Economics of Transportation. Yale University Press, New Haven.
Bin Ran; Der-Horng Lee; and Michael Seong-II Shin. (2002). Dynamic Traffic Assignment with Rolling Horizon Implementation. Journal of Transportation Engineering, Vol.128, No. 4, 314-22.
Bliemer MCJ. (2000). Quasi-variational inequality approach to multi-user-class dynamic traffic assignment. TRANSPORTATION RESEARCH RECORD (1710): 11-19.
Bosheng Rong, Hui Zhao, Shaohua Cui, and Cuiping Zhang. (2018). Continuum Dynamic Traffic Assignment Model for Autonomous Vehicles in a Polycentric Urban City with Environmental Consideration. Mathematical Problems in Engineering, Article ID 8345979. https://doi.org/10.1155/2018/8345979

BYUNG-WOOK WIE, ROGER L. TOBIN TERRY L. FRIESZ, DAVID BERNSTEIN. (1995). A Discrete Time, Nested Cost Operator Approach to the Dynamic Network User Equilibrium Problem. TRANSPORTATION SCIENCE 29 (1): 79-92.
Byung-Wook Wie. (2002). A diagonalization algorithm for solving the dynamic network user equilibrium traffic assignment model. Asia - Pacific Journal of Operational Research 19, 107-130.
Chabini, I. (1998). Discrete dynamic shortest path problems in transportation applications: complexity and algorithms with optimal run time.” Transportation Research Record No.1645, pp. 170–175.
Chen, H-K. and Hsueh, C.F. (1998). "A Model and An Algorithm for the Dynamic User-Optimal Route Choice Problem", Transportation Research, Vol. 32B, No. 3, pp. 219-234.
Cooke, K. L., and E. Halsey. (1966). The Shortest Route Through a Network with Time-Dependent Internodal Transit Times. Journal of Mathematical Analysis Applications, Vol. 14, pp. 493–498.
David Boyce, Der-Horng Lee, Bin Ran. (2001). Analytical Models of the Dynamic Traffic Assignment Problem. Networks and Spatial Economics, 1: 2001 377-390.
Deren Han, Hong K. Lo. (2004). Solving non-additive traffic assignment problems: A descent method for co-coercive variational inequalities. European Journal of Operational Research 159, 529–544.
Dreyfus, S. E. (1969). An Appraisal of Some Shortest-Path Algorithms. Operations Research, Vol. 17, pp. 395–412.
Friesz, T.L., Bernstein, D., Smith, T.E., Tobin, R.L. and Wie, B.W. (1993). A Variational Inequality Formulation of the Dynamic Network User Equilibrium Problem, Operations Research, Vol. 41, No. 1, pp. 179-191.
Giuseppe Bellei, Guido Gentile, Natale Papola. (2005). A within-day dynamic traffic assignment model for urban road networks. Transportation Research Part B 39, 1–29.
Gitakrishnan Ramadurai, Satish V Ukkusuri, Jinye Zhao, Jong-Shi Pang. (2008). Dynamic Equilibrium in Multi-user Class Single Bottleneck Models: A Complementarity Formulation. TRB 2008 Annual Meeting CD-ROM Original paper
Kaufman, D. E., and R. L. Smith. (1993). Fastest Paths in Time-Dependent Networks for Intelligent Vehicle-Highway Systems Application. IVHS Journal, Vol. 1, pp. 1–11.
Kim and Jayakrishnan. (2006). Dynamic Traffic Assignment based on Arrival Time-based OD Demand. The 85th Annual Meeting of the Transportation Research Board, Washington, D.C.
LeBlanc L.J., Morlok E.K. and Pierskalla W.P. (1975). An efficient Approach to Solving the Road Network Equilibrium Traffic Assignment Problem. Transportation Research, 9, 309-318.
LI ZHANG, JIAMING LIU, BIN YU, GANG CHEN. (2019). A Dynamic Traffic Assignment Method Based on Connected Transportation System. Digital Object Identifier 10.1109/ACCESS.2019.2915993
Liu HX, Ban XG, Ran B, et al. (2003). Formulation and solution algorithm for fuzzy dynamic traffic assignment model. TRANSPORTATION RESEARCH RECORD (1854): 114-123.
Lo, H.K., Szeto, W.Y. (2002). A cell-based variational inequality formulation of the dynamic user optimal problem. Transportation Research 36B, 421–443.
Michael Mahut, Michael Florian, Nicolas Tremblay. (2008). Comparison of assignment methods for simulation-based dynamic-equilibrium traffic assignment TRB 2008 Annual Meeting CD-ROM.
Michiel C.J. Bliemer, Piet H.L. Bovy. (2003). Quasi-variational inequality formulation of the multiclass dynamic traffic assignment problem. Transportation Research Part B 37, 501–519.
M.J. Smith and M.B. Wisten. (1995). A continuous day-to-day traffic assignment model and the existence of a continuous dynamic user equilibrium. Annals of Operations Research 60, 59-79.
Ran B, Boyce DE. (1996a). A link-based variational inequality formulation of ideal dynamic user-optimal route choice problem. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES. Volume: 4. Issue: 1. Pages: 1-12.
Ran, B., and Boyce, D. (1996b). Modeling dynamic transportation networks, Springer, Heidelberg, Germany.
Ran, Lee and Shin. (2002). New Algorithm for a Multiclass Dynamic Traffic Assignment Model. Journal of Transportation Engineering, Vol. 128, No. 4.
Sheffi Y. (1985). Urban Transportation Networks. Prentice-Hall, INC, Englewood Cliffs, New Jersy.
Takashi Akamatsu. (2001). An Efficient Algorithm for Dynamic Traffic Equilibrium Assignment with Queues. Transportation Science. Vol. 35, No. 4, pp. 389–404.
Wonjae Jang, Bin Ran, Keechoo Choi. (2005). A discrete time dynamic flow model and a formulation and solution method for dynamic route choice. Transportation Research Part B 39, 593–620.
Xinhua Mao, Jianwei Wang, Changwei Yuan. (2019). A Dynamic Traffic Assignment Model for the Sustainability of Pavement Performance. Sustainability. 11, 170; i:10.3390/su11010170
Ziliaskopoulos, A. K., and H. S. Mahmassani. (1993). Time-Dependent Shortest Path Algorithm for Real-Time Intelligent Vehicle/Highway System. Transportation Research Record 1408, TRB, National Research Council, Washington, D.C., pp. 94–104.
YOUNES HAMDOUCH, PATRICE MARCOTTE, SANG NGUYEN. (2004). A Strategic Model for Dynamic Traffic Assignment. Networks and Spatial Economics, 4, 291–315.

Table 4. The resultant path flowand path travel time for sample problem 1.
		Path number
	r
	s
	k
	

	

	Links on the path
	Arrival time for each link
on the path

	1
	1
	9
	1
	3.4424
	4.8816
	5
	15
	23
	24
	1
	5
	9
	13

	2
	1
	9
	1
	1.865
	4.8888
	3
	7
	14
	19
	1
	5
	9
	13

	3
	1
	9
	1
	3.1786
	4.8841
	3
	4
	9
	19
	1
	5
	9
	13

	4
	1
	9
	1
	1.1275
	4.878
	5
	13
	17
	24
	1
	5
	9
	13

	5
	1
	9
	1
	0.2891
	4.8871
	3
	7
	17
	24
	1
	5
	9
	13

	6
	1
	9
	1
	0.0974
	4.8798
	5
	13
	14
	19
	1
	5
	9
	13

	7
	1
	9
	2
	3.4424
	4.9728
	5
	15
	23
	24
	2
	6
	10
	14

	8
	1
	9
	2
	1.865
	4.9737
	3
	7
	14
	19
	2
	6
	10
	14

	9
	1
	9
	2
	2.3457
	4.9516
	3
	4
	9
	19
	2
	6
	10
	14

	10
	1
	9
	2
	1.9793
	4.9777
	5
	13
	17
	24
	2
	6
	10
	14

	11
	1
	9
	2
	0.2703
	4.9827
	3
	7
	17
	24
	2
	6
	10
	14

	12
	1
	9
	2
	0.0974
	4.9686
	5
	13
	14
	19
	2
	6
	10
	14

	13
	1
	9
	3
	3.0312
	5.0523
	5
	15
	23
	24
	3
	7
	11
	15

	14
	1
	9
	3
	1.865
	5.0622
	3
	7
	14
	19
	3
	7
	11
	15

	15
	1
	9
	3
	3.1398
	5.0339
	3
	4
	9
	19
	3
	7
	11
	15

	16
	1
	9
	3
	1.9249
	5.0657
	5
	13
	17
	24
	3
	7
	11
	15

	17
	1
	9
	3
	0.039
	5.0583
	5
	13
	14
	19
	3
	7
	11
	15

	18
	1
	9
	4
	3.5008
	5.1337
	5
	15
	23
	24
	4
	8
	12
	16

	19
	1
	9
	4
	2.1353
	5.1539
	3
	7
	14
	19
	4
	8
	12
	16

	20
	1
	9
	4
	3.1431
	5.119
	3
	4
	9
	19
	4
	8
	12
	16

	21
	1
	9
	4
	1.163
	5.1395
	5
	13
	17
	24
	4
	8
	12
	16

	22
	1
	9
	4
	0.0578
	5.1392
	5
	13
	14
	19
	4
	8
	12
	16

	23
	1
	9
	5
	3.5398
	5.1328
	5
	15
	23
	24
	5
	9
	13
	17

	24
	1
	9
	5
	1.865
	5.1522
	3
	7
	14
	19
	5
	9
	13
	17

	25
	1
	9
	5
	3.3945
	5.122
	3
	4
	9
	19
	5
	9
	13
	17

	26
	1
	9
	5
	1.1818
	5.1352
	5
	13
	17
	24
	5
	9
	13
	17

	27
	1
	9
	5
	0.0188
	5.14
	5
	13
	14
	19
	5
	9
	13
	17

	28
	9
	1
	1
	3.5398
	4.8805
	22
	21
	16
	6
	1
	5
	9
	13

	29
	9
	1
	1
	2.1541
	4.8917
	20
	12
	8
	1
	1
	5
	9
	13

	30
	9
	1
	1
	3.1786
	4.8855
	20
	10
	2
	1
	1
	5
	9
	13

	31
	9
	1
	1
	1.1275
	4.8722
	22
	18
	11
	6
	1
	5
	9
	13

	32
	9
	1
	2
	3.4424
	4.97
	22
	21
	16
	6
	2
	6
	10
	14

	33
	9
	1
	2
	2.1353
	4.9793
	20
	12
	8
	1
	2
	6
	10
	14

	34
	9
	1
	2
	2.3457
	4.9545
	20
	10
	2
	1
	2
	6
	10
	14

	35
	9
	1
	2
	2.0766
	4.9664
	22
	18
	11
	6
	2
	6
	10
	14

	36
	9
	1
	3
	3.0703
	5.0495
	22
	21
	16
	6
	3
	7
	11
	15

	37
	9
	1
	3
	1.865
	5.0678
	20
	12
	8
	1
	3
	7
	11
	15

	38
	9
	1
	3
	3.1398
	5.0367
	20
	10
	2
	1
	3
	7
	11
	15

	39
	9
	1
	3
	1.9249
	5.0544
	22
	18
	11
	6
	3
	7
	11
	15

	40
	9
	1
	4
	3.4424
	5.1308
	22
	21
	16
	6
	4
	8
	12
	16

	41
	9
	1
	4
	1.8839
	5.1559
	20
	12
	8
	1
	4
	8
	12
	16

	42
	9
	1
	4
	3.3945
	5.1244
	20
	10
	2
	1
	4
	8
	12
	16

	43
	9
	1
	4
	1.2604
	5.1297
	22
	18
	11
	6
	4
	8
	12
	16

	44
	9
	1
	4
	0.0188
	5.1438
	22
	18
	8
	1
	4
	8
	12
	16

	45
	9
	1
	5
	3.4814
	5.1315
	22
	21
	16
	6
	5
	9
	13
	17

	46
	9
	1
	5
	1.865
	5.1515
	20
	12
	8
	1
	5
	9
	13
	17

	47
	9
	1
	5
	3.3945
	5.1259
	20
	10
	2
	1
	5
	9
	13
	17

	48
	9
	1
	5
	1.2402
	5.1314
	22
	18
	11
	6
	5
	9
	13
	17

	49
	9
	1
	5
	0.0188
	5.1419
	22
	18
	8
	1
	5
	9
	13
	17

	50
	3
	7
	1
	3.4424
	4.8819
	9
	19
	22
	21
	1
	5
	9
	13

	51
	3
	7
	1
	1.865
	4.8888
	2
	7
	11
	15
	1
	5
	9
	13

	52
	3
	7
	1
	3.1786
	4.8841
	2
	1
	5
	15
	1
	5
	9
	13

	53
	3
	7
	1
	1.1275
	4.878
	9
	12
	17
	21
	1
	5
	9
	13

	54
	3
	7
	1
	0.2891
	4.8871
	2
	7
	17
	21
	1
	5
	9
	13

	55
	3
	7
	1
	0.0974
	4.8798
	9
	12
	11
	15
	1
	5
	9
	13

	56
	3
	7
	2
	3.4424
	4.9728
	9
	19
	22
	21
	2
	6
	10
	14

	57
	3
	7
	2
	1.865
	4.9737
	2
	7
	11
	15
	2
	6
	10
	14

	58
	3
	7
	2
	2.3457
	4.9516
	2
	1
	5
	15
	2
	6
	10
	14

	59
	3
	7
	2
	1.9793
	4.9777
	9
	12
	17
	21
	2
	6
	10
	14

	60
	3
	7
	2
	0.2703
	4.9827
	2
	7
	17
	21
	2
	6
	10
	14

	61
	3
	7
	2
	0.0974
	4.9686
	9
	12
	11
	15
	2
	6
	10
	14

	62
	3
	7
	3
	3.0312
	5.0523
	9
	19
	22
	21
	3
	7
	11
	15

	63
	3
	7
	3
	1.865
	5.0622
	2
	7
	11
	15
	3
	7
	11
	15

	64
	3
	7
	3
	3.1398
	5.0339
	2
	1
	5
	15
	3
	7
	11
	15

	65
	3
	7
	3
	1.9249
	5.0657
	9
	12
	17
	21
	3
	7
	11
	15

	66
	3
	7
	3
	0.039
	5.0583
	9
	12
	11
	15
	3
	7
	11
	15

	67
	3
	7
	4
	3.5008
	5.1337
	9
	19
	22
	21
	4
	8
	12
	16

	68
	3
	7
	4
	2.1353
	5.1539
	2
	7
	11
	15
	4
	8
	12
	16

	69
	3
	7
	4
	3.1431
	5.119
	2
	1
	5
	15
	4
	8
	12
	16

	70
	3
	7
	4
	1.163
	5.1395
	9
	12
	17
	21
	4
	8
	12
	16

	71
	3
	7
	4
	0.0578
	5.1392
	9
	12
	11
	15
	4
	8
	12
	16

	72
	3
	7
	5
	3.5398
	5.1328
	9
	19
	22
	21
	5
	9
	13
	17

	73
	3
	7
	5
	1.865
	5.1522
	2
	7
	11
	15
	5
	9
	13
	17

	74
	3
	7
	5
	3.3945
	5.122
	2
	1
	5
	15
	5
	9
	13
	17

	75
	3
	7
	5
	1.1818
	5.1352
	9
	12
	17
	21
	5
	9
	13
	17

	76
	3
	7
	5
	0.0188
	5.14
	9
	12
	11
	15
	5
	9
	13
	17

	77
	7
	3
	1
	3.5398
	4.8805
	23
	24
	20
	10
	1
	5
	9
	13

	78
	7
	3
	1
	2.1541
	4.8917
	16
	13
	8
	4
	1
	5
	9
	13

	79
	7
	3
	1
	3.1786
	4.8855
	16
	6
	3
	4
	1
	5
	9
	13

	80
	7
	3
	1
	1.1275
	4.8722
	23
	18
	14
	10
	1
	5
	9
	13

	81
	7
	3
	2
	3.4424
	4.97
	23
	24
	20
	10
	2
	6
	10
	14

	82
	7
	3
	2
	2.1353
	4.9793
	16
	13
	8
	4
	2
	6
	10
	14

	83
	7
	3
	2
	2.3457
	4.9545
	16
	6
	3
	4
	2
	6
	10
	14

	84
	7
	3
	2
	2.0766
	4.9664
	23
	18
	14
	10
	2
	6
	10
	14

	85
	7
	3
	3
	3.0703
	5.0495
	23
	24
	20
	10
	3
	7
	11
	15

	86
	7
	3
	3
	1.865
	5.0678
	16
	13
	8
	4
	3
	7
	11
	15

	87
	7
	3
	3
	3.1398
	5.0367
	16
	6
	3
	4
	3
	7
	11
	15

	88
	7
	3
	3
	1.9249
	5.0544
	23
	18
	14
	10
	3
	7
	11
	15

	89
	7
	3
	4
	3.4424
	5.1308
	23
	24
	20
	10
	4
	8
	12
	16

	90
	7
	3
	4
	1.8839
	5.1559
	16
	13
	8
	4
	4
	8
	12
	16

	91
	7
	3
	4
	3.3945
	5.1244
	16
	6
	3
	4
	4
	8
	12
	16

	92
	7
	3
	4
	1.2604
	5.1297
	23
	18
	14
	10
	4
	8
	12
	16

	93
	7
	3
	4
	0.0188
	5.1438
	23
	18
	8
	4
	4
	8
	12
	16

	94
	7
	3
	5
	3.4814
	5.1315
	23
	24
	20
	10
	5
	9
	13
	17

	95
	7
	3
	5
	1.865
	5.1515
	16
	13
	8
	4
	5
	9
	13
	17

	96
	7
	3
	5
	3.3945
	5.1259
	16
	6
	3
	4
	5
	9
	13
	17

	97
	7
	3
	5
	1.2402
	5.1314
	23
	18
	14
	10
	5
	9
	13
	17

	98
	7
	3
	5
	0.0188
	5.1419
	23
	18
	8
	4
	5
	9
	13
	17

15

oleObject2.bin

image38.wmf
(

)

k

rs

p

oleObject57.bin

oleObject58.bin

oleObject59.bin

oleObject60.bin

image39.wmf
0

=

t

oleObject61.bin

image40.wmf
(

)

(

)

(

)

0

,

0

³

-

ò

*

dt

t

t

t

T

u

u

Ω

oleObject62.bin

image41.wmf
A

S

R

´

´

+

Â

Î

Ω

image3.wmf
T

oleObject63.bin

image42.wmf
A

S

R

´

´

+

Â

Î

u

oleObject64.bin

image43.wmf
N

oleObject65.bin

image44.wmf
A

oleObject66.bin

image45.wmf
S

R

´

oleObject67.bin

image46.wmf
b

a

b

a

T

=

,

oleObject3.bin

oleObject68.bin

image47.wmf
(

)

(

)

[

]

(

)

[

]

{

}

0

0

³

+

-

+

W

ò

å

å

*

*

*

*

dt

t

t

u

t

t

u

t

T

ri

rs

a

ri

rs

a

rs

a

rs

a

p

p

oleObject69.bin

image48.wmf
(

)

(

)

(

)

[

]

(

)

[

]

(

)

t

t

t

t

t

t

t

rs

rj

js

ri

a

ri

rs

a

*

*

*

*

*

*

-

+

+

+

+

=

W

p

p

p

p

t

p

oleObject70.bin

image49.wmf
(

)

j

i

a

,

=

oleObject71.bin

image50.wmf
(

)

0

³

W

*

t

rs

a

oleObject72.bin

image51.wmf
(

)

;

,

,

s

r

j

i,

a

=

"

image4.wmf
[

]

T

,

0

oleObject73.bin

image52.wmf
(

)

[

]

(

)

0

=

W

+

*

*

*

t

t

t

u

rs

a

ri

rs

a

p

oleObject74.bin

image53.wmf
(

)

;

,

,

s

r

j

i,

a

=

"

oleObject75.bin

image54.wmf
(

)

[

]

0

³

+

*

t

t

u

ri

rs

a

p

oleObject76.bin

oleObject77.bin

image55.wmf
(

)

(

)

(

)

[

]

(

)

t

t

t

t

t

rj

ri

a

ri

rj

a

*

*

*

*

-

+

+

=

W

p

p

t

p

oleObject78.bin

oleObject4.bin

image56.wmf
(

)

[

]

t

t

a

ri

*

+

p

oleObject79.bin

image57.wmf
r

oleObject80.bin

image58.wmf
s

oleObject81.bin

image59.wmf
t

oleObject82.bin

image60.wmf
(

)

0

=

W

*

t

rs

a

oleObject83.bin

oleObject5.bin

image61.wmf
(

)

0

>

W

*

t

rs

a

oleObject84.bin

oleObject85.bin

oleObject86.bin

oleObject87.bin

oleObject88.bin

oleObject89.bin

image62.wmf
(

)

[

]

0

³

+

*

*

t

t

u

ri

rs

a

p

oleObject90.bin

image63.wmf
(

)

0

>

W

*

t

rs

a

oleObject6.bin

oleObject91.bin

image64.wmf
(

)

[

]

0

=

+

*

*

t

t

u

ri

rs

a

p

oleObject92.bin

image65.wmf
0

³

Ω

oleObject93.bin

image66.wmf
0

³

u

oleObject94.bin

image67.wmf
0

,

³

u

Ω

oleObject95.bin

image68.wmf
0

,

=

*

u

Ω

image5.wmf
t

D

oleObject96.bin

image69.wmf
(

)

(

)

(

)

0

,

³

-

*

t

t

t

u

u

Ω

oleObject97.bin

image70.wmf
[

]

T

,

0

oleObject98.bin

image71.wmf
*

u

oleObject99.bin

oleObject100.bin

image72.wmf
Å

u

oleObject101.bin

oleObject7.bin

image73.wmf
0

,

=

Å

u

Ω

oleObject102.bin

oleObject103.bin

image74.wmf
0

,

>

*

u

Ω

oleObject104.bin

image75.wmf
0

,

<

-

*

Å

u

u

Ω

oleObject105.bin

image76.wmf
(

)

(

)

(

)

0

,

0

<

-

ò

*

Å

dt

t

t

t

T

u

u

Ω

oleObject106.bin

oleObject107.bin

image6.wmf
th

k

image77.wmf
a

oleObject108.bin

image78.wmf
(

)

(

)

(

)

(

)

t

i

k

t

i

i

k

a

a

D

+

£

£

D

-

=

0.5

0.5

if

t

t

oleObject109.bin

image79.wmf
i

oleObject110.bin

image80.wmf
K

i

£

£

0

oleObject111.bin

image81.wmf
t

D

oleObject112.bin

oleObject8.bin

image82.wmf
(

)

(

)

(

)

0

,

³

-

W

*

k

k

k

u

u

oleObject113.bin

image83.wmf
(

)

(

)

[

]

(

)

[

]

{

}

0

0

1

³

+

-

+

W

å

å

å

=

*

*

*

*

K

k

ri

rs

a

ri

rs

a

rs

a

rs

a

k

k

u

k

k

u

k

p

p

oleObject114.bin

image84.wmf
0

K

A

S

R

´

´

´

+

Â

Î

W

oleObject115.bin

image85.wmf
Q

Î

u

oleObject116.bin

image86.wmf
(

)

(

)

(

)

[

]

(

)

[

]

(

)

k

k

k

k

k

k

k

rs

rj

js

ri

a

ri

rs

a

*

*

*

*

*

*

-

+

+

+

+

=

W

p

p

p

p

t

p

oleObject117.bin

image7.wmf
k

oleObject118.bin

image87.wmf
Q

oleObject119.bin

image88.wmf
(

)

(

)

s

r

k

k

f

k

f

rs

p

rs

p

,

,

"

=

å

oleObject120.bin

image89.wmf
(

)

(

)

k

a

k

u

k

u

a

rs

rs

a

,

"

=

å

oleObject121.bin

image90.wmf
(

)

(

)

k

a

k

v

k

v

a

rs

rs

a

,

"

=

å

oleObject122.bin

image91.wmf
(

)

(

)

(

)

(

)

k

s

r,

s;

r,

j

k

u

k

v

j

A

a

rs

a

j

B

a

rs

a

;

¹

"

=

å

å

Î

Î

oleObject9.bin

oleObject123.bin

image92.wmf
(

)

j

A

oleObject124.bin

image93.wmf
j

oleObject125.bin

image94.wmf
j

oleObject126.bin

image95.wmf
(

)

j

B

oleObject127.bin

image96.wmf
j

image8.wmf
[

]

{

}

Z

i

,

t

T

i

t

T

K

Î

D

>

º

D

=

+

argmin

oleObject128.bin

oleObject129.bin

image97.wmf
(

)

(

)

(

)

k

s

r

a

k

k

v

k

u

a

rs

a

rs

a

,

,

,

"

+

=

t

oleObject130.bin

image98.wmf
(

)

(

)

(

)

(

)

k

a

k

v

k

u

k

x

k

x

a

a

a

a

,

-

1

"

+

=

+

oleObject131.bin

image99.wmf
(

)

(

)

(

)

(

)

k

a

k

v

k

u

k

x

k

x

a

a

a

a

,

1

-

1

1

"

+

+

+

=

+

oleObject132.bin

image100.wmf
(

)

(

)

,

0

1

n

a

k

f

n

u

pkn

rsa

rs

p

K

k

rs

p

rs

a

"

=

å

å

å

=

d

oleObject133.bin

oleObject10.bin

image101.wmf
{

}

1

,

0

Î

pkn

rsa

d

oleObject134.bin

image102.wmf

otherwise

0

interval.

th time

 the

during

link

at

arrives

path

on

n

destinatio

for

heading

interval

any time

at

origin

departing

 traffic

if

1

ï

ï

î

ï

ï

í

ì

=

n

a

p

s

k

r

pkn

rsa

d

oleObject135.bin

image103.wmf
(

)

(

)

p

a

s

r

k

k

u

k

f

rs

a

rs

p

,

,

,

,

0,

0,

"

³

³

oleObject136.bin

image104.wmf
(

)

t

v

rs

a

oleObject137.bin

image105.wmf
(

)

t

x

a

oleObject138.bin

image9.wmf
Z

image106.wmf
rs

a

u

oleObject139.bin

image107.wmf
(

)

(

)

(

)

å

=

k

k

a

rs

a

rs

a

k

k

u

t

v

'

'

d

oleObject140.bin

image108.wmf
(

)

(

)

î

í

ì

=

+

=

otherwise

,

0

,

1

'

'

t

k

k

t

a

k

a

t

d

oleObject141.bin

image109.wmf
(

)

(

)

(

)

å

å

=

k

rs

k

a

rs

a

a

k

k

u

t

x

"

d

oleObject142.bin

image110.wmf
(

)

(

)

î

í

ì

³

+

<

=

otherwise

,

0

,

,

1

"

t

k

k

t

k

t

a

k

a

t

d

oleObject143.bin

oleObject11.bin

image111.wmf
(

)

k

a

t

oleObject144.bin

image112.wmf
(

)

k

a

t

oleObject145.bin

image113.wmf
(

)

k

rs

p

h

oleObject146.bin

image114.wmf
(

)

k

rs

p

h

oleObject147.bin

image115.wmf
(

)

k

a

t

oleObject148.bin

image10.wmf
[

]

+

D

=

t

T

K

0

0

image116.wmf
(

)

k

rs

a

W

oleObject149.bin

image117.wmf
(

)

[

]

k

k

ri

a

p

t

+

oleObject150.bin

image118.wmf
(

)

k

ri

p

oleObject151.bin

image119.wmf
(

)

k

ri

p

oleObject152.bin

image120.wmf
(

)

[

]

k

k

rj

js

p

p

+

oleObject153.bin

oleObject12.bin

image121.wmf
(

)

[

]

k

k

rj

js

p

p

+

oleObject154.bin

image122.wmf
(

)

k

rs

p

oleObject155.bin

image123.wmf
(

)

k

rs

p

oleObject156.bin

image124.wmf
(

)

(

)

(

)

[

]

[

]

(

)

[

]

(

)

k

k

k

k

k

x

k

k

rs

rj

js

ri

a

a

ri

rs

a

p

p

p

p

t

p

-

+

+

+

+

=

W

oleObject157.bin

image125.wmf
(

)

[

]

(

)

(

)

(

)

(

)

(

)

(

)

(

)

[

]

(

)

(

)

å

å

å

ò

=

+

þ

ý

ü

î

í

ì

-

+

+

+

+

+

=

0

1

0

u

min

K

k

rs

a

k

k

u

rs

rj

js

ri

ri

rs

a

ri

a

a

ri

rs

a

k

k

k

k

k

k

u

d

k

k

x

Z

p

p

p

p

p

p

w

p

t

oleObject158.bin

oleObject13.bin

image126.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

k

k

k

k

k

k

k

k

u

Z

rs

rj

js

ri

a

ri

ri

rs

a

p

p

p

p

t

p

p

-

+

+

+

+

=

+

¶

¶

oleObject159.bin

image127.wmf
(

)

[

]

(

)

(

)

[

]

å

å

=

+

=

+

K

k

ri

rs

k

a

rs

a

ri

a

k

k

k

u

k

k

x

1

"

p

d

p

oleObject160.bin

image128.wmf
(

)

(

)

î

í

ì

³

+

£

=

otherwise

,

0

,

,

1

"

t

k

k

t

k

t

a

k

a

t

d

oleObject161.bin

image129.wmf
(

)

{

}

k

k

t

k

a

1

min

min

=

=

d

oleObject162.bin

image130.wmf
(

)

{

}

k

k

t

k

a

1

max

max

=

=

d

oleObject163.bin

image11.wmf
(

)

k

a

x

,

image131.wmf
(

)

[

]

(

)

å

å

=

=

=

+

max

min

k

k

k

k

rs

rs

a

ri

a

k

u

k

k

x

p

oleObject164.bin

image132.wmf
(

)

[

]

(

)

(

)

(

)

(

)

(

)

å

å

å

-

=

=

¹

+

+

+

+

=

+

1

max

min

k

k

k

k

rs

rs

a

s

r

rs

ri

rs

a

ri

s

r

a

ri

a

k

u

k

k

u

k

k

u

k

k

x

&

&

&

&

p

p

p

oleObject165.bin

image133.wmf
(

)

(

)

(

)

(

)

(

)

å

å

å

-

=

=

¹

+

+

=

+

1

max

min

k

k

k

k

rs

rs

a

s

r

rs

ri

rs

a

ri

s

r

a

k

u

k

k

u

k

k

X

&

&

&

&

p

p

oleObject166.bin

image134.wmf
(

)

[

]

(

)

(

)

(

)

(

)

k

k

X

k

k

u

k

k

x

ri

s

r

a

ri

s

r

a

ri

a

p

p

p

+

+

+

=

+

&

&

&

&

oleObject167.bin

image135.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

[

]

(

)

(

)

å

å

å

ò

=

+

þ

ý

ü

î

í

ì

-

+

+

+

+

+

=

0

1

0

u

min

K

k

rs

a

k

k

u

rs

rj

js

ri

i

r

rs

a

a

d

k

k

k

k

k

k

X

Z

ri

rs

a

w

p

p

p

p

p

w

t

p

&

oleObject168.bin

oleObject14.bin

image136.wmf
(

)

(

)

k

k

u

ri

rs

a

p

+

oleObject169.bin

image137.wmf
th

m

oleObject170.bin

image138.wmf
(

)

m

u

T

h

Z

h

Z

Ñ

=

ˆ

min

oleObject171.bin

image139.wmf
Q

oleObject172.bin

image140.wmf
h

oleObject173.bin

image12.wmf
a

image141.wmf
(

)

m

u

Z

Ñ

oleObject174.bin

image142.wmf
Z

oleObject175.bin

image143.wmf
u

oleObject176.bin

image144.wmf
(

)

m

u

oleObject177.bin

image145.wmf
(

)

(

)

(

)

(

)

[

]

å

å

å

=

+

=

0

1

ˆ

K

k

rs

a

ri

rs

a

m

rs

a

h

k

k

h

k

t

Z

p

min

oleObject178.bin

oleObject15.bin

oleObject179.bin

image146.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

[

]

(

)

(

)

(

)

k

k

k

k

k

x

k

k

k

u

Z

k

t

rs

rj

js

ri

m

a

a

ri

ri

rs

a

m

m

rs

a

p

p

p

p

t

p

p

-

+

+

+

+

=

+

¶

¶

=

u

oleObject180.bin

image147.wmf
rs

oleObject181.bin

image148.wmf
(

)

(

)

(

)

(

)

[

]

å

å

=

+

=

0

1

ˆ

K

k

a

ri

rs

a

m

rs

a

h

k

k

h

k

t

Z

p

min

oleObject182.bin

image149.wmf
Q

oleObject183.bin

image150.wmf
(

)

k

f

rs

image13.wmf
k

oleObject184.bin

image151.wmf
0

,

,

1

K

k

L

=

oleObject185.bin

image152.wmf
(

)

k

f

rs

oleObject186.bin

image153.wmf
(

)

(

)

(

)

(

)

[

]

å

+

=

a

ri

rs

a

m

rs

a

h

k

k

h

k

t

Z

p

ˆ

min

oleObject187.bin

oleObject188.bin

image154.wmf
(

)

k

f

rs

oleObject189.bin

oleObject16.bin

image155.wmf
rs

oleObject190.bin

image156.wmf
k

oleObject191.bin

image157.wmf
(

)

1

13

f

oleObject192.bin

image158.emf
1

2

3

k=1

1

2

3



] 1, 1 [

13

2

t



] 1, 1 [

13

1

t

 

] 1 1 , 1 [

12 13

3

 

t

oleObject193.bin
1

2

3

k=1

1

2

3

image159.wmf
(

)

k

ri

p

oleObject194.bin

image14.emf
1

2

3

image160.wmf
(

)

(

)

k

k

rj

js

p

p

+

oleObject195.bin

image161.wmf
(

)

j

i

a

,

=

oleObject196.bin

image162.wmf
0

,

,

1

,

K

k

S

R

rs

L

=

´

Î

"

oleObject197.bin

image163.wmf
(

)

[

]

k

k

ri

a

p

t

+

oleObject198.bin

image164.wmf
(

)

(

)

k

k

u

ri

rs

a

p

+

oleObject199.bin

oleObject17.bin
1

2

3

image165.wmf
(

)

(

)

k

k

ri

a

p

t

+

oleObject200.bin

image166.wmf
(

)

[

]

k

k

ri

a

p

t

+

oleObject201.bin

image167.wmf
{

}

rsk

N

rsk

rsk

rsk

p

p

p

,

,

1

L

=

oleObject202.bin

oleObject203.bin

oleObject204.bin

oleObject205.bin

image168.wmf
rsk

N

image15.emf
k=4

k=3

k=2

k=1

x(1,1)

x(2,1)

x(3,1)

oleObject206.bin

image169.wmf
rsk

p

oleObject207.bin

image170.wmf
rsk

I

rsk

p

p

Î

oleObject208.bin

image171.wmf
rsk

N

I

,

,

1

L

=

oleObject209.bin

image172.wmf
(

)

I

I

rsk

a

a

p

ˆ

1

,

,

L

=

oleObject210.bin

image173.wmf
(

)

(

)

I

I

I

j

i

a

j

i

a

ˆ

ˆ

ˆ

1

1

1

,

,

,

,

=

=

L

oleObject18.bin
x(2,1)

k=4

k=3

k=2

k=1

x(1,1)

x(3,1)

oleObject211.bin

image174.wmf
I

rsk

p

oleObject212.bin

image175.wmf
I

ˆ

oleObject213.bin

oleObject214.bin

oleObject215.bin

image176.wmf
I

rsk

c

oleObject216.bin

image177.wmf
(

)

[

]

(

)

(

)

(

)

(

)

(

)

[

]

(

)

(

)

(

)

(

)

(

)

[

]

(

)

0

0

ˆ

ˆ

ˆ

2

2

2

2

2

1

1

1

1

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

c

rs

ri

a

ri

rs

rj

s

j

ri

a

ri

rs

rj

s

j

ri

a

I

rsk

I

I

I

p

p

t

p

p

p

p

p

t

p

p

p

p

p

t

-

+

+

+

+

+

-

+

+

+

+

+

-

+

+

+

+

=

*

L

L

image16.wmf
(

)

k

x

a

oleObject217.bin

oleObject218.bin

image178.wmf
(

)

k

rs

p

oleObject219.bin

image179.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

1

ˆ

1

ˆ

ˆ

1

1

2

k

k

k

k

k

k

k

k

rs

rj

s

j

ri

rs

rj

s

j

ri

I

I

I

p

p

p

p

p

p

p

p

=

+

+

=

+

+

-

-

L

L

oleObject220.bin

image180.wmf
(

)

[

]

(

)

[

]

(

)

[

]

(

)

0

ˆ

ˆ

2

2

1

1

=

-

+

+

+

+

+

+

=

k

k

k

k

k

k

k

c

rs

ri

a

ri

a

ri

a

I

rsk

I

I

p

p

t

p

t

p

t

L

oleObject221.bin

image181.wmf
0

³

I

rsk

c

oleObject222.bin

oleObject19.bin

image182.wmf
(

)

k

rs

p

oleObject223.bin

oleObject224.bin

image183.wmf
(

)

[

]

k

k

ri

a

p

t

+

oleObject225.bin

image184.wmf
(

)

(

)

k

k

u

ri

rs

a

p

+

oleObject226.bin

image185.wmf
(

)

(

)

k

k

ri

a

p

t

+

oleObject227.bin

image186.wmf
(

)

[

]

k

k

ri

a

p

t

+

image17.wmf
a

oleObject228.bin

oleObject229.bin

oleObject230.bin

oleObject231.bin

oleObject232.bin

image187.wmf
(

)

[

]

k

k

ri

a

p

t

+

oleObject233.bin

oleObject234.bin

oleObject235.bin

oleObject236.bin

oleObject20.bin

image188.wmf
(

)

[

]

k

k

ri

a

p

t

+

oleObject237.bin

image189.wmf
(

)

(

)

(

)

[

]

(

)

(

)

(

)

[

]

(

)

(

)

(

)

[

]

ˆ

ˆ

ˆ

ˆ

2

2

2

1

1

1

k

k

x

k

k

x

k

k

x

c

I

I

I

ri

m

a

a

ri

m

a

a

ri

m

a

a

I

rsk

p

t

p

t

p

t

+

+

+

+

+

+

=

L

oleObject238.bin

image190.wmf
(

)

(

)

(

)

[

]

(

)

(

)

(

)

(

)

(

)

(

)

(

)

[

]

(

)

(

)

(

)

(

)

(

)

(

)

(

)

[

]

(

)

0

0

ˆ

ˆ

ˆ

ˆ

2

2

2

2

2

2

1

1

1

1

1

k

k

k

x

k

k

k

k

k

k

x

k

k

k

k

k

k

x

c

rs

ri

m

a

a

ri

rs

rj

s

j

ri

m

a

a

ri

rs

rj

s

j

ri

m

a

a

I

rsk

I

I

I

I

p

p

t

p

p

p

p

p

t

p

p

p

p

p

t

-

+

+

+

+

+

-

+

+

+

+

+

-

+

+

+

+

=

L

L

oleObject239.bin

oleObject240.bin

image191.wmf
(

)

k

rs

p

oleObject241.bin

image192.wmf
(

)

[

]

k

k

ri

a

p

t

+

image18.wmf
k

oleObject242.bin

image193.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

[

]

(

)

(

)

(

)

å

å

å

ò

=

+

£

£

þ

ý

ü

î

í

ì

-

+

+

+

+

+

=

+

0

1

1

0

1

0

min

K

k

rs

a

k

k

u

rs

rj

js

ri

i

r

rs

a

a

d

k

k

k

k

k

k

X

Z

ri

l

rs

a

w

p

p

p

p

p

w

t

p

a

&

oleObject243.bin

image194.wmf
m

a

oleObject244.bin

image195.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

[

]

n

u

n

h

n

u

n

u

m

rs

a

m

rs

a

m

m

rs

a

m

rs

a

1

1

1

1

+

+

+

+

-

+

=

a

oleObject245.bin

image196.wmf
K

n

s

r

a

,

,

1

,

,

,

L

=

"

oleObject246.bin

image197.wmf
{

}

rs

rs

k

p

"

=

max

max

oleObject21.bin

oleObject247.bin

image198.wmf
rs

p

oleObject248.bin

image199.wmf
rs

oleObject249.bin

image200.wmf
[

]

+

×

+

=

max

0

'

k

C

K

K

oleObject250.bin

image201.wmf
(

)

(

)

[

]

0

ˆ

0

a

a

k

t

t

=

oleObject251.bin

image202.wmf
,

A

a

Î

"

image19.wmf
(

)

k

u

a

oleObject252.bin

image203.wmf
'

,

,

1

K

k

L

=

oleObject253.bin

image204.wmf
(

)

(

)

[

]

k

u

rs

a

0

oleObject254.bin

image205.wmf
0

=

l

oleObject255.bin

image206.wmf
out

e

oleObject256.bin

image207.wmf
(

)

(

)

(

)

[

]

k

x

k

a

a

l

a

*

=

t

t

ˆ

oleObject22.bin

oleObject257.bin

image208.wmf
(

)

(

)

k

l

a

t

oleObject258.bin

oleObject259.bin

image209.wmf
'

,

,

1

K

k

L

=

oleObject260.bin

image210.wmf
(

)

(

)

t

l

k

a

'

d

oleObject261.bin

image211.wmf
(

)

(

)

t

l

k

a

'

'

d

oleObject262.bin

image20.wmf
a

image212.wmf
(

)

k

rs

p

oleObject263.bin

image213.wmf
(

)

k

ri

p

oleObject264.bin

image214.wmf
(

)

(

)

k

k

rj

js

p

p

+

oleObject265.bin

image215.wmf
S

R

rs

´

Î

"

oleObject266.bin

image216.wmf
0

,

,

1

,

K

k

A

a

L

=

Î

oleObject267.bin

oleObject23.bin

image217.wmf
1

=

m

oleObject268.bin

image218.wmf
in

e

oleObject269.bin

image219.wmf
(

)

(

)

k

m

a

t

oleObject270.bin

image220.wmf
(

)

(

)

k

m

rs

a

W

oleObject271.bin

oleObject272.bin

image221.wmf
(

)

(

)

(

)

k

k

h

ri

m

rs

a

p

+

oleObject24.bin

oleObject273.bin

image222.wmf
(

)

m

a

oleObject274.bin

image223.wmf
(

)

(

)

k

u

m

rs

a

1

+

oleObject275.bin

image224.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

å

å

å

å

-

+

a

K

k

m

a

a

K

k

m

a

m

a

l

l

k

u

k

u

k

u

1

oleObject276.bin

oleObject277.bin

image225.wmf
e

oleObject278.bin

image21.wmf
(

)

k

v

a

image226.wmf
1

+

=

m

m

oleObject279.bin

image227.wmf
(

)

(

)

=

k

u

l

rs

a

ˆ

oleObject280.bin

image228.wmf
(

)

(

)

k

u

m

rs

a

1

+

oleObject281.bin

image229.wmf
(

)

(

)

=

k

x

l

a

ˆ

oleObject282.bin

image230.wmf
(

)

(

)

k

x

m

a

1

+

oleObject283.bin

oleObject25.bin

image231.wmf
(

)

(

)

(

)

(

)

k

k

l

a

l

a

1

ˆ

ˆ

-

@

t

t

oleObject284.bin

image232.wmf
(

)

k

u

rs

a

oleObject285.bin

image233.wmf
(

)

k

v

rs

a

oleObject286.bin

image234.wmf
(

)

k

x

rs

a

oleObject287.bin

image235.wmf
1

+

=

l

l

oleObject288.bin

oleObject26.bin

image236.wmf
(

)

(

)

k

u

l

rs

a

ˆ

oleObject289.bin

image237.wmf
(

)

(

)

k

x

l

a

ˆ

oleObject290.bin

image238.wmf
l

oleObject291.bin

image239.wmf
(

)

(

)

k

l

a

t

ˆ

oleObject292.bin

oleObject293.bin

image240.wmf
(

)

(

)

k

l

a

t

oleObject27.bin

oleObject294.bin

image241.wmf
(

)

(

)

k

u

m

rs

a

oleObject295.bin

image242.wmf
(

)

(

)

k

x

m

a

oleObject296.bin

image243.wmf
m

oleObject297.bin

image244.wmf
(

)

(

)

k

m

a

t

oleObject298.bin

image245.wmf
(

)

(

)

t

l

k

a

'

d

image22.wmf
(

)

k

u

rs

a

oleObject299.bin

image246.wmf
(

)

(

)

t

l

k

a

'

'

d

oleObject300.bin

image247.wmf
th

l

oleObject301.bin

image248.wmf
(

)

(

)

k

u

l

rs

a

1

ˆ

-

oleObject302.bin

image249.wmf
(

)

th

1

-

l

oleObject303.bin

image250.wmf
(

)

(

)

k

u

l

rs

a

1

ˆ

-

oleObject28.bin

oleObject304.bin

oleObject305.bin

oleObject306.bin

image251.wmf
(

)

t

k

a

'

d

oleObject307.bin

image252.wmf
(

)

t

k

a

'

d

oleObject308.bin

oleObject309.bin

oleObject310.bin

oleObject311.bin

image23.wmf
a

oleObject312.bin

oleObject313.bin

image253.wmf
(

)

k

rs

a

W

oleObject314.bin

image254.wmf
(

)

k

f

rs

oleObject315.bin

image255.wmf
0

,

,

1

K

k

L

=

oleObject316.bin

image256.wmf
(

)

(

)

k

k

h

ri

rs

a

p

+

oleObject317.bin

oleObject29.bin

image257.wmf
(

)

k

h

rs

a

oleObject318.bin

image258.wmf
(

)

i

f

rs

oleObject319.bin

oleObject320.bin

image259.wmf
(

)

i

h

,

1

oleObject321.bin

image260.wmf
(

)

i

h

,

2

oleObject322.bin

image261.wmf
(

)

(

)

i

i

h

,

2

,

3

t

+

image24.wmf
r

oleObject323.bin

image262.emf
k=i+τ(2,i)

k=i

k=1

h(1,i)

h(2,i)

h(3,i+τ(2,i))

oleObject324.bin
k=i+τ(2,i)

k=i

k=1

h(1,i)

h(2,i)

h(3,i+τ(2,i))

image263.wmf
(

)

i

f

rs

oleObject325.bin

oleObject326.bin

oleObject327.bin

image264.wmf
i

s

r,

,

"

oleObject328.bin

image265.emf
h(1,i)

h(2,i)

h(3,i+τ(2,i))

oleObject30.bin

oleObject329.bin
h(1,i)

h(2,i)

h(3,i+τ(2,i))

image266.wmf
max

0

k

K

K

+

=

oleObject330.bin

image267.wmf
(

)

{

}

k

k

rs

K

k

rs

p

0

,

,

1

,

max

max

L

=

"

=

oleObject331.bin

image268.wmf
[

]

0

,

0

K

oleObject332.bin

image269.wmf
[

]

K

,

0

oleObject333.bin

image270.wmf
+

=

0

K

K

image25.wmf
s

oleObject334.bin

image271.wmf
p

ˆ

oleObject335.bin

image272.wmf
p

ˆ

oleObject336.bin

image273.wmf
(

)

{

}

s

r,

K

,

sup

0

rs

"

p

oleObject337.bin

image274.wmf
(

)

0

rs

K

p

oleObject338.bin

image275.wmf
r

oleObject31.bin

oleObject339.bin

image276.wmf
s

oleObject340.bin

image277.wmf
0

K

oleObject341.bin

image278.wmf
A

Î

oleObject342.bin

image279.wmf
j

i

v

v

,

oleObject343.bin

image280.wmf
j

i

v

v

oleObject32.bin

oleObject344.bin

image281.wmf
i

v

oleObject345.bin

image282.wmf
j

v

oleObject346.bin

oleObject347.bin

image283.wmf
k

oleObject348.bin

image284.wmf
(

)

k

a

oleObject349.bin

image26.wmf
(

)

k

v

rs

a

image285.wmf
(

)

k

v

v

j

i

oleObject350.bin

image286.wmf
v

oleObject351.bin

oleObject352.bin

image287.wmf
(

)

k

v

oleObject353.bin

oleObject354.bin

oleObject355.bin

image288.wmf
(

)

k

v

v

t

j

i

,

oleObject33.bin

oleObject356.bin

image289.wmf
K

k

,

,

1

L

=

oleObject357.bin

image290.wmf
(

)

k

v

v

t

j

i

,

oleObject358.bin

image291.wmf
(

)

t

i

v

p

oleObject359.bin

image292.wmf
s

oleObject360.bin

image293.wmf
i

v

oleObject34.bin

oleObject361.bin

image294.wmf
t

oleObject362.bin

image295.wmf
(

)

(

)

(

)

(

)

(

)

î

í

ì

=

¹

+

+

=

Î

s

;

0

s

;

,

,

min

i

i

j

i

v

j

i

v

A

v

v

v

v

t

v

v

t

t

t

v

v

t

t

j

i

j

i

p

p

oleObject363.bin

image296.wmf
(

)

N

O

oleObject364.bin

image297.wmf
[

]

N

V

N

-

,

oleObject365.bin

image298.wmf
(

)

V

N

Í

¹

f

oleObject35.bin

oleObject366.bin

oleObject367.bin

image299.wmf
{

}

N

V

v

N

v

A

a

v

v

a

j

i

j

i

-

Î

Î

Î

=

,

,

|

oleObject368.bin

image300.wmf
(

)

n

O

oleObject369.bin

image301.wmf
[

]

N

V

n

-

,

oleObject370.bin

image302.wmf
"

oleObject371.bin

image27.wmf
s

image303.wmf
N

n

Î

oleObject372.bin

oleObject373.bin

image304.wmf
{

}

N

V

v

A

a

nv

a

j

j

-

Î

Î

=

,

|

oleObject374.bin

image305.wmf
(

)

{

}

f

=

Î

=

n

O

N

n

N

|

oleObject375.bin

image306.wmf
(

)

{

}

f

¹

Î

=

n

O

N

n

LT

|

oleObject376.bin

image307.wmf
N

N

LT

-

=

oleObject36.bin

oleObject377.bin

image308.wmf
0

k

oleObject378.bin

image309.wmf
1

r

l

oleObject379.bin

image310.wmf
0

2

k

l

r

=

oleObject380.bin

image311.wmf
1

v

l

oleObject381.bin

image312.wmf
¥

image1.wmf
[

]

0

,

0

T

oleObject37.bin

oleObject382.bin

image313.wmf
2

v

l

oleObject383.bin

oleObject384.bin

image314.wmf
v

p

oleObject385.bin

image315.wmf
"

oleObject386.bin

image316.wmf
k

oleObject387.bin

image28.wmf
(

)

k

f

rs

image317.wmf
r

v

¹

oleObject388.bin

image318.wmf
(

)

{

}

r

LT

=

0

oleObject389.bin

image319.wmf
(

)

0

N

oleObject390.bin

image320.wmf
{

}

r

oleObject391.bin

oleObject392.bin

image321.wmf
{

}

r

oleObject38.bin

oleObject393.bin

image322.wmf
1

rv

oleObject394.bin

image323.wmf
Î

oleObject395.bin

image324.wmf
(

)

(

)

0

N

O

oleObject396.bin

image325.wmf
(

)

0

1

,

k

rv

t

oleObject397.bin

image326.wmf
(

)

(

)

(

)

{

}

0

0

'

|

,

'

N

O

rv

k

rv

t

Î

image29.wmf
r

oleObject398.bin

image327.wmf
(

)

0

1

1

1

,

k

rv

t

l

=

oleObject399.bin

image328.wmf
(

)

0

1

0

2

1

,

k

rv

t

k

l

+

=

oleObject400.bin

image329.wmf
r

p

=

1

oleObject401.bin

image330.wmf
(

)

1

N

oleObject402.bin

image331.wmf
{

}

1

,

v

r

oleObject39.bin

oleObject403.bin

image332.wmf
(

)

1

LT

oleObject404.bin

image333.wmf
(

)

(

)

1

1

N

N

-

oleObject405.bin

image334.wmf

oleObject406.bin

image335.wmf
(

)

1

N

oleObject407.bin

image336.wmf
V

image30.wmf
s

oleObject408.bin

image337.wmf
(

)

(

)

1

N

O

oleObject409.bin

image338.wmf
f

oleObject410.bin

image339.wmf
s

v

=

1

oleObject411.bin

image340.wmf
(

)

k

LT

oleObject412.bin

image341.wmf
(

)

(

)

k

k

i

N

O

v

v

Î

+

1

0

oleObject40.bin

oleObject413.bin

oleObject414.bin

image342.wmf
(

)

(

)

(

)

(

)

{

}

k

i

i

i

i

i

k

i

i

N

O

v

v

l

v

v

t

l

l

v

v

t

l

Î

+

=

+

+

'

|

,

'

min

,

2

1

2

0

1

0

1

0

oleObject415.bin

image343.wmf
(

)

2

0

1

0

1

0

1

1

,

i

k

i

i

k

l

v

v

t

l

l

+

+

+

=

oleObject416.bin

image344.wmf
(

)

2

0

1

0

2

0

2

1

,

i

k

i

i

k

l

v

v

t

l

l

+

+

+

=

oleObject417.bin

image345.wmf
0

1

i

k

v

p

=

+

oleObject418.bin

oleObject41.bin

image346.wmf
(

)

1

+

k

N

oleObject419.bin

image347.wmf
{

}

1

1

,

,

,

,

+

k

k

v

v

v

r

L

oleObject420.bin

image348.wmf
(

)

1

+

k

LT

oleObject421.bin

image349.wmf
(

)

(

)

1

1

+

+

-

k

k

N

N

oleObject422.bin

image350.wmf
(

)

1

+

k

N

oleObject423.bin

image31.wmf
(

)

k

a

t

oleObject424.bin

image351.wmf
(

)

(

)

1

+

K

N

O

oleObject425.bin

oleObject426.bin

image352.wmf
s

v

k

=

+

1

oleObject427.bin

oleObject428.bin

image353.wmf
r

oleObject429.bin

image354.wmf
0

k

oleObject42.bin

oleObject430.bin

image355.wmf
(

)

k

v

v

t

j

i

,

oleObject431.bin

oleObject432.bin

image356.wmf
k

oleObject433.bin

image357.wmf
v

oleObject434.bin

image358.wmf
1

v

l

oleObject435.bin

oleObject1.bin

oleObject43.bin

image359.wmf
2

v

l

oleObject436.bin

image360.wmf
v

p

oleObject437.bin

image361.wmf
1

v

l

oleObject438.bin

image362.wmf
r

oleObject439.bin

oleObject440.bin

oleObject441.bin

oleObject44.bin

oleObject442.bin

oleObject443.bin

oleObject444.bin

oleObject445.bin

oleObject446.bin

oleObject447.bin

oleObject448.bin

oleObject449.bin

oleObject450.bin

image363.wmf
r

oleObject45.bin

oleObject451.bin

image364.wmf
1

r

l

oleObject452.bin

oleObject453.bin

image365.wmf
i

v

oleObject454.bin

image366.wmf
j

v

oleObject455.bin

image367.wmf
i

v

oleObject456.bin

image32.wmf
(

)

k

rs

p

h

image368.wmf
j

v

oleObject457.bin

oleObject458.bin

image369.wmf
2

i

v

l

oleObject459.bin

image370.wmf
j

v

oleObject460.bin

image371.wmf
1

j

v

l

oleObject461.bin

image372.wmf
2

j

v

l

oleObject46.bin

oleObject462.bin

image373.wmf
1

i

v

l

oleObject463.bin

image374.wmf
(

)

2

,

i

v

j

i

l

v

v

t

oleObject464.bin

image375.wmf
1

j

v

l

oleObject465.bin

oleObject466.bin

oleObject467.bin

image376.wmf
1

j

v

l

image33.wmf
p

oleObject468.bin

oleObject469.bin

oleObject470.bin

image377.wmf
2

j

v

l

oleObject471.bin

image378.wmf
2

i

v

l

oleObject472.bin

image379.wmf
(

)

2

,

i

v

j

i

l

v

v

t

oleObject473.bin

image380.wmf
j

v

p

oleObject47.bin

oleObject474.bin

oleObject475.bin

oleObject476.bin

oleObject477.bin

oleObject478.bin

oleObject479.bin

image381.wmf
0

k

oleObject480.bin

oleObject481.bin

oleObject482.bin

image34.wmf
rs

image382.wmf
(

)

(

)

k

x

s

L

k

a

f

a

a

×

+

=

3

.

0

t

oleObject483.bin

image383.wmf
a

L

oleObject484.bin

image384.wmf
a

oleObject485.bin

image385.wmf
f

s

oleObject486.bin

image386.wmf
(

)

k

a

t

oleObject487.bin

oleObject48.bin

image387.wmf
a

oleObject488.bin

image388.wmf
k

oleObject489.bin

image389.wmf
(

)

k

x

a

oleObject490.bin

image390.wmf
a

oleObject491.bin

oleObject492.bin

image391.emf
1 2 3

4 5 6

7 8 9

1 2

3 4

11 12

13 14

21 22

23 24

5 7 9 10 6 8

15 16 17 18 19 20

image35.wmf
r

oleObject493.bin
1

2

3

4

5

6

7

8

9

1

2

3

4

11

12

13

14

21

22

23

24

5

6

7

8

9

10

15

16

17

18

19

20

image392.wmf
n

oleObject494.bin

image393.wmf
(

)

(

)

(

)

(

)

{

}

K

k

A

a

k

k

l

a

l

a

,

,

1

,

|

|

max

1

L

=

Î

-

-

t

t

oleObject495.bin

image394.wmf
(

)

(

)

(

)

(

)

|

|

1

k

k

l

a

l

a

-

-

t

t

oleObject496.bin

image395.wmf
(

)

k

u

rs

a

oleObject497.bin

image396.wmf
(

)

k

f

rs

p

image2.wmf
0

T

oleObject49.bin

oleObject498.bin

image397.wmf
(

)

k

c

rs

p

oleObject499.bin

image398.wmf
(

)

1

19

f

oleObject500.bin

image399.wmf
(

)

(

)

(

)

(

)

(

)

(

)

1

1

1

1

1

1

19

6

19

5

19

4

19

3

19

2

19

1

f

f

f

f

f

f

+

+

+

+

+

oleObject501.bin

image400.wmf
(

)

10

91

8

u

oleObject502.bin

image401.wmf
(

)

10

73

8

u

oleObject50.bin

oleObject503.bin

image402.wmf
(

)

10

8

u

oleObject504.bin

image403.wmf
(

)

14

91

8

v

oleObject505.bin

image404.wmf
(

)

14

73

8

v

oleObject506.bin

image405.wmf
(

)

14

8

v

oleObject507.bin

image406.wmf
(

)

(

)

(

)

(

)

6

6

å

å

Î

Î

=

B

a

a

B

a

rs

a

k

v

k

v

image36.wmf
(

)

k

ri

p

h

oleObject508.bin

image407.wmf
(

)

(

)

(

)

=

+

+

8

8

8

20

14

9

v

v

v

oleObject509.bin

image408.wmf
(

)

(

)

(

)

(

)

=

=

å

å

Î

Î

6

6

A

a

a

A

a

rs

a

k

u

k

u

oleObject510.bin

image409.wmf
(

)

(

)

(

)

8

8

8

19

12

10

u

u

u

+

+

oleObject511.bin

image410.wmf
(

)

10

91

8

u

oleObject512.bin

image411.wmf
(

)

(

)

10

10

8

91

8

t

+

v

oleObject51.bin

oleObject513.bin

oleObject514.bin

image412.wmf
(

)

10

73

8

u

oleObject515.bin

image413.wmf
(

)

(

)

10

10

8

73

8

t

+

v

oleObject516.bin

oleObject517.bin

image414.wmf
(

)

10

8

t

oleObject518.bin

image415.wmf
(

)

10

8

t

oleObject52.bin

oleObject519.bin

image416.wmf
(

)

10

8

x

oleObject520.bin

image417.wmf
(

)

9

8

x

oleObject521.bin

image418.wmf
(

)

-

10

8

u

oleObject522.bin

image419.wmf
(

)

10

8

v

oleObject523.bin

image420.wmf
0

2706

.

4

-

oleObject53.bin

oleObject524.bin

image421.wmf
(

)

=

1

19

1

c

oleObject525.bin

image422.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

5

15

5

23

5

15

5

24

5

15

5

23

5

15

5

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

+

+

+

+

+

+

+

+

+

+

+

+

+

+

oleObject526.bin

image423.wmf
(

)

(

)

(

)

(

)

13

9

5

1

24

23

15

5

t

t

t

t

+

+

+

oleObject527.bin

image424.wmf
(

)

=

1

19

2

c

oleObject528.bin

image425.wmf
(

)

=

1

19

3

c

image37.wmf
i

oleObject529.bin

image426.wmf
(

)

=

1

19

4

c

oleObject530.bin

image427.wmf
(

)

=

1

19

5

c

oleObject531.bin

image428.wmf
(

)

=

1

19

6

c

oleObject532.bin

oleObject54.bin

oleObject533.bin

oleObject534.bin

image429.wmf
(

)

k

f

rs

p

oleObject535.bin

image430.wmf
(

)

k

c

rs

p

oleObject536.bin

oleObject55.bin

oleObject56.bin

