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Abstract

In this paper, we propose a new method to solve a hybrid varia-
tional deblurring model for restoring blurred and noisy images. The
hybrid model combines advantages of the first-order and second-order
total variation. It can substantially reduce the staircase effect produced
by the first-order total variation, while preserving sharp edges in the re-
stored images. By introducing some auxiliary variables and splitting the
variables two times, we obtain two equivalent constrained optimization
formulations which are then addressed with the alternating direction
method of multipliers (ADMM). Numerical results are given to illus-
trate the effectiveness of the proposed method.

Keywords: Image deblurring, total variation, alternating direction
minimization of multipliers, split Bregman

1 Introduction

Image restoration such as denoising and deblurring is the most fundamental
task in image processing. In this class of problems, a basic image restoration
model is

f = Au+ e,

where u ∈ Rn2
is the ideal n × n image, f ∈ Rn2

is the observed n × n
image, e ∈ Rn2

is the zero-mean white Gaussian noise with variance σ2 and
A ∈ Rn2×n2

represents a blurring (or convolution) operator.
One of the most basic and successful image regularization models is the

ROF model first proposed by Rudin-Osher-Fatemi in [1], which reads

u = argmin
u
{Rrof (u) +

µ

2
∥Au− f∥22}, (1)

where

Rrof (u) = ∥u∥TV = ∥∇u∥1 =
√
(∇xu)2 + (∇yu)2

1Corresponding Author, email: yxjwyz@163.com
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is the total variation (TV) regularization term, ∇ stands for the discrete gradi-
ent operator, ∥Au−f∥22 is the data fidelity term and µ > 0 is the regularization
parameter which provides a tradeoff between these two terms.

Many efficient methods have been proposed to solve (1). In [2], Chan,
Golub, Mulet used Newton’s linearization technique to solve a smoothed ver-
sion of the primal-dual system for the ROF model. Based on the dual for-
mulation, Chambolle [3] proposed a quite fast total variation minimization
algorithm. Using Bregman iteration, Goldstein and Osher [4] gave a ‘split
Bregman’ method, which can solve a very broad class of L1-regularized prob-
lems, including TV regularization minimization. By alternating minimization,
Huang Y, NG, Wen Y [6] solved the following approximation to the model (1):

u = argmin
w,u
{α∥∇w∥1 +

1

2
∥w − u∥22 +

µ

2
∥Au− f∥22}.

Appling a quadratic penalty term, (1) is approximated in [5] by

u = argmin
v,u
{∥v∥1 +

β

2
∥v −∇u∥22 +

µ

2
∥Au− f∥22},

and a corresponding alternating direction minimization (ADM) algorithm for
this model was proposed and analyzed. Yang J, Zhang Y, Yin W [7] extend-
ed the ADM algorithm to the case of recovering blurry multichannel (color)
images corrupted by impulsive rather than Gaussian noise.

Although the first-order TV-based ROF model (1) preserves edges well,
the images resulting from this technique in the presence of noise are often
piecewise constant, the so-called staircase effect; see [8–10, 12] and references
therein. To overcome this staircase effect, high-order models have been consid-
ered [10,13–16]. The Lysaker-Lundervold-Tai (LLT) model [15] first proposed
by Lysaker, Lundervold and Tai, which reads

u = argmin
u
{Rllt(u) +

µ

2
∥Au− f∥22}, (2)

where

Rllt(u) = ∥u∥HTV = ∥∇2u∥1 =
√
(∇xxu)2 + (∇xyu)2 + (∇yxu)2 + (∇yyu)2

is the high total variation (HTV) regularization term.
The computational challenge of (2) mainly comes from the non-differenti-

ability of the second-order regularization term ∥∇2u∥1. There have been sever-
al methods studied for the problem (2). Inspired by the work of Chambolle [3],
Chen etal. [17] proposed a dual algorithm to solve the LLT model and exper-
imental results indicated that the dual algorithm was faster than the original
gradient desent algorithm. Hessian-based norm regularization methods were
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effectively used in [18] for image restoration problems and applied to biomed-
ical imaging.

LLT model is known to recover smoother surfaces. Nevertheless, this
model leads to poor edge-preserving performance. Hence, it is natural to
utilize a combined first-order and second-order total variation technique to
improve the image restoration capability.

In this paper, we consider to modify the total variation model by adding
a high-order functional for restoring the blurring and noisy image. It leads to
the following minimization problem:

min
u

λ∥∇u∥1 + (1− λ)∥∇2u∥1 +
µ

2
∥Au− f∥22, (3)

where the weighted parameter λ ∈ [0, 1] is used to maintain a balance between
artifact reduction and detail preservation. It is desirable that λ is 1 along edges
and in flat regions, and should be almost close to 0 in homogeneous regions to
suppress staircase effect.

The authors in [11] proposed a model for MR image reconstruction based
on second order total variation regularization and wavelet, and they gave an
algorithm which reduced a high-order problem to some lower-order problems
with less computation. Inspired by the idea we use the variable splitting tech-
nique two times to reduce the hybrid model (3), and then apply the augmented
Lagrangian method and split Bregman method to solve the reduced model.

This paper is organized as follows. In Section 2, we give our algorithm for
(3) and it’s convergence analysis. Numerical examples are presented in Section
3 to show the feasibility of the proposed model and algorithm.

2 The alternating direction method for the

model (3)

We first introduce auxiliary variables ω = (ω1, ω2)
T subject to ω = ∇u to

transform ∇u = (∇xu,∇yu)
T out of the non-differentiable norms:

min
u,ω

λ∥ω∥1 + (1− λ)∥∇ω∥1 +
µ

2
∥Au− f∥22, s.t. ω = ∇u, (4)

where

∇ω =

(
∇xω1 ∇yω1

∇xω2 ∇yω2

)
,

∥∇ω∥1 =
√

(∇xω1)2 + (∇yω1)2 + (∇xω2)2 + (∇yω2)2.
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We form the augmented Lagrangian function:

L(u, ω; b) = λ∥ω∥1 + (1− λ)∥∇ω∥1 +
ρ1
2
∥ω1 −∇xu− b1∥22

+
ρ1
2
∥ω2 −∇yu− b2∥22 +

µ

2
∥Au− f∥22

to deal with the constrains in (4), where b = (b1, b2) ∈ R2n2
is the Lagrangian

multiplier, and ρ1 is a positive penalty parameter. Started at u = uk and
b = bk, applying ADMM yields the iterative scheme

(uk+1, ωk+1)← argmin
u,ω

L(u, ω; bk),

bk+1
1 ← bk1 + γ(∇xu

k+1 − ωk+1
1 ),

bk+1
2 ← bk2 + γ(∇yu

k+1 − ωk+1
2 ).

(5)

Since the updates of bk1 and bk2 are merely simple calculations, we now
focus on the minimization of L(u, ω; bk) in (5), which can be divided into the
following several subproblems:

uk+1 = argmin
u

ρ1
2
∥ωk

1 −∇xu− b1∥22+
ρ1
2
∥ωk

2 −∇yu− b2∥22+
µ

2
∥Au− f∥22, (6)

(ωk+1
1 , ωk+1

2 ) = arg min
ω1,ω2

λ∥ω∥1 + (1− λ)∥∇ω∥1 +
ρ1
2
∥ω1 −∇xu

k+1 − bk1∥22

+
ρ1
2
∥ω2 −∇yu

k+1 − bk2∥22.
(7)

We now investigate subproblem (6) and (7) in the following subsections.

2.1 u-subproblem

The minimization of L with respect to u is a least squares problem and the
corresponding normal equation is:

(µATA+ ρ1∇T
x∇x + ρ1∇T

y∇y)u = µATf + ρ1∇T
x (ω

k
1 − bk1) + ρ1∇T

y (ω
k
2 − bk2).

Since ∇T
x∇x +∇T

y∇y = −∆, we get

(µATA− ρ1∆)u = µATf + ρ1∇T
x (ω

k
1 − bk1) + ρ1∇T

y (ω
k
2 − bk2). (8)

We follow the standard assumption of N(A) ∩ N(∇) = 0, where N(·)
represents the null space of a matrix, which ensures the nonsingularity of the
coefficient matrix in (8). It is known that under periodic boundary condition
for u, both the Laplace operator and ATA are block circulant matrices with
circulant blocks, see e.g., [19]. We can diagonalize the Hessian on the left hand
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side of (8) by the 2D discrete Fourier transforms F . In order to facilitate the
computation, we therefore compute u by one FFT (fast Fourier transform) and
one IFFT (inverse fast Fourier transform). The specific iterative step is

uk+1 = F−1

(
µ
ρ1
F(A)∗ ◦ F(f) + F(∇)∗ ◦ F(ωk − bk)
µ
ρ1
F(A)∗ ◦ F(A) + F(∇)∗ ◦ F(∇)

)
, (9)

where ∗ and ◦ denote complex conjugacy and elementwise multiplication re-
spectively.

2.2 ω-subproblem

In order to solve the subproblem (7), we apply the split Bregman method [4]
to ω-subproblem. We introduce three auxiliary variables p, v1 and v2 subject
to p = ∇ω, v1 = ω1 and v2 = ω2. Then by using the operator splitting
method [20,21] to (7), we have the following iteration scheme

(ωk+1
1 , ωk+1

2 , pk+1, vk+1
1 , vk+1

2 )← arg min
ω1,ω2,p,v1,v2

λ∥(v1, v2)∥2
+(1− λ)∥p∥2 + ρ2

2
∥v1 − ω1 − ck1∥22 +

ρ2
2
∥v2 − ω2 − ck2∥22

+ρ3
2
∥p−∇ω − dk∥22 +

ρ1
2
∥ω −∇uk+1 − bk∥22

dk+1
11 = dk11 + γ(∇xω

k+1
1 − pk+1

11 ),

dk+1
12 = dk11 + γ(∇yω

k+1
1 − pk+1

12 ),

dk+1
21 = dk21 + γ(∇xω

k+1
2 − pk+1

21 ),

dk+1
22 = dk22 + γ(∇yω

k+1
2 − pk+1

22 ),

ck+1
1 = ck1 + γ(ωk+1

1 − vk+1
1 ),

ck+1
2 = ck2 + γ(ωk+1

2 − vk+1
2 ),

(10)

where d are the Lagrangian multipliers and c1, c2 are chosen through Bregman
iteration:

d =

(
d11 d12
d21 d22

)
, c =

(
c1
c2

)
,

and

v =

(
v1
v2

)
, ∥(v1, v2)∥2 =

√
v21 + v22,

p =

(
p11 p12
p21 p22

)
, ∥p∥2 =

√
p211 + p212 + p221 + p222.

Next, we give the details of solving ω1, ω2 subproblems respectively.
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2.2.1 ω1- subproblem

According to (10), the solution of ω1−subproblem is obtained by the following
subproblems:

ωk+1
1 = argmin

ω1

ρ1
2
∥ω1 −∇xu

k+1 − bk1∥22 +
ρ2
2
∥vk1 − ω1 − ck1∥22

+ρ3
2
∥pk11 −∇xω1 − dk11∥22 +

ρ3
2
∥pk12 −∇yω1 − dk12∥22

pk+1
11 = argmin

p11
(1− λ)∥p∥2 +

ρ3
2
∥p11 −∇xω

k+1
1 − dk11∥22,

pk+1
12 = argmin

p12
(1− λ)∥p∥2 +

ρ3
2
∥p12 −∇yω

k+1
1 − dk12∥22,

dk+1
11 = dk11 + γ(∇xω

k+1
1 − pk+1

11 ),

dk+1
12 = dk12 + γ(∇yω

k+1
1 − pk+1

12 ),

(11)

To solve the first minimization problem in (11), we differentiate with respect
to ω1 and set the result equal to zero, so we get the update rule

[(ρ1 + ρ2)I + ρ3(∇T
x∇x +∇T

y∇y)]ω
k+1
1 = rshk

1,

where

rshk
1 = ρ1(∇xu

k+1 + bk1) + ρ2(v1 − ck1) + ρ3∇T
x (p

k
11 − dk11) + ρ3∇T

y (p
k
12 − dk12)

represents the right-hand side in the above equation. We now take advantage
of the identity ∇T∇ = −△ to get

[(ρ1 + ρ2)I − ρ3△]ωk+1
1 = rshk

1,

Therefore, the system that must be inverted to solve for ωk+1
1 is circulant. The

above equation can be rewritten as

Kωk+1
1 = rshk

1, (12)

where
K = (ρ1 + ρ2)I − ρ3△ (13)

represents the coefficient of the left-hand side in (12). We can use FFT to solve
the system (12). For the second and third subproblems, despite the fact that
the variables p11, p12 do not decouple, we can explicitly solve the minimization
problem for

Using a generalized shrinkage formula [22], (pk+1
11 , pk+1

12 ) are expressed by:

pk+1
11 = max

(
sk1 −

1− λ

ρ3
, 0
)∇xω

k+1
1 + dk11
sk1

,

pk+1
12 = max

(
sk1 −

1− λ

ρ3
, 0
)∇yω

k+1
1 + dk12
sk1

,

(14)

6



where

sk1 =

√
|∇xω

k+1
1 + dk11|2 + |∇yω

k+1
1 + dk12|2.

The above shrinkage is extremely fast and requires only a few operations for
per element of (pk+1

11 , pk+1
12 ).

2.2.2 ω2- subproblem

The solution of ω2-subproblem is similar to that of ω1-subproblem and can be
obtained by the following subproblem:

ωk+1
2 = argmin

ω2

ρ1
2
∥ω2 −∇yu

k+1 − bk2∥22 +
ρ2
2
∥vk2 − ω2 − ck2∥22

+ρ3
2
∥pk21 −∇xω2 − dk21∥22 +

ρ3
2
∥pk22 −∇yω2 − dk22∥22

pk+1
21 = argmin

p21
(1− λ)∥p∥2 +

ρ3
2
∥p21 −∇xω

k+1
2 − dk21∥22,

pk+1
22 = argmin

p22
(1− λ)∥p∥2 +

ρ3
2
∥p22 −∇yω

k+1
2 − dk22∥22,

dk+1
21 = dk21 + γ(∇xω

k+1
2 − pk+1

21 ),

dk+1
22 = dk22 + γ(∇yω

k+1
2 − pk+1

22 ),

(15)

According to the optimality conditions of (15), ωk+1
2 can be obtained by solving

the system
Kωk+1

2 = rshk
2 (16)

where K is defined in (13) and

rshk
2 = ρ1(∇yu

k+1 + bky) + ρ2(v2 − ck2) + ρ3∇T
x (p

k
21 − dk21) + ρ3∇T

y (p
k
22 − dk22).

(pk+1
21 , pk+1

22 ) can be get by the generalized shrinkage formula:

pk+1
21 = max

(
sk2 −

1− λ

ρ3
, 0
)∇xω

k+1
2 + dk21
sk2

,

pk+1
22 = max

(
sk2 −

1− λ

ρ3
, 0
)∇yω

k+1
2 + dk22
sk2

,

(17)

where

sk2 =

√
|∇xω

k+1
2 + dk21|2 + |∇yω

k+1
2 + dk22|2.

2.2.3 v- subproblem

We obtain v-subproblem by solving the following minimization problem

(vk+1
1 , vk+1

2 ) = argmin
v1,v2

λ∥(v1, v2)∥2 +
ρ2
2
∥v1 − ωk+1

1 − ck1∥22

+
ρ2
2
∥v2 − ωk+1

2 − ck2∥22
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We can directly obtain the (vk+1
1 , vk+1

2 ) by using the generalized shrinkage
formula:

vk+1
1 = max

(
sk3 −

λ

ρ2
, 0
)ωk+1

1 + ck1
sk3

,

vk+1
2 = max

(
sk3 −

λ

ρ2
, 0
)ωk+1

2 + ck2
sk3

,

(18)

where

sk3 =

√
|ωk+1

1 + ck1|2 + |ωk+1
2 + ck2|2.

Below we give our algorithm for solving the hybrid model (3).

Algorithm 1 The alternating direction method for the model (3)
1.Input f, A, µ > 0, and ρ1, ρ2, ρ3 > 0. Initialize u0 = f and b01 = b02

= c01 = c02 = d0ij = p0ij = v01 = v02 = 0, i, j = 1, 2.

2.While ∥uk−uk+1∥
∥uk∥ > tol Do

(1) Compute uk+1 according to (9);
(2) Compute ωk+1

1 according to (12);
Compute ωk+1

2 according to (16);
(3) Compute pk+1

ij according to (14) and (17);

(4) Compute vk+1
1 , vk+1

2 according to (18);
(5) Update bk+1

1 , bk+1
2 , ck+1

1 , ck+1
2 and dk+1

ij according to (5) and (10).
End Do

Our method is equivalent to the minimization:

min
u

λ∥(v1, v2)∥1 + (1− λ)∥p∥1 +
µ

2
∥Au− f∥22,

s.t.v1 = ω1, v2 = ω2, p = ∇ω.
(19)

Let

E =



∇x

∇y

0
0
0
0
0
0


, F1 =



−I
0
0
−I
∇x

∇y

0
0


, F2 =



0
−I
0
−I
0
0
∇x

∇y


, G1 =



0
0
0
0
−I
0
0
0


, G2 =



0
0
0
0
0
−I
0
0


,
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G3 =



0
0
0
0
0
0
−I
0


, G4 =



0
0
0
0
0
0
0
−I


, H1 =



0
0
I
0
0
0
0
−I


, H2 =



0
0
0
I
0
0
0
−I


,

Then we can rewritten the constrains of the minimization problem (19) as

Eu+ F1ω1 + F2ω2 +G1p11 +G2p12 +G3p21 +G4p22 +H1v1 +H2v2 = 0.

Since our method is basically an application of ADMM for the case with
four blocks of variables u, (ω1, ω2), (p11, p12, p21, p22) and (v1, v2), its conver-
gence is guaranteed by the results of ADMM in [25].

3 Numerical experiments

In this section, we present some experiments to illustrate the performance of
our proposed algorithm to solve image restoration problems. All the codes are
written with MATLAB 7.7 (R2008b), and run on an Intel Pentium Dual CPU
at 2.60 GHz and 2GB of memory.

We measure the quality of the restoration results with different methods
by the peak signal-to-noise ratio (PSNR) and the relative error (ReErr) with

PSNR = 20 log10
umax√

V ar(u,f∗)
,

where

Var(u, f ∗) =
∑n−1

j=0 [f
∗(j)−u(j)]2

n
,

and

ReErr = ∥u−f∗∥2
∥f∗∥2 ,

where f ∗ is the orginal image, u is the restored image, f̃ is the mean intensity
value of f ∗ and umax is the maximum possible pixel value of the image u.

In order to better measure the similarity between two images, a well-
known quality metric introduced by Wang et al. [23], the structure similarity
(SSIM) indexe is defined as follows:

SSIM =
(2µ∗

fµu+C1)(2σf∗u+C2)

(µ2
f∗+µ2

u+C1)(σ2
f∗+σ2

u+C2)
,
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where µf∗ and µu are averages of f ∗ and u respectively, σf∗ and σu are the
variance of f ∗ and u respectively, σf∗u is the covariance of f ∗ and u and the
positive constants C1 and C2 can be thought of as stabilizing constants for
near-zero denominator values. The SSIM map is whiter, the restored image is
closer to the clean image.

To make it easier to compare different methods, a uniform stopping cri-
terion is used for all the algorithms we tested, that is,

∥uk+1 − uk∥
∥uk+1∥

< 10−4,

where uk is the restored image of the respective model in the kth iteration. In
all tests, the periodic boundary condition is used to generate the convolution
operator.

We all know that the quality of the restored image depends on the value of
the regularization parameter µ. We tune it manually and choose the one that
give higher PSNR value. Regarding the penalty parameters in all methods,
it has been proven in [24] that theoretically any positive values of penalty
parameters ensure the convergence of ADMM. We try some values and pick a
value with satisfactory performance and then fix it.

In this experiment, we compare our method with the two methods pro-
posed in [5] (FTVd) and in [6] (Fast TV). Here, the FTVd algorithm used for
comparison is FTVd-v4.1, which is the latest version of FTVd. The experi-
ments are made with clean images Barbara, Elaine, House and Hedgebw. Two
blur kernels G([7, 7], 4) and M(40, 10) are used on the clean images, which are
further corrupted by Gaussian noise with zero mean and standard deviation
of size 10−3 and 10−1 respectively. In the three methods, γ is set to 1.618,
and the penalty parameters are ρ1 = 0.01, ρ2 = 0.01, ρ3 = 0.01 in Algoritnm
1, β = 0.01 in FTVd, and α = 0.1 in Fast TV respectively. The regulariza-
tion parameter µ and the weighted parameter λ of different image restoration
methods are presented in Table 1.

Table 1 The regularization parameters and the weighted parameters

Image σ

two types of blur
Gaussian ([7,7],4) Motion(40,10)

µ
FTVd Fast TV Our method(λ) FTVd Fast TV Our method(λ)

Barbara 10−3 7× 106 2× 106 1× 107 (0.5) 8× 106 4× 106 8× 106 (0.3)
Elaine 10−3 7× 106 2× 106 2× 107 (0.4) 1× 107 3× 106 1× 107 (0.7)
House 10−1 1× 103 1× 102 1× 103 (0.8) 1× 103 5× 101 9× 102 (0.8)
Hedgebw 10−1 2× 103 7× 101 3× 103 (0.5) 2× 103 7× 101 3× 103 (0.5)

In Table 2, we list the the PSNR, SSIM and ReErr values of restored
images for FTVd, Fast TV and our method . We see that our method obtains
the best PSNR, SSIM and ReErr values. The restored images of all methods
are shown in Fig1-6. Fig1-3 and Fig 4-6 correspond to the images corrupted
by Gaussian noise with zero mean and standard deviation of size 10−3 and
10−1 respectively. We display the zoomed parts of the restored Barbara and
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Elaine images in Fig2 and 3. In Fig4, it is seen that the SSIM map of the
restored image obtained by our method is slightly whiter than those by the
other methods, i.e., our method can get better restoration results.

Table 2 Output of the experiments

Image σ Method
two types of blur

Gaussian ([7,7],4) Motion(40,10)
PSNR SSIM ReErr PSNR SSIM ReErr

FTVd 50.23 0.9982 0.0052 53.90 0.9990 0.0034
Barbara 10−3 Fast TV 48.45 0.9968 0.0064 50.16 0.9977 0.0053

Our method 51.45 0.9986 0.0045 54.82 0.9992 0.0031

FTVd 49.06 0.9970 0.0059 52.79 0.9987 0.0039
Elaine 10−3 Fast TV 47.60 0.9957 0.0070 50.53 0.9978 0.0050

Our method 49.36 0.9972 0.0057 52.88 0.9987 0.0038

FTVd 37.68 0.9497 0.0389 37.71 0.9484 0.0287
House 10−1 Fast TV 34.68 0.8846 0.0399 33.79 0.8808 0.0442

Our method 38.24 0.9526 0.0274 38.00 0.9504 0.0277

FTVd 32.91 0.9392 0.0591 33.28 0.9394 0.0562
Hedgebw 10−1 Fast TV 31.87 0.9220 0.0642 31.23 0.9080 0.0691

Our method 33.81 0.9482 0.0535 34.06 0.9481 0.0510

(a) Ideal image (b) Blurred and
noisy image

(c) FTVd (d) Fast TV (e) Our method

Figure 1: Comparison of FTVd, Fast TV and our method on Barbara image
in the case of Gaussian blur G([7, 7], 4) and Gaussian noise with standard
deviation of size 10−3.
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(a) Ideal image (b) Blurred and
noisy image

(c) FTVd (d) Fast TV (e) Our method

Figure 2: Comparison of FTVd, Fast TV and our method on the partial en-
largment of Barbara image in the case of motion blur M(40, 10) and Gaussian
noise with standard deviation of size 10−3.

(a) Ideal image (b) Blurred and
noisy image

(c) FTVd (d) Fast TV (e) Our method

Figure 3: Comparison of FTVd, Fast TV and our method on Elaine image
in the case of Gaussian blur G([7, 7], 4) and Gaussian noise with standard
deviation of size 10−3.
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(a) Ideal image (b) Blurred and
noisy image

(c) FTVd (d) Fast TV (e) Our method

(f) FTVd (g) Fast TV (h) Our method

Figure 4: Comparison of FTVd, Fast TV and our method on House image
in the case of Gaussian blur G([7, 7], 4) and Gaussian noise with standard
deviation of size 10−1.
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(a) Ideal image (b) Blurred and
noisy image

(c) FTVd (d) Fast TV (e) Our method

Figure 5: Comparison of FTVd, Fast TV and our method on the partial
enlargment of House image in the case of motion blur M(40, 10) and Gaussian
noise with standard deviation of size 10−1.

(a) Ideal image (b) Blurred and
noisy image

(c) FTVd (d) Fast TV (e) Our method

Figure 6: Comparison of FTVd, Fast TV and our method on Hedgebw image
in the case of Gaussian blur G([7, 7], 4) and Gaussian noise with standard
deviation of size 10−1.
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4 Conclusions

In this paper, we consider a hybrid variational deblurring model for restor-
ing blurred images corrupted by Gaussian noise. We propose a new alter-
nating direction method based on splitting the variables two times to obtain
two equivalent constrained optimization formulations. The proposed method
combines advantages of the first-order and second-order total variation. The
numerical experiments show that the proposed method outperforms some ex-
isting restoration methods in terms of the PSNR, RelErr and SSIM map for
Gaussian blur and noise removal problem.
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