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Abstract

A general methodology for loan amortization under arbitrary discount functions

is discussed. It is shown that it is always possible to uniquely define a scheme

for constructing the loan amortization schedule with an arbitrary assigned discount

function. It is also shown that even if the loan amortization is carried out from the

sequence of principal payments and the sequence of accrued interest, the underlying

discount function can be uniquely determined at the maturities corresponding to the

installment payment dates. As a special case of the proposed approach, we derive

the amortization method according to the law of simple interest.
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1 Introduction

The past decade has seen a renewed interest in Italy for the design of amortizing loans,

following an important debate on the consistency of the law of compound interest, also

known as the law of exponential capitalization, with the principle, enshrined in Italian

law, that interest produced in one period of time cannot produce interest in subsequent

periods, a phenomenon called anatocism (for a review, see Annibali et al. (2017)). Two

main points are debated. The first is whether anatocism is present when amortizing loans

are designed according to the law of compound interest (Fersini and Olivieri, 2015). The

second point concerns the possibility of exploring different amortization methods, with a

focus on amortization methods consistent with the law of simple interest, also called the

law of linear capitalization (Mari and Aretusi, 2018, 2019).
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The problem also has international significance. Several international disputes have

shown a general tendency not to accept compound interest (for a comprehensive review

see Sinclair (2016)). This is motivated by the fact that the exponential nature of the law

of compound interest has an explosive effect in the medium to long term, a factor that

greatly affects the risk of default and, therefore, the ability to efficiently plan investments

(Cerina, 1993).

In this paper, we will focus on the second point of this debate, namely the possibility

of exploring different amortization methods, by providing a general methodology for

designing amortizing loans according to arbitrary financial laws, i.e., under arbitrary

discount functions. It will be shown that it is always possible to unambiguously define

a scheme for constructing the loan amortization schedule with an assigned arbitrary

discount function. Moreover, to monitor the interest generation process and understand

the interest flow over time an extended amortization schedule is introduced. Like a macro

lens to uncover the intimate structure of the amortizing loan, the extended amortization

schedule contains all the information needed to fully understand the loan repayment

process.

As a consequence of the proposed general methodology, two significant results are

presented in this paper.

The first result allows us to design loan amortization using two different but equiv-

alent schemes. In the first scheme, loan amortization is carried out starting from the

knowledge of the discount function and the sequence of the loan installments; in the

second scheme, loan amortization is performed starting from the sequence of principal

payments and the sequence of accrued interest. It will be shown that even if the sec-

ond scheme is adopted, the underlying discount function can be uniquely determined at

the maturities corresponding to the installment payment dates. These findings will be

presented more formally in Theorem 1 and Theorem 2.

As a second result, we derive the amortization method under the law of simple

interest as a particular case of the proposed methodology. In this method the generation

of “interest on interest” is precluded. In fact, we will show that under the law of simple

interest, accrued interest is calculated on the present value of the outstanding balance and

not on the outstanding balance itself as in the compound interest method of amortization.

In this way, the interest component is removed from the outstanding balance and the

interest compounding over time is avoided.
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This study provides a conceptual framework for designing amortization methods

under arbitrary financial laws that appropriately extend the most common way of amor-

tizing a loan, based on the law of compound interest, by including the latter as a special

case.

The paper is organized as follows. Section 2 outlines the general methodology for

loan design. Section 3 illustrates the standard amortization method. Section 4 presents

the extended amortization schedule. In Section 5, Theorem 1 and Theorem 2 are stated

and proved. Section 6 presents the loan amortization method under the law of compound

interest as a particular case of our methodology. As a further special case, Section 7

provides the loan amortization method under the law of simple interest. The “interest

on interest” question is discussed in both Section 6 and Section 7. Some further remarks

on loan amortization under a linear capitalization scheme are presented in Section 8.

2 Designing amortizing loans: a general methodology

In this section we provide a general methodology to design amortizing loans. The main

goal is to show how to amortize a loan and properly construct amortization schedules

under arbitrary discount functions.

2.1 Some basic results

Let us denote by v(0, T ) the discount function observed at the current time t = 0 (the

present). It denotes the value at time t = 0 of one unit of money payable at a later time

T and can incorporate credit risk (Duffie and Singleton, 1999; Mari and Renò, 2005). By

standard no-arbitrage arguments it follows that the discount function must be a strictly

positive function (Duffie and Singleton, 1999), i.e.,

v(0, T ) > 0, T ≥ 0, (1)

with

v(0, 0) = 1. (2)

We assume that the discount function is independent of the amount (Richardson, 1946):

if xT denotes a monetary amount payable at time T (T ≥ 0), its value at time t = 0, x0,

is given by

x0 = xT v(0, T ). (3)
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The monetary amount x0 is the present value of the amount xT available at time T (spot

evaluation).

The knowledge of the discount function allows us to define an equivalence rela-

tionship between monetary amounts due at different future times (forward evaluation).

Indeed, let us denote by xT1 a sum of money due at time T1 (T1 ≥ 0) and by xT2 a sum

of money due at time T2 (T2 ≥ 0), they are assumed to be financially equivalent if and

only if they have the same present value (Richardson, 1946), i.e.,

xT2v(0, T2) = xT1v(0, T1). (4)

The rationale is that if xT1 and xT2 satisfy Equation (4), they can be transformed into

each other. Stated in a different way, xT1 and xT2 are financially equivalent if and only

if they differ only in the interest component. Indeed, Equation (4) is equivalent to the

following relationship

xT2 = xT1

v(0, T1)

v(0, T2)
, (5)

showing that xT2 , the financially equivalent amount of xT1 , can be determined by first

discounting xT1 from time T1 to current time t = 0, thus eliminating the interest compo-

nent, and then imputing accrued interest in the time interval [0, T2] by capitalizing the

obtained value from time t = 0 to time T2. It is straightforward to prove that the binary

relation defined by Equation (5) is an equivalence relation. Indeed, it is trivially reflex-

ive and symmetric. It is also a transitive relation because if xT1v(0, T1) = xT2v(0, T2)

and xT2v(0, T2) = xT3v(0, T3), it follows that xT1v(0, T1) = xT3v(0, T3), regardless of the

temporal ordering of T1, T2, and T3. The binary relation defined by Equation (5), being

reflexive, symmetric and transitive, provides an equivalence relation between amounts of

money due at different times.

The extension of the definition of financial equivalence to cash flows is straightfor-

ward. Indeed, let us consider the cash flow,

x = {xt1 , xt2 , · · · , xtn}, (6)

where 0 ≤ t1 < t2 < · · · < tn. The amount ST at time T ≥ 0 is financially equivalent

to the cash flow x if and only if the present value of ST is equal to the present value of

x, that is, if and only if the following relationship holds (Richardson, 1946; Broverman,

2017),

ST v(0, T ) =

n∑
k=1

xtkv(0, tk), (7)
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from which we get

ST =
1

v(0, T )

n∑
k=1

xtkv(0, tk). (8)

Again, the rationale is that if Equation (8) is satisfied, the amount ST can be transformed

into the cash flow x and vice versa, because each term in the r.h.s. of Equation (8), i.e.

xtkv(0, tk)/v(0, T ), has only one financially equivalent amount xtk at time tk. Equation

(8) has a very interesting financial interpretation: each term xtk is first discounted from

time tk to time t = 0 to eliminate the interest component, then it is capitalized from

time t = 0 to time T to include the interest accrued in the time interval [0, T ]. In the

case T = 0, Equation (8) becomes

S0 =
n∑

k=1

xtkv(0, tk). (9)

It should be emphasized that Equation (5) and Equation (8) can also be derived from

no-arbitrage arguments (Brigo and Mercurio, 2006).

Finally, we close this section by pointing out that the equivalence relationship is

established at time t = 0 on the basis of the information contained in the discount

function at time t = 0 and that it is not necessarily preserved over time. Due to the

unpredictability of the time evolution of the discount function, monetary amounts that

are financially equivalent at time t = 0 may no longer be financially equivalent at a later

time.

2.2 Designing amortizing loans

The methodology outlined in the previous section can be employed to design amortizing

loans under arbitrary discount functions. To show this, let us consider at time t = 0 a

loan with a principal amount S0 that will be repaid with a series of nonnegative future

installments,

r = {R1, R2, · · · , Rn}, (10)

scheduled at regular time intervals 1, 2, · · · , n, with Rn > 0. If we denote by v(0, T ) the

discount function at time t = 0, the following relationship must hold, as a consequence

of Equation (9),

S0 =
n∑

k=1

Rkv(0, k). (11)
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Let us denote by Mk the outstanding balance after the payment of the k-th install-

ment. By definition, Mk, k = 1, 2, · · · , n − 1, is the monetary amount due at time

k that is financially equivalent to receiving the stream of future installments rk =

{Rk+1, Rk+2, · · · , Rn}. It can be computed from Equation (8), thus obtaining

Mk =
1

v(0, k)

n∑
j=k+1

Rjv(0, j), k = 1, 2, · · · , n− 1. (12)

Equation (12) clearly shows that the values of the outstanding balance, Mk, k = 1, 2, · · · , n−

1, are strictly positive. Of course it must be Mn = 0 because after the last payment at

time n the outstanding balance is zero. Moreover, since at time t = 0 the outstanding

balance coincides with the principal amount, we pose M0 = S0. We note that each term

Rj in Equation (12) is first discounted at time t = 0 to eliminate the interest component,

then it is capitalized from time 0 to time k to include the interest accrued in the time

interval [0, k]. Equation (12) provides the so-called prospective method for computing the

outstanding balance. In addition, since from Equation (11) we get

n∑
j=k+1

Rjv(0, j) = S0 −
k∑

j=1

Rjv(0, j), k = 1, 2, · · · , n− 1, (13)

we can recast Equation (12) in the following useful form

Mk =
1

v(0, k)

(
S0 −

k∑
j=1

Rjv(0, j)

)
, k = 1, 2, · · · , n− 1, (14)

that provides the so-called retrospective method for computing the outstanding balance.

The dynamics of the outstanding balance can be also determined recursively by

comparing the outstanding balance at time k − 1 with the outstanding balance at time

k, thus obtaining

Mk−1 =
v(0, k)

v(0, k − 1)
(Mk +Rk), k = 1, 2, · · · , n. (15)

It should be noted that Equation (15) could have been obtained directly as a consequence

of the financial equivalence between the outstanding balance Mk−1 at time k− 1 and the

amount Mk+Rk at time k, which is the sum of the outstanding balance at time k and the

k-th installment. Finally, it is worth pointing out that Equation (12) can be recovered

as the only solution of Equation (15) under the terminal condition Mn = 0, thus proving

the equivalence of the above representations of the outstanding balance.
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3 The standard amortization schedule

In the following, we use the notation v(0, T, T ′) to denote the implied forward discount

function at time t = 0 defined by the ratio

v(0, T, T ′) =
v(0, T ′)

v(0, T )
, 0 ≤ T ≤ T ′. (16)

We note that for T = 0 the implied forward discount function coincides with the discount

function. Using the implied forward discount function, Equation (15) can be cast in a

more expressive form1,

Mk = Mk−1 + i(0, k − 1, k)Mk−1 −Rk, (17)

where

i(0, k − 1, k) =
1

v(0, k − 1, k)
− 1, (18)

is the forward rate and quantifies the interest accrued in the time interval [k − 1, k]. In

this regard, we note that the dynamics of the outstanding balance has a simple structure

driven by two components, namely accrued interest and loan repayments. If we recast

Equation (17) in the following form

Rk = Mk−1 −Mk + i(0, k − 1, k)Mk−1, (19)

we can see that each installment Rk can be decomposed into two components, namely

Rk = Ck + Ik, (20)

where

Ck = Mk−1 −Mk, (21)

and

Ik = i(0, k − 1, k)Mk−1. (22)

Equation (21) shows that Ck quantifies the change in the outstanding balance over the

time interval [k − 1, k] and Equation (22) shows that Ik is the interest accrued over the

same time interval. Finally, it is straightforward to show that the outstanding balance,

Mk, can also be expressed as

Mk = S0 −
k∑

j=1

Cj , (23)

1Unless otherwise stated, the index k takes values from 1 to n.
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and that the following relationship holds,

n∑
k=1

Ck = S0. (24)

For this reason, in the literature the numbers Ck (k = 1, 2, · · · , n) are called principal

payments.

The standard amortization schedule is a table that shows all the financial informa-

tion of the loan mentioned above (Pressacco et al., 2022; Broverman, 2017). In particular,

the amortization schedule exhibits for each k the vector

φk = {k,Rk, Ck, Ik,Mk}, (25)

starting from the initial vector φ0 = {0, 0, 0, 0, S0} which is reported in the first row

of the table. All the financial quantities contained in φk can be easily computed in

the proposed approach. For example (but this is not the only way), under an assigned

discount function, the amortization schedule can be constructed iteratively as follows:

starting from the principal amount M0 = S0 and the loan repayment plan, Rk, obtained

as a solution of Equation (11) with Rk ≥ 0 and Rn > 0, accrued interest Ik can be

calculated by using Equation (22); then Ck can be obtained from Equation (20) by

taking the difference

Ck = Rk − Ik, (26)

and, finally, Mk can be computed from Equation (21),

Mk = Mk−1 − Ck. (27)

3.1 A numerical example

To illustrate the standard amortization method, consider a loan with principal amount

S0 = 100 repaid with an annuity consisting of n = 5 equal installments due at regular

intervals k = 1, 2, · · · , 5. The values of the discount function at time t = 0 are reported

in Table 1.

k 1 2 3 4 5

v(0, k) 0.9346 0.8573 0.7513 0.7084 0.6560

Table 1: The discount function.
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The amount of each payment can be computed by using Equation (11), thus getting

R =
S0∑n

k=1 v(0, k)
. (28)

The standard amortization schedule, obtained by following the iterative procedure dis-

cussed above, is given in Table 2.

k Rk Ck Ik Mk

0 0 0 0 100

1 25.59 18.59 7.00 81.41

2 25.59 18.25 7.34 63.16

3 25.59 16.68 8.91 46.47

4 25.59 22.78 2.81 23.70

5 25.59 23.70 1.89 0

Table 2: The standard amortization schedule.

4 The extended amortization schedule

Before proceeding further, it is necessary to explore one aspect that is definitely relevant

to our analysis. Is it correct to identify accrued interest with paid interest? Looking at

Equation (11), we can see that each term Rk is discounted at time t = 0. Discounting

removes the interest component from Rk, thus providing the portion of the principal that

is actually repaid with the k-th installment (in concordance also with the decomposition of

a loan into single-payment loans). In this picture, the interest content of each installment

is then given by the difference Rk −Rkv(0, k). Let us pose, therefore,

S0,k = Rkv(0, k), (29)

and

Jk = Rk

[
1− v(0, k)], (30)

to indicate, respectively, the portion of principal and the portion of interest actually paid

with the k-th installment. In addition to the representation provided by the Equation

(20), Rk also admits, therefore, the following decomposition

Rk = S0,k + Jk. (31)
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Of course, S0,k 6= Ck and Jk 6= Ik, however, the following equalities hold,

n∑
k=1

S0,k =
n∑

k=1

Ck = S0, (32)

n∑
k=1

Jk =
n∑

k=1

Ik. (33)

as a consequence of Equation (11) and Equation (20). Since S0,k is the present value of

Rk, it contains no interest and is, therefore, pure capital. For this reason, we will refer

to the amounts S0,k (k = 1, 2, · · · , n) as principal “bare” payments.

The financial quantities we have just introduced, namely S0,k and Jk, allow for a

meaningful representation of outstanding balance. In fact, by substituting Equation (31)

into Equation (17) we get

Mk = Mk−1 − S0,k + Ik − Jk. (34)

Since Ik is the interest accrued in the time interval [k − 1, k] and Jk is the amount

of interest actually paid with the k-th installment, it follows that whenever Jk < Ik,

the interest component of Mk increases by the amount Ik − Jk; if Jk > Ik, the interest

component of Mk decreases by the amount Jk−Ik. Furthermore, since Ck = Mk−1−Mk,

Equation (34) also provides the relationship between Ck and S0,k, namely

Ck = S0,k + Jk − Ik, (35)

showing that Ck, despite being called principal payment, contains a well-defined interest

component. Moreover, let us denote by D0,k the value of the principal not yet actually

repaid with the first k installments, i.e, the difference between S0 and the sum of the

first k principal bare payments,

D0,k = S0 −
k∑

j=1

S0,j =
n∑

j=k+1

S0,j , k = 1, 2, · · · , n− 1. (36)

By substituting Equation (29) into Equation (12) we obtain a very expressive relationship

between Mk and D0,k, namely

Mk =
D0,k

v(0, k)
, (37)

or, equivalently,

D0,k = Mkv(0, k), (38)
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showing that D0,k is the present value of the outstanding balance Mk. Of course, it is

D0,n = 0 and D0,0 = S0. Since D0,k is the present value of Mk, it contains no interest

and is, therefore, pure capital2. As a consequence, the difference Mk − D0,k quantifies

the interest component in the outstanding balance. It is given by

Mk −D0,k =

k∑
j=1

(Ij − Jj), (39)

as it is straightforward to prove by recursively applying Equation (34).

Finally, since Ck = Mk−1−Mk and S0,k = D0,k−1−D0,k, we also obtain the follow-

ing interesting picture: Ck is given by the difference between the outstanding balance at

time k− 1 and the outstanding balance at time k; S0,k is given by the difference between

the present value of the outstanding balance at time k − 1 and the present value of the

outstanding balance at time k.

In the extended amortization schedule, we will provide synoptically all relevant

financial information about the loan, showing explicitly for each k the vector

φext
k = {k,Rk, Ck, Ik,Mk, S0,k, Jk, D0,k}, (40)

starting from the initial vector φext
0 = {0, 0, 0, 0, S0, 0, 0, S0} reported in the first row of

the table. In the extended amortization schedule, the traditional schedule is shown to

the left of the vertical bar. On the right-hand side some additional information is given

concerning, for each epoch k, the financial quantities S0,k, Jk and D0,k. Like a macro

lens to uncover the intimate structure of the amortizing loan, the part to the right of

the vertical bar contains all the information needed to monitor the interest generation

process and understand the interest flow over time.

4.1 A numerical example

Referring to the numerical example discussed in the previous section, the extended amor-

tization schedule is shown in Table 3.

2We remark that, in the case of early repayment at time k, Mk (and not D0,k, which is its present

value) is the amount the borrower is required to repay to the lender.
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k Rk Ck Ik Mk S0,k Jk D0,k

0 0 0 0 100 0 0 100

1 25.59 18.59 7.00 81.41 23.92 1.67 76.08

2 25.59 18.25 7.34 63.16 21.94 3.65 54.14

3 25.59 16.68 8.91 46.47 19.23 6.36 34.92

4 25.59 22.78 2.81 23.70 18.13 7.46 16.79

5 25.59 23.70 1.89 0 16.79 8.80 0

Table 3: The extended amortization schedule.

5 Uncovering the financial law behind an amortizing loan

In this section, we discuss a loan amortization technique that can be configured as a

second well-defined amortization scheme (Pressacco et al., 2022). With no apparent

reference to an underlying discount function, in this scheme the input is given by the

principal amount, S0, the sequence of principal payments, Ck, and the sequence of accrued

interest, Ik. To simplify the notation, let us pose

Bk = S0 −
k∑

j=1

Cj , B0 = S0. (41)

We assume that the sequences of numbers Ck and Ik satisfy the following conditions:

(G1) Bn = 0;

(G2) Ik = f(k)Bk−1

(
f(k) > −1

)
, k = 1, 2, · · · , n;

(G3) Ck + Ik ≥ 0, k = 1, 2, · · · , n− 1, Cn + In > 0.

From this figure, the loan installments and outstanding balance are calculated as follows,

Rk = Ck + Ik, (42)

and

Mk = Mk−1 − Ck, M0 = S0. (43)

Condition (G1) ensures that Mn = 0, i.e.,

n∑
k=1

Ck = S0, (44)
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and that Mk = Bk; condition (G2) also allows for negative rates to be taken into ac-

count; condition (G3) ensures that the installments, Rk, are nonnegative with Rn > 0.

Moreover, conditions (G1)-(G3) imply that

Mk > 0, k = 1, 2, · · · , n− 1. (45)

Indeed, if there is k̄ such that Mk̄ ≤ 0, k̄ = 1, 2, · · · , n − 1, it follows that Mk̄+1 =

(1 + f(k̄ + 1))Mk̄ −Rk̄ ≤ 0 and so on until time n where Mn < 0 since Rn > 0.

We will show that even if this second scheme is adopted, the underlying discount

function can be uniquely determined at the maturities corresponding to the installment

payment dates. In addition, we will show that this second amortization schemes is

equivalent to the scheme discussed in Section 3. These results are more formally described

by the following Theorem 1 and Theorem 2. In particular, Theorem 1 summarizes the

findings obtained in the Section 3.

Theorem 1 Let S0 a strictly positive number and consider for k = 1, 2, · · · , n: (i) a

sequence of strictly positive numbers v(0, k); (ii) a sequence of nonnegative numbers Rk,

with Rn > 0, such that

S0 =
n∑

k=1

Rkv(0, k). (46)

If Mk is computed according to

Mk =
1

v(0, k)

n∑
j=k+1

Rjv(0, j), k = 1, 2, · · · , n− 1, (47)

and Mn = 0, then there exist a unique sequence of numbers Ck and a unique sequence

of numbers Ik, k = 1, 2, · · · , n, satisfying conditions (G1)-(G3), such that the amortizing

schedule can be computed according to the following rules,

Rk = Ck + Ik, (48)

and

Mk = Mk−1 − Ck, M0 = S0. (49)

The proof of Theorem 1 is provided in Appendix A.

The converse is also true. Indeed, we will prove that the following proposition holds.
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Theorem 2 Let S0 a strictly positive number and consider for k = 1, 2, · · · , n: (i) a

sequence of numbers Ck and (ii) a sequence of numbers Ik satisfying conditions (G1)-

(G3). If the amortizing schedule is computed according to the following rules,

Rk = Ck + Ik, (50)

and

Mk = Mk−1 − Ck, M0 = S0, (51)

there exists a unique sequence of numbers,

v(0, k) =

k∏
j=1

1

1 + f(j)
k = 1, 2, · · · , n, (52)

such that the following relationships hold,

S0 =
n∑

k=1

Rkv(0, k), (53)

Mk =
1

v(0, k)

n∑
j=k+1

Rjv(0, j), k = 1, 2, · · · , n− 1. (54)

Moreover, the number v(0, k), k = 1, 2, · · · , n, are strictly positive.

The proof of Theorem 2 is provided in Appendix A.

As Theorem 2 clearly shows, the rule for calculating interest, expressed by condition

(G2), plays a crucial role in identifying the discount function, allowing it to be uniquely

determined. Moreover, we note that Equation (52) can be cast in the following recursive

form,

v(0, k) =
v(0, k − 1)

1 + f(k)
, k = 1, 2, · · · , n, (55)

with v(0, 0) = 1.

As an example, it is easy to verify that the discount function represented in Table

1 can be easily discovered from the amortization schedule shown in Table 2 by using

Equation (52) or, equivalently, Equation (55).

6 Amortizing loans under the law of compound interest

As a special case of the general approach proposed in this paper, we derive the amor-

tization method according to the law of compound interest, which is the most common
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way of amortizing loans. In such a case the discount function at time t = 0 is expressed

as follows,

v(0, T ) =
1

(1 + i)T
, (56)

where i denotes the interest rate level at time t = 0. Within this framework, the forward

discount function is given by

v(0, T, T ′) =
1

(1 + i)T ′−T , (57)

and the forward rate reads

i(0, T, T ′) = (1 + i)T
′−T − 1. (58)

6.1 The amortization method

Let us consider at time t = 0 a loan with a principal amount S0 which will be repaid

with a series of future nonnegative installments,

r = {R1, R2, · · · , Rn}, (59)

scheduled at regular time intervals 1, 2, · · · , n, with Rn > 0. From Equation (11), the

following relationship must hold,

S0 =

n∑
k=1

Rk

(1 + i)k
. (60)

According to the law of compound interest, the dynamics of the outstanding balance,

described by Equation (17), becomes

Mk = Mk−1 + iMk−1 −Rk, (61)

so that each installment can be decomposed in the following form,

Rk = Ck + Ik, (62)

where

Ck = Mk−1 −Mk, (63)

quantifies the change of the outstanding balance in the time interval [k − 1, k], and

Ik = iMk−1, (64)

is the interest accrued over the same time interval. Then, the amortization method is

uniquely defined according to the schemes provided by Theorem 1 or Theorem 2.
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6.1.1 Numerical examples

To illustrate the amortization method, consider a loan with a principal amount of S0 =

100 repaid with an annuity consisting of n = 5 equal installments due at regular intervals

k = 1, 2, · · · , 5. We assume that the interest rate level is i = 10%. The amount of each

installment is computed according to Equation (60),

R =
S0∑n

k=1 v(0, k)
, (65)

where

v(0, k) =
1

(1 + i)k
. (66)

The extended amortization schedule is depicted in Table 4.

k Rk Ck Ik Mk S0,k Jk D0,k

0 0 0 0 100 0 0 100

1 26.38 16.38 10.00 83.62 23.98 2.40 76.02

2 26.38 18.02 8.36 65.60 21.80 4.58 54.22

3 26.38 19.82 6.56 45.78 19.82 6.56 34.40

4 26.38 21.80 4.58 23.98 18.02 8.36 16.38

5 26.38 23.98 2.40 0 16.38 10.00 0

Table 4: Constant installments.

Looking at Table 4, we note the correspondence Ik = Jn−k+1 (and Ck = S0,n−k+1).

However, such a relationship is accidental. In fact, if we consider the loan described in the

previous example but with constant principal payments, Ck = S0/n, this correspondence

disappears, as the amortization schedule presented in Table 5 clearly shows.

6.2 The “interest on interest” phenomenon

Under the law of compound interest, the interest accrued in the time interval [k − 1, k]

is computed on the outstanding balance at time k − 1 according to

Ik = iMk−1. (67)

We recall that Mk−1 is related to D0,k−1 by Equation (37) which, in the law of compound

interest, becomes

Mk−1 = (1 + i)k−1D0,k−1. (68)

16



k Rk Ck Ik Mk S0,k Jk D0,k

0 0 0 0 100 0 0 100

1 30.00 20.00 10.00 80.00 27.27 2.73 72.73

2 28.00 20.00 8.00 60.00 23.14 4.86 49.59

3 26.00 20.00 6.00 40.00 19.53 6.47 30.05

4 24.00 20.00 4.00 20.00 16.39 7.61 13.66

5 22.00 20.00 2.00 0 13.66 8.34 0

Table 5: Constant principal payments.

The interest accrued in the time interval [k − 1, k] can be, therefore, expressed as

Ik = i(1 + i)k−1D0,k−1. (69)

Since D0,k−1 is pure capital, Equation (69) shows that the phenomenon of generating “in-

terest on interest” is implicit in the law of compound interest and arises as a consequence

of calculating accrued interest according to Equation (67). As discussed below, amortiz-

ing loans designed under the law of simple interest are not affected by this mechanism of

interest compounding over time.

Finally, we show that the law of compound interest is the only financial law char-

acterized by the property that accrued interest in each time interval is calculated as a

given percentage, say i, of the outstanding balance at the beginning of the time interval,

as described by Equation (67). This result is a consequence of Theorem 2, with f(k) = i.

In fact, from Equation (52) we get

v(0, k) =
1

(1 + i)k
. (70)

7 Amortizing loans under the law of simple interest

As a special case of the general approach proposed in this paper, we derive the amortiza-

tion method under the law of simple interest. In this case, the discount function is given

by

v(0, T ) =
1

1 + iT
, (71)
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where i denotes the interest rate level at time t = 0. Within this framework, the forward

discount function is given by

v(0, T, T ′) =
1 + iT

1 + iT ′
, (72)

and the forward rate reads

i(0, T, T ′) =
i(T ′ − T )

1 + iT
. (73)

7.1 The amortization method

Let us consider at time t = 0 a loan with a principal amount S0 which will be repaid

with a series of future nonnegative installments,

r = {R1, R2, · · · , Rn}, (74)

scheduled at regular time intervals 1, 2, · · · , n, with Rn > 0. From Equation (11), the

following relationship must hold,

S0 =
n∑

k=1

Rk

1 + ik
. (75)

Under the law of simple interest, the dynamics of the outstanding balance, described by

Equation (17), becomes

Mk = Mk−1 +
iMk−1

1 + i(k − 1)
−Rk, (76)

so that each installment can be decomposed in the following form

Rk = Ck + Ik, (77)

where

Ck = Mk−1 −Mk, (78)

quantifies the change of the outstanding balance in the time interval [k − 1, k], and

Ik =
iMk−1

1 + i(k − 1)
, (79)

is the interest accrued over the same time interval. Then, the amortization method is

uniquely defined according to the schemes provided by Theorem 1 or Theorem 2. It is

worth noting a very important difference from the amortization method based on the

law of compound interest. Indeed, looking at Equation (79), we observe that under the
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law of simple interest, the interest accrued in the time interval [k − 1, k] is calculated

multiplying by i the present value of the outstanding balance at time k− 1. In this way,

the interest component of the outstanding balance is removed, thus preventing interest

compounding over time.

As a final remark, consider a single-payment loan, i.e., a loan with a principal

amount of S0 repaid with a single strictly positive installment Rn = S0(1 + in) at time

n. In this case, the dynamics of the outstanding balance can be determined by applying

Equation (12) thus obtaining

Mk = (1 + ik)S0, k = 1, 2, · · · , n− 1, (80)

and Mn = 0. Therefore, the outstanding balance grows linearly over time until time n

and then equals 0 due to the payment of the n-th installment. By applying Equation

(79), we see that accrued interest is constant over each time interval, namely

Ik = iS0, (81)

just as required by the law of simple interest. The significant implications of Equation

(79) will be further discussed below.

7.1.1 Numerical examples

To illustrate the amortization method with simple interest, consider a loan with a prin-

cipal amount of S0 = 100 repaid with an annuity consisting of n = 5 equal installments

due at regular time intervals k = 1, 2, · · · , 5. We assume that the interest rate level is

i = 10%. The amount of each installment is computed by using Equation (75), thus

getting

R =
S0∑n

k=1 v(0, k)
, (82)

with

v(0, k) =
1

1 + ik
. (83)

The extended amortization schedule is depicted in Table 6. In the case of constant

principal payments the amortization schedule is shown in Table 7.

7.2 The absence of the “interest on interest” phenomenon

Under the law of simple interest, the interest accrued in the time interval [k − 1, k]

is computed on the present value of the outstanding balance Mk−1, as expressed by
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k Rk Ck Ik Mk S0,k Jk D0,k

0 0 0 0 100 0 0 100

1 25.69 15.69 10.00 84.31 23.35 2.34 76.65

2 25.69 18.03 7.66 66.29 21.41 4.28 55.24

3 25.69 20.17 5.52 46.12 19.76 5.93 35.48

4 25.69 22.14 3.55 23.98 18.35 7.34 17.13

5 25.69 23.98 1.71 0 17.13 8.56 0

Table 6: Constant installments.

k Rk Ck Ik Mk S0,k Jk D0,k

0 0 0 0 100 0 0 100

1 30.00 20.00 10.00 80.00 27.27 2.73 72.73

2 27.27 20.00 7.27 60.00 22.73 4.55 50.00

3 25.00 20.00 5.00 40.00 19.23 5.77 30.77

4 23.08 20.00 3.08 20.00 16.48 6.59 14.29

5 21.43 20.00 1.43 0 14.29 7.14 0

Table 7: Constant principal payments.

Equation (79), namely

Ik =
iMk−1

1 + i(k − 1)
, (84)

and not on Mk−1 as required by the law of compound interest, i.e., Ik = iMk−1. In this

way, the interest compounding over time, i.e. the generation of “interest on interest” is

precluded. Indeed, we recall that Mk−1 is related to D0,k−1 by Equation (37) which, in

the law of simple interest, becomes

Mk−1 = (1 + i(k − 1))D0,k−1. (85)

The accrued interest in the time interval [k − 1, k] is, therefore, given by

Ik = iD0,k−1. (86)

Since D0,k−1 is pure capital and, therefore, contains no interest, capitalization of interest

over time is avoided.
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Finally, we will show that the law of simple interest is the only financial law in

which interest accrued in each time interval is calculated as a given percentage, say i,

of the present value of the outstanding balance at the beginning of the time interval,

namely

Ik = iv(0, k − 1)Mk−1. (87)

This result is a consequence of Theorem 2, with

f(k) = iv(0, k − 1). (88)

In fact, by substituting Equation (88) into Equation (52) we get

v(0, k) =
1

1 + ik
. (89)

8 Concluding remarks

In this paper we have provided a general methodology for designing amortizing loans

with arbitrary discount functions. Although we have discussed loans with installment

payments at regular time intervals, the extension to the case of time intervals of variable

amplitude is straightforward. Moreover, as a special case of the proposed methodology,

we have illustrated the amortization method based on the law of simple interest and

shown that in this case the phenomenon of generating “interest on interest” is precluded.

Some authors proposed a different method for designing amortizing loans under a

linear capitalization scheme (Annibali et al., 2017). To illustrate their procedure, let us

consider at time t = 0 a loan with a principal amount S0 that will be repaid with a series

of future nonnegative installments,

r = {R1, R2, · · · , Rn}, (90)

scheduled at regular time intervals 1, 2, · · · , n, with Rn > 0. The starting point of their

analysis is that the loan principal and each installment are linearly capitalized at loan

maturity n, using the interest rate i observed at time t = 0, thus obtaining

S0(1 + in) =
n∑

k=1

Rk

[
1 + i(n− k)

]
. (91)

We point out that this approach can be considered as a special case of the methodology

proposed in this study with the following discount function

v(0, k) =
1 + i(n− k)

1 + in
. (92)
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However, it should be noted this procedure produces spurious results that are not con-

sistent with the law of simple interest. Consider, for example, a loan with a principal

amount S0 at time t = 0 that will be repaid with a single strictly positive installment

Rn = S0(1 + in) at time n. Following this approach, the dynamics of the outstanding

balance is given by

Mk =
1 + in

1 + i(n− k)
S0, (93)

showing that the outstanding balance does not follow a linear behavior, as it should be

according to the law of simple interest and as obtained from Equation (80). In a different

but equivalent way, interest does not accrue linearly over time. For these reasons, we

believe that there is only one method for designing loans with amortization according to

the law of simple interest, the one described in this study.

A

A.1 Proof of Theorem 1

Under the assumptions of Theorem 1, the sequences of numbers Ck and Ik are given by

Equation (21) and Equation (22), respectively. Then, it is straightforward to verify that

conditions (G1)-(G3) hold with f(k) = i(0, k − 1, k).

A.2 Proof of Theorem 2

Preliminarily we note that from condition (G2) the numbers v(0, k) defined by Equation

(52) are strictly positive since f(k) > −1. By substituting Equation (50) into Equation

(51) we obtain,

Mk = Mk−1 + f(k)Mk−1 −Rk, (94)

where condition (G2) has been used. Solving with respect to Mk−1, we get,

Mk−1 =
Rk +Mk

1 + f(k)
. (95)

By using Equation (52), we can rewrite Equation (95) in the following recursive form,

Mk−1 =
v(0, k)

v(0, k − 1)
(Rk +Mk), k = 1, 2, · · · , n, (96)

with v(0, 0) = 1. Equation (53) and Equation (54) can be then recovered by backward

induction starting from Mn = 0 and recalling that M0 = S0. To prove the uniqueness, we
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observe that the system of n linear equations in the n unknowns v(0, k), k = 1, 2, · · · , n,

described by Equation (96), admits one and only one solution.
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