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Abstract 

The paper documents, based mainly on [3]-[6] published papers where a 

consistent mathematical description of cyberspace and various types of Cyber-Attacks 

and protection measures is presented, a holistic mathematical approach to a rigorous 

description of Advanced Persistent Threat (APT) actors’ modus operandi through 

various Cyber Kill Chain stages [2]. After defining the various elements of Cyber-

Attacks we propose some techniques of tracking the modus operandi of the most 

sophisticated and non-linear cyber actors, the Advanced Persistent Threat actors that 

are usually nation-state or nation-state backed and usually stay for an extended time 

under defenders’ threshold. 

Keywords: Mathematical modeling (models of systems), measure theory, complex 

spaces, valuation of cyber assets, vulnerability of cyber assets, node supervision, germ 

of cyber-attack, cyber defense, proactive cyber protection, Advanced Persistent Threat 

(APT) actors, Indication of Compromise (IOC). 

1. Introduction  

The aim of the present paper is, based on the previous published papers [3], [4]. [5], 

[6] to document a rigorous description of Advanced Persistent Threat (APT) actors’ 

modus operandi through various Cyber Kill Chain stages. To this end, Section 2 recalls 

in brief the mathematical definition of cyberspace given in [3]. Next, in Section 3, we 

first remind the concepts of valuations and vulnerabilities of the parts of a node 
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constituent, and then in sections 4 and 5, based on these two concepts and all necessary 

elements from [3], [4], [5], and [6] we describe the means to detect the modus operandi 

and some TTPs (Tactics, Techniques and Procedures) through 5 scenarios that the most 

sophisticated cyber actors (APTs) use to evolve cyber complex attacks [1]. Identifying 

these vectors through the Cyber Kill Chain the defenses are straight forward and no 

value would be added enumerating them.  

2. Mathematical definition of cyberspace 

A multilayered weighted (finite or infinite) graph 𝓧 with 𝑵 interconnected 

layers is said to be an 𝑵− cyber-archetype germ. An 𝒆 −manifestation gives a 

geographical qualifier at each node of 𝓧. It is an embedding of 𝓧 into a Cartesian 

product of 𝑵 complex projective spaces ℂ𝐏𝒏𝒌 ≡ 𝐏(ℂ𝒏𝒌+𝟏), such that all nodes of 𝓧 in 

the 𝒌 −layer, called 𝒆 −node manifestations, are illustrated at weighted points of the 

set ℂ𝐏𝒏𝒌 and all directed edges (flows) of 𝓧 in the 𝒌 −layer, called 𝒆 −edge 

manifestations, are given by simple weighted edges, i.e. by weighted homeomorphic 

images of the closed interval [𝟎, 𝟏] on ℂ𝐏𝒏𝒌, so that, for any 𝒌 = 𝟏, 𝟐,… ,𝑵, 

 the end points of each 𝑒 −edge manifestation on  ℂ𝐏𝒏𝒌 must be images of end 

points of a corresponding original directed edge of 𝓧 in the 𝒌 −layer  

 there should not be any 𝑒 −edge manifestation on ℂ𝐏𝒏𝒌  derived from directed 

𝑒 −edge of 𝓧 in the 𝒌 −layer into which belong points of 𝑒 −edge 

manifestations that are defined by other nodes of 𝓧 in the same layer.  

The set 𝓢𝓮 = 𝓢𝓮(ℂ𝐏
𝒏𝟏 × …× ℂ𝐏𝒏𝑵) of 𝑒 −manifestations of 𝑵−cyber 

archetype germs is the 𝒆 − superclass in ℂ𝐏𝒏𝟏 × …× ℂ𝐏𝒏𝑵. An 𝒆—graph category 

𝓔𝓒 = 𝓔𝓒(ℂ𝐏
𝒏𝟏 × …× ℂ𝐏𝒏𝑵) is a category consisting of the class 𝒐𝒃(𝓔𝓒), whose 

elements, called 𝒆—objects, are the pairs 𝓧 = (𝑽, 𝑬) ∈ 𝓢𝓮, endowed with a class 

𝒉𝒐𝒎(𝓔𝓒) of 𝒆—morphisms on 𝒐𝒃(𝓔𝓒) and an associative binary operation  ∘ with 

identity. 

Generalizing, one may consider additionally the following other four basic 

𝒆—categories: The 𝒆 −set category 𝒆𝑺𝒆𝒕 = 𝒆𝑺𝒆𝒕(ℂ𝐏
𝒏𝟏 ×…× ℂ𝐏𝒏𝑵) where the 

objects are subsets of 𝓔𝓒, the 𝒆 −homomorphism category 𝒆𝑯𝒐𝒎 = 𝒆𝑯𝒐𝒎(ℂ𝐏
𝒏𝟏 ×

…× ℂ𝐏𝒏𝑵) where the objects are sets of homomorphisms between subsets of 𝒆𝑺𝒆𝒕, the 

𝒆 −group category 𝒆𝑮𝒓𝒑 = 𝒆𝑮𝒑𝒓(ℂ𝐏
𝒏𝟏 × …× ℂ𝐏𝒏𝑵) where the objects are the groups 

of 𝓔𝓒 and the 𝒆 −topological category 𝒆𝑻𝒐𝒑 = 𝒆𝑻𝒐𝒑(ℂ𝐏
𝒏𝟏 × …× ℂ𝐏𝒏𝑵) where the 
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objects are topological subcategories of 𝓔𝓒. For reasons of homogenization of 

symbolism, we will adopt the following common notation 𝓦𝒆 =

{𝓔𝓒, 𝒆𝑺𝒆𝒕, 𝒆𝑯𝒐𝒎 , 𝒆𝑮𝒓𝒑, 𝒆𝑻𝒐𝒑}. The objects of each 𝑒 −category 𝑾𝒆 = 𝑾𝒆(ℂ𝐏
𝒏𝟏 × …×

ℂ𝐏𝒏𝑵) ∈ 𝓦𝒆 will be called 𝒆 −manifestations. An easy algebraic structure in the 

(infinite) set of all these 𝑒—manifestations (𝑽, 𝑬) and simultaneously, a compatible 

topological structure to allow for a detailed analytic study of 𝓢𝓮 is given in [3]. Further, 

[3] investigates the possibility of allocating suitable vector weights to all the objects 

and morphisms of any 𝑒 −category 𝑾𝒆 ∈ 𝓦𝒆 = {𝓔𝓒, 𝒆𝑺𝒆𝒕 , 𝒆𝑮𝒓𝒑, 𝒆𝑻𝒐𝒑}. Towards this 

end, we consider two types of vector weights that can be attached to any object and/or 

morphism of such an 𝑒 −category: the maximum weight and the square weight. Any 

such weight will be a point in the positive quadrant of the plane. Taking this into 

account, any 𝑒 −category 𝑾𝒆 ∈ 𝓦𝒆 = {𝓔𝓒, 𝒆𝑺𝒆𝒕, 𝒆𝑯𝒐𝒎 , 𝒆𝑮𝒑𝒓, 𝒆𝑻𝒐𝒑} can be viewed as 

an infinite 𝑒 −graph(𝕍, 𝔼) with vector weights, in such a way that the 𝑒 −nodes in 𝕍 

are the 𝑒 −objects 𝑿 ∈ 𝒐𝒃(𝑾𝒆), while the 𝑒 −edges in 𝔼 are the 𝑒 −morphisms 𝒉 ∈

𝒉𝒐𝒎(𝑾𝒆). For such an 𝑒 −graph 𝕲𝑾𝒆
 corresponding to an 𝑒 − category 𝑾𝒆 ∈ 𝓦𝒆, 

the vector weight of the 𝑒 −node associated to the 𝑒 −manifestation 𝓧 = (𝑽, 𝑬) ∈ 𝕍 ≡

𝒐𝒃(𝑾𝒆) is equal to a weight of 𝓧. Bearing all this in mind, in [3], we introduced a 

suitable intrinsic metric 𝒅𝑾𝒆
 in the set 𝒐𝒃(𝑾𝒆) of objects of an 𝑒 −category 𝑾𝒆. The 

most significant benefits coming from such a consideration can be derived from the 

definitions of cyber-evolution and cyber-domain. To do this, we first defined the 

concept of 𝑒—dynamics, as a mapping of the form 𝒸𝓎: [0,1] → (𝒐𝒃(𝑾𝒆), 𝒅𝑾𝒆
); its 

image is an 𝑒—arrangement. Each point 𝒸𝓎(𝒕) ∈ 𝒸𝓎([0,1]) is an (instantaneous) local 

𝑒 −node manifestation with an interrelated𝑒 −edge manifestation. An 𝑒 −arrangement 

together with all of its (instantaneous) 𝑒—morphisms is an 𝑒 −regularization. The 

elements of the completion 𝒐𝒃(𝑾𝒆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  of 𝒐𝒃(𝑾𝒆) in ℂ𝐏𝒏𝟏 × …× ℂ𝐏𝒏𝑵̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are the cyber-

elements, while the topological space (𝒐𝒃(𝑾𝒆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝒅𝑾𝒆
) is a cyber-domain. With this 

notation, a continuous 𝑒 −dynamics 𝒸𝓎: [𝟎, 𝟏] → (𝒐𝒃(𝑾𝒆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝒅𝑾𝒆
) is said to be a cyber-

evolutionary path or simply cyber-evolution in the cyber-domain (𝒐𝒃(𝑾𝒆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝒅𝑾𝒆
). Its 

image is said to be a cyber-arrangement. A cyber-arrangement together with all of its 

(instantaneous) cyber-morphisms is called a cyberspace.  

In view of the above concepts, [3] investigates conditions under which an 

𝑒 −regularization may be susceptible of a projective 𝑒 −limit. It is important to know 
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if a 𝑒 −sub-regularization is projective 𝑒 −system. Subsequently, we defined and 

discussed the concept of the length in a cyber-domain. For the intrinsic cyber-metric 

𝒅𝑾𝒆
, the distance between two cyber-elements is the length of the "shortest cyber-track" 

between these cyber-elements. The term shortest cyber-track is defined and is crucial 

for understanding the concept of cyber-geodesic. Although every shortest cyber track 

on a cyber-length space is a cyber-geodesic, the reverse argument is not valid. In fact, 

some cyber-geodesics may fail to be shortest cyber-tracks on large scales. However, 

since each cyber-domain (𝒐𝒃(𝑾𝒆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝒅𝑾𝒆
) is a compact, complete metric space, and 

since for any pair of cyber-elements in 𝒐𝒃(𝑾𝒆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  there is a cyber-evolutionary path of 

finite length joining them, one can easily ascertain the following converse result: any 

pair of two cyber-elements in each cyber-domain (𝒐𝒃(𝑾𝒆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝒅𝑾𝒆
) has a shortest cyber 

track joining them. Finally, [3] gives a discussion about the speed (: cyber-speed) of a 

cyber-evolution and the convergence of a sequence of cyber-evolutions.  

3. Mathematical description of cyber-attacks 

At any moment 𝒕, a node 𝑽 in the cyber-domain (𝒐𝒃(𝑾𝒆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝒅𝑾𝒆
) is composed 

of cyber constituents consisting in devices 𝑫𝒋
(𝑽)

 (:sensors, routing/switching/bridging 

assets, regulators of information flow, etc) and resources 𝑹𝒌
(𝑽)

 (:services, data, messages 

etc), the number of which depend potentially from the three geographical coordinates 

𝒙𝟏, 𝒙𝟐, 𝒙𝟑 and the time 𝒕. The criticality of the asset management of every node is of 

high importance since it affects the whole approach. The order of any used quote of 

devices 𝑫𝟏
(𝑽)

, 𝑫𝟐
(𝑽)

,… and resources 𝑹𝟏
(𝑽)

, 𝑹𝟐
(𝑽)

,… is assumed to be given, pre-assigned 

and well defined. We will assume uninterruptedly that:  

 the potential number of all possible devices and resources of 𝑽 is equal to 

𝓜𝑽 ≫ 𝟎 and 𝓛𝑽 ≫ 𝟎, respectively, and 

 the number of 𝑽’s available devices and resources is only 𝓶𝑽 = 𝓶𝑽 and 𝓵𝑽 =

𝓵𝑽(𝒕) respectively, with 𝓶𝑽 <𝓜𝑽 and 𝓵𝑽 < 𝓛𝑽. 

3.1 Valuations and vulnerabilities of parts of a node constituent  

Let 𝑼,𝑽 be two nodes in the cyber-domain (𝒐𝒃(𝑾𝒆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝒅𝑾𝒆
) and let 𝓚(𝑽) be an 

available constituent in 𝑽:  
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𝓚 = {
𝑫, 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑒𝑛𝑡 𝑖𝑠 𝑎 𝑑𝑒𝑣𝑖𝑐𝑒,                     
𝑹, 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑒𝑛𝑡 𝑖𝑠 𝑎 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡.

 

Obviously, 𝓚(𝑽) may also be viewed as a nonempty collection of a number of elements. 

It is easy to see that one can make as much finite 𝝈 −algebras as partitions on 𝓚(𝑽).  

 

Definition 3.1 For every partition 𝓟 of 𝓚(𝑽), let us consider a corresponding 

𝝈 −algebra 𝖀𝓟 of subsets of 𝓚(𝑽)as well as a monotonic measure 𝝁 defined on 𝖀𝓟. 

Let also 𝑪𝒓𝟏, 𝑪𝒓𝟐, … , 𝑪𝒓𝕹 be 𝕹 = 𝕹(𝓚(𝑽), 𝓟) objective quantifiable criteria for the 

assessment of the points of 𝓚(𝑽). Denoting by 𝑪𝒓𝒋(𝒑) ∈ ℝ the value of 𝑪𝒓𝒋 on 𝒑 ∈

𝓚(𝑽) at a point (𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒕) ∈ ℝ
𝟑 × [𝟎, 𝟏], suppose  

1) the functions 𝑪𝒓𝒋(𝒑) are measurable with respect to 𝝁 and  

2) a valuation weight 𝒖𝒋(𝒑) is attributed by (the user(s) of) 𝑼 to the Criterion 𝑪𝒓𝒋 

on 𝒑 ∈ 𝓚(𝑽) at (𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒕) ∈ ℝ
𝟒. 

If 𝑬 ∈ 𝖀𝓟 is a part of 𝓚(𝑽)and 𝖓 ≤ 𝕹, then a relative valuation of 𝑬 from the 

viewpoint (of user(s)) of node 𝑼 with respect to the 𝖓 criteria 𝑪𝒓𝟏, 𝑪𝒓𝟐, … , 𝑪𝒓𝖓 at the 

spatiotemporal point (𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒕) ∈ ℝ
𝟒 is any vector  

𝑨(𝑼⇝𝑽)(𝑬) = (𝒂𝟏
(𝑼⇝𝑽)(𝑬), 𝒂𝟐

(𝑼⇝𝑽)(𝑬), … , 𝒂𝖓
(𝑼⇝𝑽)(𝑬))

𝑻

∈ ℝ𝖓 

where each definite integral  

𝒂𝒋
(𝑼⇝𝑽)(𝑬):= ∫ 𝑪𝒓𝒋(𝒑)𝒖𝒋(𝒑)𝒅𝝁(𝒑)𝑬

. 

is the component valuation of 𝑬 from the viewpoint (of user(s)) of the node 𝑼 into 

the constituent 𝓚(𝑽)at (𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒕). The number 𝖓 is the dimension of the 

valuation. ■ 

There is a special category of valuations of particular interest, determined in 

regards to the low degree of “security” of the constituents of the node. The low degree 

of security is described completely by the concept of vulnerability.  

Definition 3.2 For every partition 𝓟 of 𝓚(𝑽), let us consider a corresponding 

𝝈 −algebra 𝖀𝓟 of subsets of 𝓚(𝑽)as well as a monotonic measure 𝝀 defined on 𝖀𝓟. Let 

also 𝑺𝑪𝒓𝟏, 𝑺𝑪𝒓𝟐, … , 𝑺𝑪𝒓𝕸 be 𝕸 =𝕸(𝓚(𝑽), 𝓟) objective quantifiable criteria for the 

security assessment of the points of 𝓚(𝑽). Denoting by 𝑺𝑪𝒓𝒋(𝒑) ∈ ℝ the value of 𝑺𝒆𝑪𝒓𝒋 

on 𝒑 ∈ 𝓚(𝑽) at a spatiotemporal point (𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒕) ∈ ℝ
𝟑 × [𝟎, 𝟏], suppose 

1) the functions 𝑺𝑪𝒓𝒋(𝒑) are measurable with respect to 𝝀 and  
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2) a vulnerability weight 𝓾𝒋(𝒑) is attributed by (the (user(s) of) node 𝑼 to the 

security criterion 𝑺𝑪𝒓𝒋 on 𝒑 ∈ 𝓚(𝑽) at (𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒕) ∈ ℝ
𝟒. 

If 𝑬 ∈ 𝖀𝓟 is a part of 𝓚(𝑽)and 𝖒 ≤ 𝕸, then a relative vulnerability of 𝑬 from the 

viewpoint (of the user(s)) of node 𝑼 with respect to the 𝖒 security criteria 

𝑺𝑪𝒓𝟏, 𝑺𝑪𝒓𝟐, … , 𝑺𝑪𝒓𝖒at(𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒕) ∈ ℝ
𝟒 is any vector 

𝑩(𝑼⇝𝑽)(𝑬) = (𝒃𝟏
(𝑼⇝𝑽)(𝑬), 𝒃𝟐

(𝑼⇝𝑽)(𝑬),… , 𝒃𝖒
(𝑼⇝𝑽)(𝑬))

𝑻

∈ ℝ𝒎 

where each definite integral  

𝒃𝒋
(𝑼⇝𝑽)(𝑬) = ∫ 𝑺𝑪𝒓𝒋(𝒑)𝓾𝒋(𝒑)𝒅𝝀(𝒑)𝑬

. 

is the component vulnerability of 𝑬 from the viewpoint (of the (user(s)) of the node 

𝑼 into the constituent 𝓚(𝑽) at (𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒕). The number 𝖒 is the dimension of the 

vulnerability. ■ 

In what follows, a part 𝑬 of a possible device 𝑫𝒌
(𝑽)

 or/and resource 𝑹𝝃
(𝑽)

 of 𝑽 

that is evaluated from the viewpoint (of the user(s)) of node 𝑼 may be denoted by 

𝒇𝒓(𝑫𝜿
(𝑽)) or/and 𝒇𝒓(𝑹𝝃

(𝑽)), respectively (𝜿 = 𝟏, 𝟐,… ,𝓜𝑽, 𝝃 = 𝟏, 𝟐,… , 𝓛𝑽). 

However, to denote both 𝑨(𝑼⇝𝑽) (𝒇𝒓(𝑫𝜿
(𝑽))) and 𝑨(𝑼⇝𝑽) (𝒇𝒓(𝑹𝝃

(𝑽))) we will prefer 

to use the common notation 𝑨𝒗
(𝑼⇝𝑽)

: 

𝑨𝒗
(𝑼⇝𝑽) = (𝒂𝟏,𝒗

(𝑼⇝𝑽), … , 𝒂𝖓,𝒗
(𝑼⇝𝑽))

𝑻

=  

{
𝑨𝑼 (𝒇𝒓(𝑫𝒗

(𝑽))) , 𝒊𝒇 𝒗 = 𝟏, 𝟐,… ,𝓜𝑽

𝑨𝑼 (𝒇𝒓(𝑹𝒗−𝓜𝑽

(𝑽) ))  𝒊𝒇 𝒗 = 𝓜𝑽 + 𝟏,𝓜𝑽 + 𝟐,… ,𝓜𝑽 + 𝓛𝑽.
 

Similarly, to denote both 𝑩(𝑼⇝𝑽) (𝒇𝒓(𝑫𝜿
(𝑽))), 𝜿 = 𝟏, 𝟐, … ,𝓜𝑽 and 

𝑩(𝑼⇝𝑽) (𝒇𝒓(𝑹𝝃
(𝑽))), 𝝃 = 𝟏, 𝟐,… , 𝓛𝑽, we will prefer to adopt the notation 

𝑩𝒗
(𝑼⇝𝑽) = (𝒃𝟏,𝒗

(𝑼⇝𝑽), … , 𝒃𝖒,𝒗
(𝑼⇝𝑽))

𝑻

=  

{
𝑩𝑼 (𝒇𝒓(𝑫𝒗

(𝑽))) , 𝒊𝒇 𝒗 = 𝟏, 𝟐,… ,𝓜𝑽

𝑩𝑼 (𝒇𝒓(𝑹𝒗−𝓜𝑽

(𝑽) ))  𝒊𝒇 𝒗 = 𝓜𝑽 + 𝟏,𝓜𝑽 + 𝟐,… ,𝓜𝑽 + 𝓛𝑽.
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3.2 Cyber-effects and cyber-interactions 

We are now in position to proceed towards a description of homomorphisms 

between cyber nodes. Let 𝑼,𝑽 be two nodes in the cyber-domain (𝒐𝒃(𝑾𝒆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝒅𝑾𝒆
). 

Without loss of generality, we may suppose the numbers 𝓜𝑽 + 𝓛𝑽 and 𝓜𝑼 + 𝓛𝑼 are 

both enough large, so that 𝓴 ≔𝓜𝑽 + 𝓛𝑽 =𝓜𝑼 + 𝓛𝑼. We consider the following 

sets. 

1) 𝕮(𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏)(𝑽) =   

{(𝒇𝒓(𝑫𝟏
(𝑽)), … , 𝒇𝒓(𝑫𝓜𝑽

(𝑽) ), 𝒇𝒓(𝑹𝟏
(𝑽)), … , 𝒇𝒓(𝑹𝓛𝑽

(𝑽))) :  

𝒇𝒓(𝑫𝒌
(𝑽)
), 𝒇𝒓(𝑹𝝃

(𝑽)
) ∈ 𝖀𝓟, 𝜿 ≤ 𝓜𝑽, 𝝃 ≤ 𝓛𝑽}: 

the set of ordered columns of possible parts of constituents of 𝑽;  

2) 𝓐𝑼𝕮
(𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏)(𝑽) =  

{(𝑨𝟏
(𝑼⇝𝑽), … , 𝑨𝓴

(𝑼⇝𝑽)): 𝑨𝒗
(𝑼⇝𝑽) ∈ ℝ𝖓, 𝒗 = 𝟏, 𝟐,… ,𝓴} ≡ ℝ𝖓×𝓴: 

the set of ordered columns of relative valuations of parts of possible constituents 

of 𝑽, from the viewpoint of 𝑼, over the space time ℝ𝟑 × [𝟎, 𝟏];  

3) 𝓑𝑼𝕮
(𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏)(𝑽) = 

{(𝑩𝟏
(𝑼⇝𝑽), … , 𝑩𝓴

(𝑼⇝𝑽)): 𝑩𝒗
(𝑼⇝𝑽) ∈ ℝ𝖓, 𝒗 = 𝟏, 𝟐,… ,𝓴} ≡ ℝ𝖓×𝓴: 

the set of all ordered columns of relative vulnerabilities of parts of possible 

constituents in 𝑽, from the viewpoint of 𝑼, over ℝ𝟑 × [𝟎, 𝟏]. 

Definition 3.3 The triplet 

𝓟 = 𝓟(𝑽) = (𝕮(𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏)(𝑽),𝓐𝑼𝕮
(𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏)(𝑽), 𝓑𝑼𝕮

(𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏)(𝑽)) 

is called the cyber-range of 𝑽 from the viewpoint of (the users of) 𝑼. Its elements 𝓹 

are the (threefold) cyber situations. Especially, when an Advanced Persistent Threat 

Hunting is of our interest on node 𝑽, and given the sophistication of the attack vectors 

used by these actors, we definitely work on the specific case where 𝑼 = 𝑽. In that case 

the cyber-field 𝓟 = 𝓟(𝑽) is the cyber-purview of 𝑽 and is denoted 𝓟(𝒔𝒆𝒍𝒇) =

𝓟(𝒔𝒆𝒍𝒇)(𝑽). Its elements are represented by �̂�. With APT actors’ TTPs it is not 

recommended to use the cyber-field 𝓟 = 𝓟(𝑽) since the results/conclusions could be 

misleading.■ 

Given an ordered set 

𝑭𝑹(𝑽): = (𝒇𝒓(𝑫𝟏
(𝑽)), … , 𝒇𝒓(𝑫𝓜𝑽

(𝑽) ), 𝒇𝒓(𝑹𝟏
(𝑽)), … , 𝒇𝒓(𝑹𝓛𝑽

(𝑽))) 

of ordered columns of parts of constituents of 𝑽, a cyber situation 𝓹 on 𝑽can be viewed 

as an ordered pair of matrices 
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𝓹 = (𝔸(𝑼⇝𝑽), 𝔹(𝑼⇝𝑽)) = ((𝒂𝒊,𝒋), (𝒃𝒊,𝒋)) ∈ ℝ
𝖓×𝓴 × ℝ𝖒×𝓴 

where  

𝔸(𝑼⇝𝑽) = (𝑨𝟏
(𝑼⇝𝑽), … , 𝑨𝓴

(𝑼⇝𝑽)) = (𝒂𝒊,𝒋) = (

𝒂1,1
(𝑼⇝𝑽) ⋯ 𝒂1,𝓴

(𝑼⇝𝑽)

⋮ ⋮ ⋮

𝒂𝖓,𝟏
(𝑼⇝𝑽) ⋯ 𝒂𝖓,𝓴

(𝑼⇝𝑽)
) and 

𝔹(𝑼⇝𝑽) = (𝑩𝟏
(𝑼⇝𝑽), … , 𝑩𝓴

(𝑼⇝𝑽)) = (𝒃𝒊,𝒋) = (

𝒃1,1
(𝑼⇝𝑽) ⋯ 𝒃1,𝓴

(𝑼⇝𝑽)

⋮ ⋮ ⋮

𝒃𝖒,𝟏
(𝑼⇝𝑽) ⋯ 𝒃𝖒,𝓴

(𝑼⇝𝑽)
). 

In particular, any purview �̂� on 𝑽, can simply be viewed as an ordered pair 

�̂� = (�̂�(𝑽⇝𝑽), �̂�(𝑽⇝𝑽)) = ((�̂�𝒊,𝒋), (�̂�𝒊,𝒋)) ∈ ℝ
𝖓×𝓴 ×ℝ𝖒×𝓴 

with 

�̂�(𝑽⇝𝑽) = (�̂�𝒊,𝒋) = (

𝒂1,1
(𝑽⇝𝑽) ⋯ 𝒂1,𝓴

(𝑽⇝𝑽)

⋮ ⋮ ⋮

𝒂𝖓,𝟏
(𝑽⇝𝑽) ⋯ 𝒂𝖓,𝓴

(𝑽⇝𝑽)
) and  

�̂�(𝑽⇝𝑽) = (�̂�𝒊,𝒋) = (

𝒃1,1
(𝑽⇝𝑽) ⋯ 𝒃1,𝓴

(𝑽⇝𝑽)

⋮ ⋮ ⋮

𝒃𝖒,𝟏
(𝑽⇝𝑽) ⋯ 𝒃𝖒,𝓴

(𝑽⇝𝑽)
). 

To simplify our approach, in what follows we will assume that the location 

(𝒙𝟏, 𝒙𝟐, 𝒙𝟑) ∈ ℝ
𝟑 of 𝑽 remains constantly fixed.  

Definition 3.4 The supervision vector of 𝑽 in the node system (𝑽, 𝑼) at a given time 

moment 𝒕 ∈ [𝟎, 𝟏] is defined to be the pair  

(𝕫,𝕨)(𝒕) = (𝔸𝑼→𝑽 + 𝒊�̂�𝑽→𝑽, 𝔹𝑼→𝑽 + 𝒊�̂�𝑽→𝑽)(𝒕) ∈ ℂ
𝖓×𝓴 × ℂ𝖒×𝓴 

with 𝒊: = √−𝟏 ∈ ℂ. Especially, the complex matrices 𝕫 and 𝕨 are called supervisory 

perceptions of 𝑽 in the node system (𝑽,𝑼) at moment 𝒕. The mapping defined by 

𝜸𝑽: [𝟎, 𝟏] → ℂ𝖓×𝓴 × ℂ𝖒×𝓴: 𝒕 ↦ 𝜸𝑽(𝒕) = (𝕫,𝕨)(𝒕) 

is the supervisory perception curve of 𝑽 in the node system(𝑽, 𝑼) during the whole 

of time interval [𝟎, 𝟏]. The supervisory perception domain of 𝑽 in the node system 

(𝑽, 𝑼) is the range 𝜸𝑽([𝟎, 𝟏]) of 𝜸𝑽, denoted by 𝜸𝑽
∗ .■ 

Theoretically, each point in the space ℂ𝖓×𝓴 × ℂ𝖒×𝓴 can be viewed as a 

supervision vector of 𝑽 in the system of nodes 𝑽 and 𝑼. Since in many cases, it suffices 

(or is preferable) to use only specific supervisions from the viewpoint of 𝑼 or 𝑽: 
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(𝔸𝑼→𝑽, 𝔹𝑼→𝑽)(𝒕) or (�̂�𝑽→𝑽, �̂�𝑽→𝑽)(𝒕) or (𝔸𝑼→𝑽, 𝒊�̂�𝑽→𝑽)(𝒕) or (𝒊�̂�𝑽→𝑽, 𝔹𝑼→𝑽)(𝒕) 

In our case study and in the context of this paper we assume that an APT actor has 

already initiated some malicious activity in node 𝑽. Therefore, it is constructive to 

consider the following vector fields on 𝜸𝑽
∗  and to use them accordingly, in combination 

with the other techniques that we consider in this paper, in order to locate and identify 

the evolved APT vectors and behaviors:  

 The vector field 𝑿𝟐 which assigns to each point  

(𝕫,𝕨)(𝒕) = (𝔸𝑼→𝑽 + 𝒊�̂�𝑽→𝑽, 𝔹𝑼→𝑽 + 𝒊�̂�𝑽→𝑽)(𝒕) 

of 𝜸𝑽
∗  the vector 

(𝑰𝒎𝕫, 𝑰𝒎𝕨)(𝒕) ≡ (𝟎 + 𝒊�̂�𝑽→𝑽, 𝟎 + 𝒊�̂�𝑽→𝑽)(𝒕) ∈ ℝ
𝖓×𝓴 × ℝ𝖒×𝓴, 

i.e., the vector of the valuations and vulnerabilities of 𝑭𝑹(𝑽) at 𝒕, considered 

from the viewpoint of 𝑽 itself; in subsequently, we may define the vector fields 

𝒀𝟐 and 𝒁𝟐 assigning to each point (𝕫,𝕨)(𝒕) = (𝔸𝑼→𝑽 + 𝒊�̂�𝑽→𝑽, 𝔹𝑼→𝑽 +

𝒊�̂�𝑽→𝑽)(𝒕) of 𝜸𝑽
∗  the vectors of valuations and vulnerabilities of 𝑭𝑹(𝑽) at 𝒕, 

considered from the viewpoint of 𝑽 itself: 

𝑰𝒎𝕫(𝒕) ≡ �̂�𝑽→𝑽(𝒕) ∈ ℝ
𝖓×𝓴 and 𝑰𝒎𝕨(𝒕) ≡ �̂�𝑽→𝑽(𝒕) ∈ ℝ

𝖒×𝓴. 

We may also consider combinatorial vector fields, for instance the vector field 

𝑿𝟑 which assigns to each point  

(𝕫,𝕨)(𝒕) = (𝔸𝑼→𝑽 + 𝒊�̂�𝑽→𝑽, 𝔹𝑼→𝑽 + 𝒊�̂�𝑽→𝑽)(𝒕) 

of 𝜸𝑽
∗  the vector  

(𝑹𝒆𝕫, 𝑰𝒎𝕨)(𝒕) ≡ (𝔸𝑼→𝑽 + 𝒊𝟎, 𝟎 + 𝒊�̂�𝑽→𝑽)(𝒕) ∈ ℝ
𝖓×𝓴 × ℝ𝖒×𝓴, 

i.e., the vector containing relative valuations of 𝑭𝑹(𝑽) at 𝒕 considered from the 

viewpoint of 𝑼 and vulnerabilities of 𝑭𝑹(𝑽)at 𝒕 considered from the viewpoint of 𝑽 

itself, or the vector field 𝑿𝟒 which assigns to each point  

(𝕫,𝕨)(𝒕) = (𝔸𝑼→𝑽 + 𝒊�̂�𝑽→𝑽, 𝔹𝑼→𝑽 + 𝒊�̂�𝑽→𝑽)(𝒕) 

of 𝜸𝑽
∗  the vector  

(𝑰𝒎𝕫,𝑹𝒆𝕨)(𝒕) ≡ (𝟎 + 𝒊�̂�𝑽→𝑽, 𝔹𝑼→𝑽 + 𝒊𝟎)(𝒕). 

i.e., the vector containing valuations of 𝑭𝑹(𝑽) at 𝒕 considered from the viewpoint of 𝑽 

itself and relative vulnerabilities of 𝑭𝑹(𝑽) at 𝒕 considered from the viewpoint of 𝑼 itself.  

The concept of supervisory perception curve is a concept that provides a clear 

overall relative evaluation of a node in time domain and particularly contains the 
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changes of the quantitative overview on the node. In this sense, the supervisory 

perception curve could be considered as a concept that provides for the appearance of 

an action which could lead to changes.  

Definition 3.5 A cyber-activity of 𝑼 on 𝑽 over the time interval ]𝝈, 𝝉[ ⊂⊂ ]𝟎, 𝟏[ is a 

collection of correspondences from the product 𝔾𝒕
(𝑼) ×𝔾𝒕

(𝑽)
 into the set 𝔾𝒕+∆𝒕

(𝑼)  × 𝔾𝒕+∆𝒕
(𝑽)

: 

(𝓖𝒕 ∶ 𝔾𝒕
(𝑽) × 𝔾𝒕

(𝑼) → 𝔾𝒕+∆𝒕
(𝑽)  × 𝔾𝒕+∆𝒕

(𝑼) ∶ (𝜸𝑽(𝒕), 𝜹𝑼(𝒕)) ⟼ (𝜸𝑽(𝒕
′), 𝜹𝑼(𝒕

′)))
𝒕∈]𝝈,𝝉[

  

(𝒕′: = 𝒕 + ∆𝒕 ∈ ]𝝈, 𝝉[). 

Notice that the case ∆𝒕 = 𝟎 is not excluded. A cyber-interplay of the ordered cyber 

pair (𝑽, 𝑼) over the time interval ]𝝈, 𝝉[ ⊂⊂ [𝟎,∞[ is an open shift curve  

     𝓖: ]𝝈, 𝝉[ → 𝔾𝒕
(𝑽) ×𝔾𝒕

(𝑼) × 𝔾𝒕+∆𝒕
(𝑽)  × 𝔾𝒕+∆𝒕

(𝑼) :  

𝒕 ↦ 𝓖(𝒕):= (𝜸𝑽(𝒕), 𝜹𝑼(𝒕), 𝜸𝑽(𝒕 + ∆𝒕), 𝜹𝑼(𝒕 + ∆𝒕)) 

(𝒕 + ∆𝒕 ∈ ]𝝈, 𝝉[). 

If the cyber-interplay 𝓖 is composition of several separate interplays, we say that 𝓖 is 

sequential; otherwise is called elementary. ■ 

In that regard to the concept of cyber-activity, we have the concept of cyber-

interaction. 

Definition 3.6 A cyber-interaction between 𝑼 and 𝑽 at a given time moment 𝒕𝟎 ∈

]𝝈, 𝝉[ is a tetrad  

𝓩 = 𝓩(𝑼,𝑽)(𝒕𝟎) = ((𝕫𝟏, 𝕨𝟏), (𝕫𝟐, 𝕨𝟐), (𝕫𝟏
′ , 𝕨𝟏

′ ), (𝕫𝟐
′ , 𝕨𝟐

′ )) ∈ (ℂ𝖓×𝓴 × ℂ𝖒×𝓴)
𝟒
 

for which there is an associated cyber-activity of 𝑼 on 𝑽: 

(𝓖𝒕 = 𝓖𝒕
(𝓩) ∶ 𝔾𝒕

(𝑽) ×𝔾𝒕
(𝑼) → 𝔾𝒕+∆𝒕

(𝑽)  × 𝔾𝒕+∆𝒕
(𝑼) ∶ 

  (𝜸𝑽(𝒕), 𝜹𝑼(𝒕)) ⟼ (𝜸𝑽(𝒕
′), 𝜹𝑼(𝒕

′)))
𝒕∈]𝝈,𝝉[

 

 (𝒕′: = 𝒕 + ∆𝒕 ∈ ]𝝈, 𝝉[), 

such that 

(𝕫𝟏, 𝕨𝟏) = 𝜸𝑽(𝒕𝟎) = (𝔸𝑼→𝑽 + 𝒊�̂�𝑽→𝑽, 𝔹𝑼→𝑽 + 𝒊�̂�𝑽→𝑽) ∈ ℂ
𝖓×𝓴 × ℂ𝖒×𝓴,  

(𝕫𝟐, 𝕨𝟐) = 𝜹𝑼(𝒕𝟎) = (𝔸𝑽→𝑼 + 𝒊�̂�𝑼→𝑼, 𝔹𝑽→𝑼 + 𝒊�̂�𝑼→𝑼) ∈ ℂ
𝖓×𝓴 × ℂ𝖒×𝓴, 

(𝕫𝟏
′ , 𝕨𝟏

′ ) = 𝜸𝑽(𝒕𝟎
′ ) = (𝔸𝑼→𝑽

′ + 𝒊�̂�𝑽→𝑽
′ , 𝔹𝑼→𝑽

′ + 𝒊�̂�𝑽→𝑽
′ ) ∈ ℂ𝖓×𝓴 × ℂ𝖒×𝓴, 

(𝕫𝟐
′ , 𝕨𝟐

′ ) = 𝜹𝑼(𝒕𝟎
′ ) = (𝔸𝑽→𝑼

′ + 𝒊�̂�𝑼→𝑼
′ , 𝔹𝑽→𝑼

′ + 𝒊�̂�𝑼→𝑼
′ ) ∈ ℂ𝖓×𝓴 × ℂ𝖒×𝓴.■ 
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Obviously, keeping a fixed supervisory perception 𝜸𝑽(𝒕𝟎) in the archetype germ 

𝔾𝒕
(𝑽)

and a fixed supervisory perception 𝜸𝑼(𝒕 + ∆𝒕) in the component image germ 

𝔾𝒕+∆𝒕
(𝑼)

, the corresponding cyber-interaction becomes a cyber-effect. And, as we shall 

see below, proper management of cyber-effects is enough to study cyber navigations. 

However, in most cases, as in the case of cyber-attacks, it is necessary to consider cyber-

interactions. So, because cyber-effects are a partial case of cyber-interactions, we will 

give a slight priority in the most general context of cyber-interactions. 

It is easily verified that the general form of a cyber-interaction is as follows. 

𝓩 = ((𝕫𝟏,𝕨𝟏), (𝕫𝟐, 𝕨𝟐), (𝕫𝟏
′ , 𝕨𝟏

′ ), (𝕫𝟐
′ ,𝕨𝟐

′ ))

= ((𝕫𝟏, 𝕨𝟏), (𝕫𝟐, 𝕨𝟐), (𝕫𝟏
′ , 𝕨𝟏

′ ), (𝕫𝟐
′ , 𝕨𝟐

′ ))(𝒕𝟎) 

 

=

(

 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 

𝒂𝟏,𝟏
(𝑾⇝𝑽) + 𝒊  �̂�𝟏,𝟏

(𝑽⇝𝑽) ……… 𝒂𝟏,𝖓
(𝑾⇝𝑽) + 𝒊  �̂�𝟏,𝖓

(𝑽⇝𝑽)

⋯

𝒂𝓶𝑽,𝟏
(𝑾⇝𝑽) + 𝒊  �̂�𝓶𝑽,𝟏

(𝑽⇝𝑽)

⋯

𝒂𝓜𝑽,𝟏
(𝑾⇝𝑽) + 𝒊  �̂�𝓜𝑽,𝟏

(𝑽⇝𝑽)

𝒂𝓜𝑽+𝟏,𝟏
(𝑾⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝟏,𝟏

(𝑽⇝𝑽)

⋯

………

⋯

𝒂𝓶𝑽,𝖓
(𝑾⇝𝑽) + 𝒊  �̂�𝓶𝑽,𝖓

(𝑽⇝𝑽)

⋯

𝒂𝓜𝑽,𝖓
(𝑾⇝𝑽) + 𝒊  �̂�𝓜𝑽,𝖓

(𝑽⇝𝑽)

𝒂𝓜𝑽+𝟏,𝖓
(𝑾⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝟏,𝖓

(𝑽⇝𝑽)

⋯

𝒂𝓜𝑽+𝓛𝑽,𝟏
(𝑾⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝓛𝑽,𝟏

(𝑽⇝𝑽) ……… 𝒂𝓜𝑽+𝓛𝑽,𝖓
(𝑾⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝓛𝑽,𝖓

(𝑽⇝𝑽)
)

 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 

𝒃𝟏,𝟏
(𝑾⇝𝑽) + 𝒊  �̂�𝟏,𝟏

(𝑽⇝𝑽) ……… 𝒃𝟏,𝖒
(𝑾⇝𝑽) + 𝒊  �̂�𝟏,𝖒

(𝑽⇝𝑽)

⋯

𝒃𝓶𝑽,𝟏
(𝑾⇝𝑽) + 𝒊  �̂�𝓶𝑽,𝟏

(𝑽⇝𝑽)

⋯

𝒃𝓜𝑽,𝟏
(𝑾⇝𝑽) + 𝒊  �̂�𝓜𝑽,𝟏

(𝑽⇝𝑽)

𝒃𝓜𝑽+𝟏,𝟏
(𝑾⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝟏,𝟏

(𝑽⇝𝑽)

⋯

………

⋯

𝒃𝓶𝑽,𝖒
(𝑾⇝𝑽) + 𝒊  �̂�𝓶𝑽,𝖒

(𝑽⇝𝑽)

…

𝒃𝓜𝑽,𝖒
(𝑾⇝𝑽) + 𝒊  �̂�𝓜𝑽,𝖒

(𝑽⇝𝑽)

𝒃𝓜𝑽+𝟏,𝖒
(𝑾⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝟏,𝖒

(𝑽⇝𝑽)

⋯

𝒃𝓜𝑽+𝓛𝑽,𝟏
(𝑾⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝓛𝑽,𝟏

(𝑽⇝𝑽) ……… 𝒃𝓜𝑽+𝓛𝑽,𝖒
(𝑾⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝓛𝑽,𝖒

(𝑽⇝𝑽)
)

 
 
 
 
 
 
 

⏟                                                                                
(𝕫𝟏,𝕨𝟏)=𝜸𝑽(𝒕𝟎)=(𝔸𝑼→𝑽+𝒊�̂�𝑽→𝑽,𝔹𝑼→𝑽+𝒊�̂�𝑽→𝑽)∈ℂ𝖓×𝓴×ℂ𝖒×𝓴 )

 
 
 
 
 
 
 
 
 

, 

 

 

 

(

 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 

𝒂𝟏,𝟏
(𝑽⇝𝑾) + 𝒊  �̂�𝟏,𝟏

(𝑾⇝𝑾) ……… 𝒂𝟏,𝖓
(𝑽⇝𝑾) + 𝒊  �̂�𝟏,𝖓

(𝑾⇝𝑾)

⋯

𝒂𝓶𝑾,𝟏
(𝑽⇝𝑾) + 𝒊  �̂�𝓶𝑾,𝟏

(𝑾⇝𝑾)

⋯

𝒂𝓜𝑾,𝟏
(𝑽⇝𝑾) + 𝒊  �̂�𝓜𝑾,𝟏

(𝑾⇝𝑾)

𝒂𝓜𝑾+𝟏,𝟏
(𝑽⇝𝑾) + 𝒊  �̂�𝓜𝑾+𝟏,𝟏

(𝑾⇝𝑾)

⋯

………

⋯

𝒂𝓶𝑾,𝖓
(𝑽⇝𝑾) + 𝒊  �̂�𝓶𝑾,𝖓

(𝑾⇝𝑾)

⋯

𝒂𝓜𝑾,𝖓
(𝑽⇝𝑾) + 𝒊  �̂�𝓜𝑾,𝖓

(𝑾⇝𝑾)

𝒂𝓜𝑾+𝟏,𝖓
(𝑽⇝𝑾) + 𝒊  �̂�𝓜𝑾+𝟏,𝖓

(𝑾⇝𝑾)

⋯

𝒂𝓜𝑾+𝓛𝑾,𝟏
(𝑽⇝𝑾) + 𝒊  �̂�𝓜𝑾+𝓛𝑾,𝟏

(𝑾⇝𝑾) ……… 𝒂𝓜𝑾+𝓛𝑾,𝟏
(𝑽⇝𝑾) + 𝒊  �̂�𝓜𝑾+𝓛𝑾,𝟏

(𝑾⇝𝑾)
)

 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 

𝒃𝟏,𝟏
(𝑽⇝𝑾) + 𝒊  �̂�𝟏,𝟏

(𝑾⇝𝑾) ……… 𝒃𝟏,𝖒
(𝑽⇝𝑾) + 𝒊  �̂�𝟏,𝖒

(𝑾⇝𝑾)

⋯

𝒃𝓶𝑾,𝟏
(𝑽⇝𝑾) + 𝒊  �̂�𝓶𝑾,𝟏

(𝑾⇝𝑾)

⋯

𝒃𝓜𝑾,𝟏
(𝑽⇝𝑾) + 𝒊  �̂�𝓜𝑾,𝟏

(𝑾⇝𝑾)

𝒃𝓜𝑾+𝟏,𝟏
(𝑽⇝𝑾) + 𝒊  �̂�𝓜𝑾+𝟏,𝟏

(𝑾⇝𝑾)

⋯

………

⋯

𝒃𝓶𝑾,𝖒
(𝑽⇝𝑾) + 𝒊  �̂�𝓶𝑾,𝖒

(𝑾⇝𝑾)

⋯

𝒃𝓜𝑾,𝖒
(𝑽⇝𝑾) + 𝒊  �̂�𝓜𝑾,𝖒

(𝑾⇝𝑾)

𝒃𝓜𝑾+𝟏,𝖒
(𝑽⇝𝑾) + 𝒊  �̂�𝓜𝑾+𝟏,𝖒

(𝑾⇝𝑾)

⋯

𝒃𝓜𝑾+𝓛𝑾,𝟏
(𝑽⇝𝑾) + 𝒊  �̂�𝓜𝑾+𝓛𝑾,𝟏

(𝑾⇝𝑾) ……… 𝒃𝓜𝑾+𝓛𝑾,𝖒
(𝑽⇝𝑾) + 𝒊  �̂�𝓜𝑾+𝓛𝑾,𝖒

(𝑾⇝𝑾)
)

 
 
 
 
 
 
 

⏟                                                                                    
(𝕫𝟐,𝕨𝟐)=𝜹𝑼(𝒕𝟎)=(𝔸𝑽→𝑼+𝒊�̂�𝑼→𝑼,𝔹𝑽→𝑼+𝒊�̂�𝑼→𝑼)∈ℂ𝖓×𝓴×ℂ𝖒×𝓴 )

 
 
 
 
 
 
 
 
 

 

(

 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 

𝒂′𝟏,𝟏
(𝑾⇝𝑽) + 𝒊  𝒂′̂𝟏,𝟏

(𝑽⇝𝑽) ……… 𝒂′𝟏,𝖓
(𝑾⇝𝑽) + 𝒊  𝒂′̂𝟏,𝖓

(𝑽⇝𝑽)

⋯

𝒂′𝓶𝑽,𝟏
(𝑾⇝𝑽) + 𝒊  𝒂′̂𝓶𝑽,𝟏

(𝑽⇝𝑽)

⋯

𝒂′𝓜𝑽,𝟏
(𝑾⇝𝑽) + 𝒊  𝒂′̂𝓜𝑽,𝟏

(𝑽⇝𝑽)

𝒂′𝓜𝑽+𝟏,𝟏
(𝑾⇝𝑽) + 𝒊  𝒂′̂𝓜𝑽+𝟏,𝟏

(𝑽⇝𝑽)

⋯

………

⋯

𝒂′𝓶𝑽,𝖓
(𝑾⇝𝑽) + 𝒊  𝒂′̂𝓶𝑽,𝖓

(𝑽⇝𝑽)

⋯

𝒂′𝓜𝑽,𝖓
(𝑾⇝𝑽) + 𝒊  𝒂′̂𝓜𝑽,𝖓

(𝑽⇝𝑽)

𝒂′𝓜𝑽+𝟏,𝖓
(𝑾⇝𝑽) + 𝒊  𝒂′̂𝓜𝑽+𝟏,𝖓

(𝑽⇝𝑽)

⋯

𝒂′𝓜𝑽+𝓛𝑽,𝟏
(𝑾⇝𝑽) + 𝒊  𝒂′̂𝓜𝑽+𝓛𝑽,𝟏

(𝑽⇝𝑽) ……… 𝒂′𝓜𝑽+𝓛𝑽,𝖓
(𝑾⇝𝑽) + 𝒊  𝒂′̂𝓜𝑽+𝓛𝑽,𝖓

(𝑽⇝𝑽)
)

 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 

𝒃′𝟏,𝟏
(𝑾⇝𝑽) + 𝒊  𝒃′̂𝟏,𝟏

(𝑽⇝𝑽) ……… 𝒃′𝟏,𝖒
(𝑾⇝𝑽) + 𝒊  𝒃′̂𝟏,𝖒

(𝑽⇝𝑽)

⋯

𝒃′𝓶𝑽,𝟏
(𝑾⇝𝑽) + 𝒊  𝒃′̂𝓶𝑽,𝟏

(𝑽⇝𝑽)

⋯

𝒃′𝓜𝑽,𝟏
(𝑾⇝𝑽) + 𝒊  𝒃′̂𝓜𝑽,𝟏

(𝑽⇝𝑽)

𝒃′𝓜𝑽+𝟏,𝟏
(𝑾⇝𝑽) + 𝒊  𝒃′̂𝓜𝑽+𝟏,𝟏

(𝑽⇝𝑽)

⋯

………

⋯

𝒃′𝓶𝑽,𝖒
(𝑾⇝𝑽) + 𝒊  𝒃′̂𝓶𝑽,𝖒

(𝑽⇝𝑽)

⋯

𝒃′𝓜𝑽,𝖒
(𝑾⇝𝑽) + 𝒊  𝒃′̂𝓜𝑽,𝖒

(𝑽⇝𝑽)

𝒃′𝓜𝑽+𝟏,𝖒
(𝑾⇝𝑽) + 𝒊  𝒃′̂𝓜𝑽+𝟏,𝖒

(𝑽⇝𝑽)

⋯

𝒃′𝓜𝑽+𝓛𝑽,𝟏
(𝑾⇝𝑽) + 𝒊  𝒃′̂𝓜𝑽+𝓛𝑽,𝟏

(𝑽⇝𝑽) ……… 𝒃′𝓜𝑽+𝓛𝑽,𝖒
(𝑾⇝𝑽) + 𝒊  𝒃′̂𝓜𝑽+𝓛𝑽,𝖒

(𝑽⇝𝑽)
)

 
 
 
 
 
 
 

⏟                                                                                  
(𝕫𝟏
′ ,𝕨𝟏

′ )=𝜸𝑽(𝒕𝟎
′ )=(𝔸𝑼→𝑽

′ +𝒊�̂�𝑽→𝑽
′ ,𝔹𝑼→𝑽

′ +𝒊�̂�𝑽→𝑽
′ )∈ℂ𝖓×𝓴×ℂ𝖒×𝓴 )

 
 
 
 
 
 
 
 
 

. 
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(

 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 

𝒂′𝟏,𝟏
(𝑽⇝𝑾)

+ 𝒊  𝒂′̂𝟏,𝟏
(𝑾⇝𝑾)

……… 𝒂′𝟏,𝖓
(𝑽⇝𝑾)

+ 𝒊  𝒂′̂𝟏,𝖓
(𝑾⇝𝑾)

⋯
⋯

𝒂′𝓶𝑾,𝟏
(𝑽⇝𝑾)

+ 𝒊  𝒂′̂𝓶𝑾,𝟏

(𝑾⇝𝑾)

⋯

𝒂′𝓜𝑾,𝟏
(𝑽⇝𝑾)

+ 𝒊  𝒂′̂𝓜𝑾,𝟏

(𝑾⇝𝑾)

𝒂′𝓜𝑾+𝟏,𝟏
(𝑽⇝𝑾)

+ 𝒊  𝒂′̂𝓜𝑾+𝟏,𝟏

(𝑾⇝𝑾)

………

𝒂′𝓶𝑾,𝖓
(𝑽⇝𝑾)

+ 𝒊  𝒂′̂𝓶𝑾+𝟏,𝖓

(𝑾⇝𝑾)

⋯

𝒂′𝓜𝑾,𝖓
(𝑽⇝𝑾)

+ 𝒊  𝒂′̂𝓜𝑾+𝟏,𝖓

(𝑾⇝𝑾)

𝒂′𝓜𝑾+𝟏,𝖓
(𝑽⇝𝑾)

+ 𝒊  𝒂′̂𝓜𝑾+𝟏,𝖓

(𝑾⇝𝑾)

⋯
⋯

𝒂′𝓜𝑾+𝓛𝑾,𝟏
(𝑽⇝𝑾) + 𝒊  𝒂′̂𝓜𝑾+𝓛𝑾,𝟏

(𝑾⇝𝑾) ……… 𝒂′𝓜𝑾+𝓛𝑾,𝖓
(𝑽⇝𝑾)

+ 𝒊  𝒂′̂𝓜𝑾+𝓛𝑾,𝖓

(𝑾⇝𝑾)

)

 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 

𝒃′𝟏,𝟏
(𝑽⇝𝑾)

+ 𝒊  𝒃′̂𝟏,𝟏
(𝑾⇝𝑾)

⋯
……… 𝒃′𝟏,𝖒

(𝑽⇝𝑾)
+ 𝒊  �̂�′𝟏,𝖒

(𝑾⇝𝑾)

⋯

𝒃′𝓶𝑾,𝟏
(𝑽⇝𝑾)

+ 𝒊  𝒃′̂𝓶𝑾,𝟏

(𝑾⇝𝑾)

⋯
……… 𝒃′𝓶𝑾,𝖒

(𝑽⇝𝑾)
+ 𝒊  �̂�′𝓶𝑾,𝖒

(𝑾⇝𝑾)

𝒃′𝓜𝑾,𝟏
(𝑽⇝𝑾)

+ 𝒊  𝒃′̂𝓜𝑾,𝟏

(𝑾⇝𝑾)

𝒃′𝓜𝑾+𝟏,𝟏
(𝑽⇝𝑾)

+ 𝒊  𝒃′̂𝓜𝑾+𝟏,𝟏

(𝑾⇝𝑾)

⋯

𝒃′𝓜𝑾+𝓛𝑾,𝟏
(𝑽⇝𝑾)

+ 𝒊  𝒃′̂𝓜𝑾+𝓛𝑾,𝟏

(𝑾⇝𝑾)

………

𝒃′𝓜𝑾,𝖒
(𝑽⇝𝑾)

+ 𝒊  𝒃′̂𝓜𝑾,𝖒

(𝑾⇝𝑾)

𝒃′𝓜𝑾+𝟏,𝖒
(𝑽⇝𝑾)

+ 𝒊  𝒃′̂𝓜𝑾+𝟏,𝖒

(𝑾⇝𝑾)

⋯

𝒃′𝓜𝑾+𝓛𝑾,𝖒
(𝑽⇝𝑾)

+ 𝒊  𝒃′̂𝓜𝑾+𝓛𝑾,𝖒

(𝑾⇝𝑾)

)

 
 
 
 
 
 
 

⏟                                                                                        
(𝕫𝟐
′ ,𝕨𝟐

′ )=𝜹𝑼(𝒕𝟎
′ )=(𝔸𝑽→𝑼

′ +𝒊�̂�𝑼→𝑼
′ ,𝔹𝑽→𝑼

′ +𝒊�̂�𝑼→𝑼
′ )∈ℂ𝖓×𝓴×ℂ𝖒×𝓴 )

 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 

 

 

4. Description of Various Types of Cyber Attacks 

4.1 Passive cyber-attacks conducted by APTs 

A detailed mathematical description of a basic passive attack is given in [6]. 

There are though some potential differences between a basic passive cyber-attack 

(conducted by a non-persistent and non-sophisticated actor, i.e. hacktivist) and that 

conducted by an APT. In the following paragraphs we describe contextually these 

differences. The APT entity will be presented as 𝑼𝑨𝑷𝑻 in this section. 

Let 𝑼𝑨𝑷𝑻, 𝑽 ∈ 𝒐𝒃(𝒄𝒚(𝒕)), whenever 𝒕 is in an arbitrary subset 𝕀 = ]𝝈, 𝝉[ ⊂⊂

[𝟎, 𝟏]. Let also  

𝜹𝑼: [𝟎, 𝟏] → ℂ𝖓×𝓴 × ℂ𝖒×𝓴: 𝒕 ↦ 𝜹𝑾(𝒕) = (𝕫𝟏, 𝕨𝟏)(𝒕) and 

 𝜸𝑽: [𝟎, 𝟏] → ℂ𝖓×𝓴 × ℂ𝖒×𝓴: 𝒕 ↦ 𝜸𝑽(𝒕) = (𝕫𝟐, 𝕨𝟐)(𝒕) 

be two supervisory perception curves of 𝑼𝑨𝑷𝑻 and 𝑽 in the node system (𝑼𝑨𝑷𝑻, 𝑽).  

A family of interactions  

𝓕 = {𝓩 = 𝓩(𝒀,𝑿)(𝒕) = ((𝕫𝟏, 𝕨𝟏), (𝕫𝟐, 𝕨𝟐), (𝕫𝟏
′ , 𝕨𝟏

′ ), (𝕫𝟐
′ , 𝕨𝟐

′ ))(𝒕) ∈ 

(ℂ𝖓×𝓴 × ℂ𝖒×𝓴)
𝟒
, 𝒕 ∈ 𝕀}, 

𝑿, 𝒀 ∈ {𝑼𝑨𝑷𝑻, 𝑽}, with associated family of cyber-interplays [6] 

𝓓𝓕 = {𝓖 = 𝓖
(𝓩): 𝕀 → 𝔾𝒕

(𝑿) ×𝔾𝒕
(𝒀) × 𝔾𝒕+∆𝒕

(𝑿)  × 𝔾𝒕+∆𝒕
(𝒀) : 

𝒕 ↦ 𝓖(𝒕) = (𝜹𝒀
(𝓩)(𝒕), 𝜸𝑿

(𝓩)(𝒕), 𝜹𝒀
(𝓩)(𝒕 + ∆𝒕), 𝜸𝑿

(𝓩)(𝒕 + ∆𝒕)) : 𝒕 + ∆𝒕 ∈ 𝕀, 𝓩 ∈ 𝓕} 

of the ordered cyber pair (𝒀, 𝑿) over the time 𝒕 ∈ 𝕀, is called coherent interactive 

family in 𝕀, if there is a homotopy  

𝑯: 𝕀 × [𝟎, 𝟏] → 𝔾𝒕
(𝑿) ×𝔾𝒕

(𝒀) × 𝔾𝒕+∆𝒕
(𝑿)  × 𝔾𝒕+∆𝒕

(𝒀)
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such that, for each cyber-interplay 𝓖 = 𝓖(𝓩) ∈ 𝓓𝓕 there is a 𝒑 ∈ [𝟎, 𝟏] satisfying 

𝑯(𝒕, 𝒑) = 𝓖(𝒕) at any moment time 𝒕 ∈ 𝕀 on which the cyber-interplay 𝓖 = 𝓖(𝓩) 

implements the interaction 𝓩.  

Proposition 4.1 In a passive attack 𝓕 defined in [6] from 𝑼𝑨𝑷𝑻 against 𝑽, the 

number of resource parts in 𝑼𝑨𝑷𝑻 at a moment 𝒕′ = 𝒕 + ∆𝒕 increased by at least 𝝀 new 

resource parts, say 𝒇𝒓 (𝒓𝒆𝒔𝓜𝑼𝑨𝑷𝑻
+𝓵𝑼𝑨𝑷𝑻+𝟏

(𝑼𝑨𝑷𝑻) ), 𝒇𝒓 (𝒓𝒆𝒔𝓜𝑼𝑨𝑷𝑻
+𝓵𝑼𝑨𝑷𝑻+𝟐

(𝑼𝑨𝑷𝑻) ),…, 

𝒇𝒓 (𝒓𝒆𝒔𝓜𝑼𝑨𝑷𝑻
+𝓵𝑼𝑨𝑷𝑻+𝝀

(𝑼𝑨𝑷𝑻) ), derived from the resource parts 𝒇𝒓(𝒓𝒆𝒔𝜿𝟏
(𝑽)), 

𝒇𝒓(𝒓𝒆𝒔𝜿𝟐
(𝑽)),…,𝒇𝒓(𝒓𝒆𝒔𝜿𝝀

(𝑽)) that existed in the node 𝑽 the moment 𝒕, in such a way that 

the following elementary properties hold: 

i. If the relative valuations of 𝒇𝒓(𝒓𝒆𝒔𝓜𝑽+𝓵𝑽+𝟏
(𝑼) ), 𝒇𝒓(𝒓𝒆𝒔𝓜𝑽+𝓵𝑽+𝟐

(𝑼) ),…, 

𝒇𝒓(𝒓𝒆𝒔𝓜𝑽+𝓵𝑽+𝝀
(𝑼) ) from the viewpoint of the (user(s) of) node 𝑼𝑨𝑷𝑻 at the moment 

𝒕 are (𝒂𝓜𝑽+𝝁𝟏,𝟏
(𝑼𝑨𝑷𝑻⇝𝑽), … , 𝒂𝓜𝑽+𝝁𝟏,𝖓

(𝑼𝑨𝑷𝑻⇝𝑽)),…,(𝒂𝓜𝑽+𝝁𝝀,𝟏
(𝑼𝑨𝑷𝑻⇝𝑽), … , 𝒂𝓜𝑽+𝝁𝝀,𝖓

(𝑼𝑨𝑷𝑻⇝𝑽)) respectively, with 

𝝁𝟏, … , 𝝁𝝀 ∈ {𝟏, 𝟐,… , 𝓵𝑽}, then the resulting valuation vectors 

(𝒂′̂𝓜𝑼𝑨𝑷𝑻
+𝓵𝑼𝑨𝑷𝑻+𝟏,𝟏

(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻) , … , 𝒂′̂𝓜𝑼𝑨𝑷𝑻
+𝓵𝑼𝑨𝑷𝑻+𝟏,𝖓

(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻) ),…,(𝒂′̂𝓜𝑼𝑨𝑷𝑻
+𝓵𝑼𝑨𝑷𝑻+𝝀,𝟏

(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻) , … , 𝒂′̂𝓜𝑼𝑨𝑷𝑻
+𝓵𝑼𝑨𝑷𝑻+𝝀,𝖓

(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻) ) of 

the new resource parts 𝒇𝒓 (𝒓𝒆𝒔𝓜𝑼𝑨𝑷𝑻
+𝓵𝑼𝑨𝑷𝑻+𝟏

(𝑼𝑨𝑷𝑻) ), 𝒇𝒓 (𝒓𝒆𝒔𝓜𝑼𝑨𝑷𝑻
+𝓵𝑼𝑨𝑷𝑻+𝟐

(𝑼𝑨𝑷𝑻) ),…, 

𝒇𝒓 (𝒓𝒆𝒔𝓜𝑼𝑨𝑷𝑻
+𝓵𝑼𝑨𝑷𝑻+𝝀

(𝑼𝑨𝑷𝑻) ) in 𝑼, as evaluated from the viewpoint of the user(s) of 𝑼𝑨𝑷𝑻 

at a next moment 𝒕′ = 𝒕 + ∆𝒕 are equal to 

(𝒂𝓜𝑽+𝝁𝟏,𝟏
(𝑼𝑨𝑷𝑻⇝𝑽), … , 𝒂𝓜𝑽+𝝁𝟏,𝖓

(𝑼𝑨𝑷𝑻⇝𝑽)),…,(𝒂𝓜𝑽+𝝁𝝀,𝟏
(𝑼𝑨𝑷𝑻⇝𝑽), … , 𝒂𝓜𝑽+𝝁𝝀,𝖓

(𝑼𝑨𝑷𝑻⇝𝑽)):  

(𝒂′̂𝓜𝑼𝑨𝑷𝑻
+𝓵𝑼𝑨𝑷𝑻+𝜶,𝟏

(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻) , … , 𝒂′̂𝓜𝑼𝑨𝑷𝑻
+𝓵𝑼𝑨𝑷𝑻+𝜶,𝖓

(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻) ) = (𝒂𝓜𝑽+𝝁𝜶,𝟏
(𝑼𝑨𝑷𝑻⇝𝑽) , … , 𝒂𝓜𝑽+𝝁𝜶,𝖓

(𝑼𝑨𝑷𝑻⇝𝑽)), ∀𝜶 ∈

{𝟏, 𝟐, … , 𝝀}. 

ii. All resulting valuations and vulnerabilities of new resource parts 

𝒇𝒓 (𝒓𝒆𝒔𝓜𝑼𝑨𝑷𝑻
+𝓵𝑼𝑨𝑷𝑻+𝟏

(𝑼𝑨𝑷𝑻) ),…, 𝒇𝒓 (𝒓𝒆𝒔𝓜𝑼𝑨𝑷𝑻
+𝓵𝑼𝑨𝑷𝑻+𝝀

(𝑼𝑨𝑷𝑻) ) in 𝑼𝑨𝑷𝑻 from the viewpoint of 

the user(s) of 𝑽  or any non-APT related node remain equal to 𝟎:  

∀𝒋 ∈ {𝟏, 𝟐, … , 𝖓} 𝒂𝒏𝒅  ∀𝜶 ∈ {𝟏, 𝟐, … , 𝝀} ⟹ 𝒂′𝓜𝑼𝑨𝑷𝑻
+𝓵𝑼𝑨𝑷𝑻+𝜶,𝒋

(𝑽⇝𝑼𝑨𝑷𝑻) = 𝟎, 

∀𝒌 ∈ {𝟏, 𝟐, … ,𝖒} 𝒂𝒏𝒅 ∀𝜶 ∈ {𝟏, 𝟐, … , 𝝀} ⟹ 𝒃′𝓜𝑼𝑨𝑷𝑻
+𝓵𝑼𝑨𝑷𝑻+𝜶,𝒌

(𝑽⇝𝑼𝑨𝑷𝑻) = 𝟎. 
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iii. There is initially at least one resulting valuation 𝒂′𝓜𝑽+𝝀𝜶,𝒋
(𝑼𝑨𝑷𝑻⇝𝑽) of a part 𝒇𝒓(𝒓𝒆𝒔𝜿𝜶

(𝑽)
) in 

𝑽 from the viewpoint of the user(s) of 𝑼𝑨𝑷𝑻 which decreases but for sure this number 

could be gradually increased: Initially  

∃𝒋 ∈ {𝟏, 𝟐, … , 𝖓} 𝒂𝒏𝒅  ∃𝝀𝜶 ∈ {𝓜𝑽 + 𝟏,… ,𝓜𝑽 + 𝓵𝑽}: 𝒂′𝓜𝑽+𝝀𝜶,𝒋
(𝑼𝑨𝑷𝑻⇝𝑽) < 𝒂𝓜𝑽+𝝀𝜶,𝒋

(𝑼𝑨𝑷𝑻⇝𝑽); 

similarly, there is initially at least one vulnerability 𝒃′𝓜𝑽+𝝆𝜶,𝒌
(𝑼𝑨𝑷𝑻⇝𝑽) of part 𝒇𝒓(𝒓𝒆𝒔𝜿𝜶

(𝑽)) 

in 𝑽 from the viewpoint of the user(s) of 𝑼𝑨𝑷𝑻 which increases but for sure this 

number could be gradually increased: Initially 

∃𝒌 ∈ {𝟏, 𝟐,… ,𝖒} 𝒂𝒏𝒅  ∃𝝆𝜶 ∈ {𝓜𝑽 + 𝟏,… ,𝓜𝑽 + 𝓵𝑽}: 𝒃′𝓜𝑽+𝝆𝜶,𝒌
(𝑼⇝𝑽)

> 𝒃𝓜𝑽+𝝆𝜶,𝒌
(𝑼⇝𝑽)

. 

iv. The valuations and vulnerabilities of each part 𝒇𝒓(𝒓𝒆𝒔𝜿𝜶
(𝑽)) in 𝑽 from the viewpoint 

of the user(s) of 𝑽 remain unchanged until the first APT hunting results come up:  

∀𝒋 ∈ {𝟏, 𝟐, … , 𝖓} 𝒂𝒏𝒅  ∀𝝀𝜶 ∈ {𝓜𝑽 + 𝟏,… ,𝓜𝑽 + 𝓵𝑽} ⟹ 𝒂′̂𝓜𝑽+𝝀𝜶,𝒋
(𝑽⇝𝑽) = �̂�𝓜𝑽+𝝀𝜶,𝒋

(𝑽⇝𝑽)
, 

∀𝒌 ∈ {𝟏, 𝟐,… ,𝖒} 𝒂𝒏𝒅  ∀𝝁𝜶 ∈ {𝓜𝑽 + 𝟏,… ,𝓜𝑽 + 𝓵𝑽} ⟹ 𝒃′̂𝓜𝑽+𝓵𝑽+𝝁𝜶,𝒌
(𝑽⇝𝑽) = �̂�𝓜𝑽+𝓵𝑽+𝝁𝜶,𝒌

(𝑽⇝𝑽)
. ■ 

Proposition 4.2 In a passive attack 𝓕 from 𝑼𝑨𝑷𝑻 against 𝑽, the number of resource 

parts in 𝑼𝑨𝑷𝑻 at a moment 𝒕′ = 𝒕 + ∆𝒕 has increased by at least 𝝀 new resource parts, 

say 𝒇𝒓 (𝒓𝒆𝒔𝓜𝑼𝑨𝑷𝑻
+𝓵𝑼𝑨𝑷𝑻+𝟏

(𝑼𝑨𝑷𝑻) ), 𝒇𝒓 (𝒓𝒆𝒔𝓜𝑼𝑨𝑷𝑻
+𝓵𝑼𝑨𝑷𝑻+𝟐

(𝑼𝑨𝑷𝑻) ),…, 𝒇𝒓 (𝒓𝒆𝒔𝓜𝑼𝑨𝑷𝑻
+𝓵𝑼𝑨𝑷𝑻+𝝀

(𝑼𝑨𝑷𝑻) ), 

derived from the resource parts 𝒇𝒓(𝒓𝒆𝒔𝜿𝟏
(𝑽)), 𝒇𝒓(𝒓𝒆𝒔𝜿𝟐

(𝑽)),…,𝒇𝒓(𝒓𝒆𝒔𝜿𝝀
(𝑽)) that existed in 

the node 𝑽 the moment 𝒕, in such a way that the following elementary properties hold. 

i. The (Euclidean) norm ‖𝒂′̂(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)‖:= (∑ ∑ |𝒂′̂𝓜𝑼𝑨𝑷𝑻
+𝝂,𝒋

(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)|
𝟐𝓵𝑼𝑨𝑷𝑻+𝝀

𝜈=1
𝖓
𝑗=1 )

1 2⁄

 of the 

resulting overall valuation in the variant node 𝑼𝑨𝑷𝑻
′ as evaluated from the viewpoint 

of the user(s) of 𝑼𝑨𝑷𝑻 at the next moment 𝒕′ is much greater than the (Euclidean) 

norms  

‖�̂�(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)‖:= (∑ ∑ |�̂�𝓜𝑼𝑨𝑷𝑻
+𝝂,𝒋

(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)|
𝟐

𝓵𝑼
𝜈=1

𝖓
𝑗=1 )

𝟏 𝟐⁄

 and  

‖𝒂(𝑼𝑨𝑷𝑻⇝𝑽)‖:= (∑ ∑ |𝒂𝓜𝑽+𝝂,𝒋
(𝑼𝑨𝑷𝑻⇝𝑽)|

𝟐
𝓵𝑽
𝜈=1

𝖓
𝑗=1 )

𝟏 𝟐⁄

  

of the initial overall valuations in the nodes 𝑼𝑨𝑷𝑻 and 𝑽 as evaluated from the 

viewpoint of the users of 𝑼𝑨𝑷𝑻 at the preceding moment 𝒕:  

‖𝒂′̂(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)‖ ≫ 𝑚𝑎𝑥{‖�̂�(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)‖, ‖𝒂(𝑼𝑨𝑷𝑻⇝𝑽)‖}. 
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ii. The norm ‖𝒂′(𝑼𝑨𝑷𝑻⇝𝑽)‖:= (∑ ∑ |𝒂′𝓜𝑽+𝝂,𝒋
(𝑼𝑨𝑷𝑻⇝𝑽)|

𝟐
𝓵𝑽
𝜈=1

𝖓
𝑗=1 )

1 2⁄

 of the resulting overall 

valuation in the node 𝑽 as evaluated from the viewpoint of the user(s) of 𝑼𝑨𝑷𝑻 at the 

next moment 𝒕′ is much less than the norm ‖𝒂(𝑼𝑨𝑷𝑻⇝𝑽)‖:=

(∑ ∑ |𝒂𝓜𝑽+𝝂,𝒋
(𝑼𝑨𝑷𝑻⇝𝑽)|

𝟐
𝓵𝑽
𝜈=1

𝖓
𝑗=1 )

𝟏 𝟐⁄

 of the initial overall valuation in the node 𝑽 as 

evaluated from the viewpoint of the users of 𝑼𝑨𝑷𝑻 at the preceding moment 𝒕:  

‖𝒂′(𝑼𝑨𝑷𝑻⇝𝑽)‖ ≪ ‖𝒂(𝑼𝑨𝑷𝑻⇝𝑽)‖. 

iii. The norm ‖𝒃′̂(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)‖:= (∑ ∑ |𝒃′̂𝓜𝑼𝑨𝑷𝑻𝑼+𝝀,𝒋
(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)|

𝟐𝓵𝑼𝑨𝑷𝑻+𝝂

𝜆=1
𝖒
𝑗=1 )

1 2⁄

 of the resulting 

overall vulnerability in the variant node 𝑼𝑨𝑷𝑻 as evaluated from the viewpoint of the 

user(s) of 𝑼𝑨𝑷𝑻 at the next moment 𝒕′ is less than the norms 

‖�̂�(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)‖:= (∑ ∑ |�̂�𝓜𝑼𝑨𝑷𝑻
+𝝂,𝒋

(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)|
𝟐

𝓵𝑾
𝜈=1

𝖒
𝑗=1 )

𝟏 𝟐⁄

 and  

‖𝒃(𝑼𝑨𝑷𝑻⇝𝑽)‖:= (∑ ∑ |𝒃𝓜𝑽+𝝂,𝒋
(𝑼𝑨𝑷𝑻⇝𝑽)|

𝟐
𝓵𝑽
𝜈=1

𝖒
𝑗=1 )

𝟏 𝟐⁄

  

of the initial overall vulnerabilities in the nodes 𝑼𝑨𝑷𝑻 and 𝑽 as evaluated from the 

viewpoint of the users of 𝑼𝑨𝑷𝑻 at the preceding moment 𝒕:  

‖𝒃′̂(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)‖ < 𝒎𝒊𝒏{‖�̂�(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)‖, ‖𝒃(𝑼𝑨𝑷𝑻⇝𝑽)‖}. 

iv. The norm ‖𝒃′(𝑼𝑨𝑷𝑻⇝𝑽)‖:= (∑ ∑ |𝒃′𝓜𝑽+𝝂,𝒋
(𝑼𝑨𝑷𝑻⇝𝑽)|

𝟐
𝓵𝑽
𝜈=1

𝖒
𝑗=1 )

1 2⁄

 of the resulting overall 

vulnerability in the node 𝑽 as evaluated from the viewpoint of the users of 𝑼𝑨𝑷𝑻 at 

the next moment 𝒕′ is much greater than the norm ‖𝒃(𝑼𝑨𝑷𝑻⇝𝑽)‖:=

(∑ ∑ |𝒃𝓜𝑼𝑨𝑷𝑻
+𝝂,𝒋

(𝑼𝑨𝑷𝑻⇝𝑽) |
𝟐

𝓵𝑽
𝜈=1

𝖒
𝑗=1 )

𝟏 𝟐⁄

 of the initial overall vulnerability in the node 𝑽 as 

evaluated from the viewpoint of the user(s) of 𝑼𝑨𝑷𝑻 at the preceding moment 𝒕:  

‖𝒃′(𝑼𝑨𝑷𝑻⇝𝑽)‖ ≫ ‖𝒃(𝑼𝑨𝑷𝑻⇝𝑽)‖.■ 

4.2 Active cyber-attacks conducted by APTs 

An attack is active if it is an attack with data transmission to all parties thereby 

acting as a liaison enabling severe compromise. The purpose is to alter system resources 
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or affect their operation. So, in an active attack, an intruder attempts to alter data on the 

target system or data “en route” for the target system. A detailed mathematical 

description of a basic active attack is given in [6]. There are though some potential 

differences between a basic active cyber-attack (conducted by a non- persistent and 

non-sophisticated actor, i.e. hacktivist) and that conducted by an APT. In the following 

paragraphs we describe contextually these differences. The APT entity will be 

presented as 𝑼𝑨𝑷𝑻 

Let 𝑼𝑨𝑷𝑻, 𝑽 ∈ 𝒐𝒃(𝒄𝒚(𝒕)), whenever 𝒕 is in an arbitrary interval 𝕀 = ]𝝈, 𝝉[ ⊂⊂

[𝟎, 𝟏]. Let also  

𝜹𝑼: [𝟎, 𝟏] → ℂ𝖓×𝓴 × ℂ𝖒×𝓴: 𝒕 ↦ 𝜹𝑼(𝒕) = (𝕫𝟏, 𝕨𝟏)(𝒕) and 

 𝜸𝑽: [𝟎, 𝟏] → ℂ𝖓×𝓴 × ℂ𝖒×𝓴: 𝒕 ↦ 𝜸𝑽(𝒕) = (𝕫𝟐, 𝕨𝟐)(𝒕) 

be two supervisory perception curves of 𝑽 and 𝑼𝑨𝑷𝑻 in the node system (𝑽, 𝑼𝑨𝑷𝑻).  

Proposition 4.3 In an active attack 𝓕 from 𝑼𝑨𝑷𝑻 against the (𝝁𝟏, … , 𝝁𝝂) −device 

parts 𝒇𝒓(𝒅𝒆𝒗𝝁𝟏
(𝑽)),…,𝒇𝒓(𝒅𝒆𝒗𝝁𝝂

(𝑽)) of 𝑽 and the (𝜿𝟏, … , 𝜿𝝀) − resource parts 

𝒇𝒓(𝒓𝒆𝒔𝜿𝟏
(𝑽)),…,𝒇𝒓(𝒓𝒆𝒔𝜿𝝀

(𝑽)) of 𝑽, the following elementary properties hold. 

i. All new resource valuations of the offensive node 𝑼𝑨𝑷𝑻 are derived from the set 

of all initial resource valuations of 𝑽, i.e., for any 𝒋 ∈ {𝓜𝑼𝑨𝑷𝑻 + 𝓵𝑼𝑨𝑷𝑻 +

𝟏,… ,𝓜𝑼𝑨𝑷𝑻 + 𝓵𝑼𝑨𝑷𝑻 +𝑵} and any 𝒌 ∈ {𝟏, 𝟐, … , 𝖓}, the new valuations 

𝒂′𝒋,𝒌
(𝑽⇝𝑼𝑨𝑷𝑻) + 𝒊𝒂′̂𝒋,𝒌

(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)
 

are obtained as functions of the initial valuations  

𝒂𝒑,𝒍
(𝑼𝑨𝑷𝑻⇝𝑽) + 𝒊�̂�𝒑,𝒍

(𝑽⇝𝑽)
, 𝒑 ∈ {𝟏, 𝟐, … ,𝓶𝑽,𝓜𝑽 + 𝟏,… ,𝓜𝑽 + 𝓵𝑽} , 𝒍 ∈

{𝟏, 𝟐, … , 𝖓}. 

ii. Similarly, all new resource vulnerabilities of the offensive node 𝑼𝑨𝑷𝑻 are derived 

from the set of all initial resource vulnerabilities of 𝑽, i.e., for any 𝒋 ∈

{𝓜𝑼𝑨𝑷𝑻 + 𝓵𝑼𝑨𝑷𝑻 + 𝟏,… ,𝓜𝑼𝑨𝑷𝑻 + 𝓵𝑼𝑨𝑷𝑻 +𝑵} and any 𝒌 ∈ {𝟏, 𝟐, … , 𝖓}, the 

new vulnerabilities  

𝒃′𝒋,𝒌
(𝑽⇝𝑼𝑨𝑷𝑻) + 𝒊𝒃′̂𝒋,𝒌

(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)
 

are obtained as functions of the initial vulnerabilities  
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𝒃𝒑,𝒍
(𝑼𝑨𝑷𝑻⇝𝑽) + 𝒊�̂�𝒑,𝒍

(𝑽⇝𝑽)
,𝒑 ∈ {𝟏, 𝟐, … ,𝓶𝑽,𝓜𝑽 + 𝟏,… ,𝓜𝑽 + 𝓵𝑽} , 𝒌 ∈

{𝟏, 𝟐, … ,𝖒} . 

iii. Finally, from the viewpoint of the (user(s) of) node 𝑽, all valuations, if possible, 

of 𝑼𝑨𝑷𝑻 remain unchanged, i.e., if 𝒋 ∈ {𝟏, 𝟐, … ,𝓶𝑼𝑨𝑷𝑻 ,𝓜𝑼𝑨𝑷𝑻 +

𝟏,… ,𝓜𝑼𝑨𝑷𝑻 + 𝓵𝑼𝑨𝑷𝑻}, then 𝒂𝒋,𝒌
(𝑽⇝𝑼𝑨𝑷𝑻) = 𝒂′𝒋,𝒌

(𝑽⇝𝑼𝑨𝑷𝑻) for any 𝒌 ∈ {𝟏, 𝟐, … , 𝖓} 

and 𝒃𝒋,𝒌
(𝑽⇝𝑼𝑨𝑷𝑻) = 𝒃′𝒋,𝒌

(𝑽⇝𝑼𝑨𝑷𝑻) for any 𝒌 ∈ {𝟏, 𝟐, … ,𝖒}. ■ 

Proposition 4.4 In an active attack 𝓕 from 𝑼𝑨𝑷𝑻 against the (𝝁𝟏, … , 𝝁𝝂) −device 

parts 𝒇𝒓(𝒅𝒆𝒗𝝁𝟏
(𝑽)),…,𝒇𝒓(𝒅𝒆𝒗𝝁𝝂

(𝑽)) of 𝑽 and the (𝜿𝟏, … , 𝜿𝝀) − resource parts 

𝒇𝒓(𝒓𝒆𝒔𝜿𝟏
(𝑽)),…,𝒇𝒓(𝒓𝒆𝒔𝜿𝝀

(𝑽)) of 𝑽, the following elementary properties hold. 

i. The (Euclidean) norm ‖𝒂′(𝑼𝑨𝑷𝑻⇝𝑽)‖:= (∑ ∑ |𝒂′𝓜𝑽+𝝀,𝒋
(𝑼𝑨𝑷𝑻⇝𝑽)|

𝟐
𝓵𝑽
𝜆=1

𝖓
𝑗=1 )

1 2⁄

 of the 

resulting overall valuation in node 𝑽 as evaluated from the viewpoint of the 

user(s) of 𝑼𝑨𝑷𝑻 at the next moment 𝒕′ is much less than the (Euclidean) norm 

‖𝒂(𝑼𝑨𝑷𝑻⇝𝑽)‖:= (∑ ∑ |𝒂𝓜𝑽+𝝀,𝒋
(𝑼𝑨𝑷𝑻⇝𝑽)|

𝟐
𝓵𝑽
𝜆=1

𝖓
𝑗=1 )

𝟏 𝟐⁄

 of the initial overall valuation in 

𝑽 as evaluated from the viewpoint of the user(s) of 𝑼𝑨𝑷𝑻 at the preceding moment 

𝒕: 

‖𝒂′(𝑼𝑨𝑷𝑻⇝𝑽)‖ ≪ ‖𝒂(𝑼𝑨𝑷𝑻⇝𝑽)‖. 

ii. The (Euclidean) norm ‖𝒃′(𝑼𝑨𝑷𝑻⇝𝑽)‖:= (∑ ∑ |𝒃′𝓜𝑽+𝝀,𝒋
(𝑼𝑨𝑷𝑻⇝𝑽)|

𝟐
𝓵𝑽
𝜆=1

𝖒
𝑗=1 )

1 2⁄

 of the 

resulting overall vulnerability in the node 𝑽 as evaluated from the viewpoint of 

the user(s) of 𝑼𝑨𝑷𝑻 at the next moment 𝒕′ is much greater than the (Euclidean) 

norm ‖𝒃(𝑼𝑨𝑷𝑻⇝𝑽)‖:= (∑ ∑ |𝒃𝓜𝑽+𝝀,𝒋
(𝑼𝑨𝑷𝑻⇝𝑽)|

𝟐
𝓵𝑽
𝜆=1

𝖒
𝑗=1 )

𝟏 𝟐⁄

 of the initial overall 

vulnerability in the node 𝑽 as evaluated from the viewpoint of the user(s) of 𝑼𝑨𝑷𝑻 

at the preceding moment 𝒕: 

‖𝒃′(𝑼𝑨𝑷𝑻⇝𝑽)‖ ≫ ‖𝒃(𝑼𝑨𝑷𝑻⇝𝑽)‖. 

iii. The (Euclidean) norm  

‖𝒂′̂(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)‖:= (∑ {∑ |𝒂′̂𝝀,𝒋
(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)|

𝟐𝓶𝑼𝑨𝑷𝑻

𝜆=1
+ ∑ |𝒂′̂𝓜𝑼𝑨𝑷𝑻

+𝝀,𝒋
(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)|

𝟐𝓵𝑼𝑨𝑷𝑻+𝑵

𝜆=1
}𝖓

𝑗=1 )
1 2⁄
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of the resulting overall valuation in the variant node 𝑼𝑨𝑷𝑻 as evaluated from the 

viewpoint of the user(s) of 𝑼𝑨𝑷𝑻 at the next moment 𝒕′ is much greater than the 

(Euclidean) norms  

‖�̂�(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)‖:= (∑ {∑ |�̂�𝝀,𝒋
(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)|

𝟐𝓶𝑼𝑨𝑷𝑻

𝜆=1
+∑ |�̂�𝓜𝑼𝑨𝑷𝑻

+𝝀,𝒋
(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)|

𝟐
𝓵𝑾
𝜆=1 }𝖓

𝑗=1 )
𝟏 𝟐⁄

 

and 

‖𝒂(𝑼𝑨𝑷𝑻⇝𝑽)‖:= (∑ {∑ |𝒂𝝀,𝒋
(𝑼𝑨𝑷𝑻⇝𝑽)|

𝟐𝓶𝑽
𝜆=1 + ∑ |𝒂𝓜𝑽+𝝀,𝒋

(𝑼𝑨𝑷𝑻⇝𝑽)|
𝟐𝓵𝑽

𝜆=1 }𝖓
𝑗=1 )

𝟏 𝟐⁄

  

of the initial overall valuations in the nodes 𝑼𝑨𝑷𝑻 and 𝑽 as evaluated from the 

viewpoint of the user(s) of 𝑼𝑨𝑷𝑻 at the preceding moment 𝒕: 

‖𝒂′̂(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)‖ ≫ 𝒎𝒂𝒙{‖�̂�(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)‖, ‖𝒂(𝑼𝑨𝑷𝑻⇝𝑽)‖}. 

iv. The (Euclidean) norm ‖𝒃′̂(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)‖:= (∑ ∑ |𝒃′̂𝓜𝑼+𝝀,𝒋
(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)|

𝟐𝓵𝑼𝑨𝑷𝑻+𝑵

𝜆=1
𝖒
𝑗=1 )

1 2⁄

 

of the resulting overall vulnerability in the variant node 𝑼𝑨𝑷𝑻 as evaluated from 

the viewpoint of the user(s) of 𝑼𝑨𝑷𝑻 at the next moment 𝒕′ is less than the 

(Euclidean) norms 

‖�̂�(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)‖:= (∑ ∑ |�̂�𝓜𝑼𝑨𝑷𝑻
+𝝀,𝒋

(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)|
𝟐𝓵𝑼𝑨𝑷𝑻

𝜆=1
𝖒
𝑗=1 )

𝟏 𝟐⁄

 and  

‖𝒃(𝑼𝑨𝑷𝑻⇝𝑽)‖:= (∑ ∑ |𝒃𝓜𝑼𝑨𝑷𝑻
+𝝀,𝒋

(𝑼𝑨𝑷𝑻⇝𝑽) |
𝟐

𝓵𝑽
𝜆=1

𝖒
𝑗=1 )

𝟏 𝟐⁄

  

of the initial overall vulnerabilities in the nodes 𝑼𝑨𝑷𝑻 and 𝑽 as evaluated from 

the viewpoint of the user(s) of 𝑼𝑨𝑷𝑻 at the preceding moment 𝒕: 

‖𝒃′̂(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)‖ < 𝒎𝒊𝒏{‖�̂�(𝑼𝑨𝑷𝑻⇝𝑼𝑨𝑷𝑻)‖, ‖𝒃(𝑼𝑨𝑷𝑻⇝𝑽)‖}. ■ 

5. Mathematical Description of Indications of 

Compromise (IOCs) related to APTs 

So, having examined the more general cases of a passive and active attacks, we 

will try to focus on some IOCs related to APT actors’ activities. 

In order to go further and get the full description of these IOCs, it would be wise 

to mathematically orient and define some further concepts. The sophistication of 

development of any cyber-attack is a critical issue and can be described as follows. 

5.1 Sophistication of APT Cyber Attacks   
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The term “sophistication” of a cyber-attack is often used inconsistently or incorrectly 

by the cyber community, let alone in the cases where a persistent, advanced and 

complex actor (as APT) is involved. Generally, most of the times the term 

“sophistication” is used inadvertently or deliberately. The term, even though it is highly 

important and critical, loses its value when overused, and should instead be employed 

to differentiate exceptional attacks or attackers from the norm (as an APT may be).  

The “sophistication” of a cyber-attack concept is a puzzle of definitions that form 

the big picture. To enter the structural operational status of such a “sophisticated” 

attack puzzle, we assume the derivatives  

𝝋(𝑼𝑨𝑷𝑻⇝𝑽)(𝒕):=
𝝏{𝒂(𝑼𝑨𝑷𝑻⇝𝑽)}

𝝏𝒕
(𝒕) =  

𝝏{(𝒂𝟏
(𝑼𝑨𝑷𝑻⇝𝑽),…𝒂𝒎𝑽

(𝑼𝑨𝑷𝑻⇝𝑽),𝒂𝒎𝑽+𝟏
(𝑼𝑨𝑷𝑻⇝𝑽),…,𝒂𝓜𝑽

(𝑼𝑨𝑷𝑻⇝𝑽),𝒂𝓜𝑽+𝟏

(𝑼𝑨𝑷𝑻⇝𝑽),…,𝒂𝓜𝑽+𝓵𝑽+𝟏

(𝑼𝑨𝑷𝑻⇝𝑽),𝒂𝓜𝑽+𝓵𝑽+𝟏

(𝑼𝑨𝑷𝑻⇝𝑽),…,𝒂𝓜𝑽+𝓛𝑽

(𝑼𝑨𝑷𝑻⇝𝑽))
𝑻

}

𝝏𝒕
(𝒕)  

and  

�̂�(𝑽⇝𝑽)(𝒕):=
𝝏{�̂�(𝑽⇝𝑽)[𝒙𝟏,𝒙𝟐,𝒙𝟑,𝒕 ]}

𝝏𝒕
(𝒕) =  

𝝏{(�̂�𝟏
(𝑽⇝𝑽)

,…�̂�𝒎𝑽
(𝑽⇝𝑽)

,�̂�𝒎𝑽+𝟏
(𝑽⇝𝑽)

,…,�̂�𝓜𝑽

(𝑽⇝𝑽)
,�̂�𝓜𝑽+𝟏
(𝑽⇝𝑽)

,…,�̂�𝓜𝑽+𝓵𝑽+𝟏
(𝑽⇝𝑽)

,�̂�𝓜𝑽+𝓵𝑽+𝟏
(𝑽⇝𝑽)

,…,�̂�𝓜𝑽+𝓛𝑽

(𝑽⇝𝑽)
)
𝑻
}

𝝏𝒕
(𝒕)  

exist in a time interval 𝕀 = ]𝜶, 𝜷[ in the sense of distributions. In such a case, we say 

that the relative effectiveness states 𝒂(𝑼𝑨𝑷𝑻⇝𝑽) = 𝒂(𝑼𝑨𝑷𝑻⇝𝑽)[𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒕 ] ∈ ℝ
𝓀 and 

�̂�(𝑽⇝𝑽) = �̂�(𝑽⇝𝑽)[𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒕 ] ∈ ℝ
𝓀 are two smooth node valuations and the 

distributional derivatives 𝝋(𝑼𝑨𝑷𝑻⇝𝑽)(𝒕) and �̂�(𝑽⇝𝑽)(𝒕) are the rate changes/slopes of 

the valuations 𝒂(𝑼𝑨𝑷𝑻⇝𝑽) and �̂�(𝑽⇝𝑽) respectively, at a point (𝒙𝟏, 𝒙𝟐, 𝒙𝟑 ) of a part 𝑬 

into the node 𝑽 from the viewpoint of the (user(s) of) node 𝑼𝑨𝑷𝑻 and 𝑽, respectively, 

over the time interval 𝕀. Here, as usually, 𝓴 ≔𝓜𝑽 + 𝓛𝑽.  

For 𝜱 = 𝝋, �̂�  and 𝜲,𝜰 ∈ {𝑼𝑨𝑷𝑻, 𝑽}, it is obvious that 

1. If 𝜱(𝜲⇝𝜰)(𝒕) > 𝟎 whenever 𝒕 ∈ 𝕀, then we are situated definitely in the area 

[𝓐𝜲
+(𝜰)](𝕀) of correlated growth for the total valuation of the node 𝜰 as 

evaluated subjectively from the user(s) of 𝜲 over the time set 𝕀 ([5]).  

2. If 𝜱(𝜲⇝𝜰)(𝒕) < 𝟎 whenever 𝒕 ∈ 𝕀, then we are situated definitely in the area 

[𝓐𝜲
−(𝜰)](𝕀) of correlated reduction for the total valuation of the node 𝜰 as 

evaluated subjectively from the user(s) of 𝜲 over the time set 𝕀 ([5]). 
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3. If 𝜱(𝜲⇝𝜰)(𝒕) = 𝟎 whenever 𝒕 ∈ 𝕀, there is no correlated growth or reduction for 

the total valuation of the node 𝜰 as evaluated subjectively from the user(s) of 𝜲 

over the time set 𝕀, due to a multitude of potential reasons.  

By analogy, suppose the derivatives  

𝝍(𝑼𝑨𝑷𝑻⇝𝑽)(𝒕):=
𝝏{𝒃(𝑼𝑨𝑷𝑻⇝𝑽)[𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒕 ]}

𝝏𝒕
(𝒕) = 

𝝏{(𝒃𝟏
(𝑼𝑨𝑷𝑻⇝𝑽),…,𝒃𝒎𝑽

(𝑼𝑨𝑷𝑻⇝𝑽),𝒃𝒎𝑽+𝟏
(𝑼𝑨𝑷𝑻⇝𝑽),…,𝒃𝓜𝑽

(𝑼𝑨𝑷𝑻⇝𝑽),𝒃𝓜𝑽+𝟏

(𝑼𝑨𝑷𝑻⇝𝑽),…,𝒃
𝓜𝑽+𝓵𝑽+𝟏

(𝑼𝑨𝑷𝑻⇝𝑽),𝒃
𝓜𝑽+𝓵𝑽+𝟏

(𝑼𝑨𝑷𝑻⇝𝑽),…,𝒃𝓜𝑽+𝓛𝑽

(𝑼𝑨𝑷𝑻⇝𝑽))
𝑻

}

𝝏𝒕
(𝒕)  

and  

�̂�(𝑽⇝𝑽)(𝒕):=
𝝏{�̂�(𝑽⇝𝑽)[𝒙𝟏,𝒙𝟐,𝒙𝟑,𝒕 ]}

𝝏𝒕
(𝒕) =  

𝝏{(�̂�𝟏
(𝑽⇝𝑽)

,…,�̂�𝒎𝑽
(𝑽⇝𝑽)

,�̂�𝒎𝑽+𝟏
(𝑽⇝𝑽)

,…,�̂�𝓜𝑽

(𝑽⇝𝑽)
,�̂�𝓜𝑽+𝟏
(𝑽⇝𝑽)

,…,�̂�𝓜𝑽+𝓵𝑽+𝟏
(𝑽⇝𝑽)

,�̂�𝓜𝑽+𝓵𝑽+𝟏
(𝑽⇝𝑽)

,…,�̂�𝓜𝑽+𝓛𝑽

(𝑽⇝𝑽)
)
𝑻
}

𝝏𝒕
(𝒕)   

exist in a time interval 𝕀 = ]𝜶, 𝜷[ in the sense of distributions. In such a case, we say 

that the relative effectiveness states 𝒃(𝑼𝑨𝑷𝑻⇝𝑽) = 𝒃(𝑼𝑨𝑷𝑻⇝𝑽)[𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒕 ] ∈ ℝ
𝓀 and 

�̂�(𝑽⇝𝑽) = �̂�(𝑽⇝𝑽)[𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒕 ] ∈ ℝ
𝓀 are two smooth node vulnerabilities and the 

distributional derivatives 𝝍(𝑼𝑨𝑷𝑻⇝𝑽)(𝒕) and �̂�(𝑽⇝𝑽)(𝒕) are the rate changes/slopes of 

the vulnerabilities 𝒃(𝑼𝑨𝑷𝑻⇝𝑽) and �̂�(𝑽⇝𝑽) respectively, at a point (𝒙𝟏, 𝒙𝟐, 𝒙𝟑 ) of a part 

𝑬 into the node 𝑽 from the viewpoint of the (user(s) of) node 𝑼𝑨𝑷𝑻 and 𝑽, respectively, 

over the time interval 𝕀.  

As above, for 𝜳 = 𝝍, �̂�  and 𝜲,𝜰 ∈ {𝑼𝑨𝑷𝑻, 𝑽}, it is obvious that: 

1. If 𝜳(𝜲⇝𝜰)(𝒕) > 𝟎 whenever 𝒕 ∈ 𝕀, then we are situated definitely in the area 

[𝓑𝜲
+(𝜰)](𝕀) of correlated growth for the total vulnerability of the node 𝜰 as 

evaluated subjectively from the user(s) of 𝜲 over the time set 𝕀 ([5]).  

2. If 𝜳(𝜲⇝𝜰)(𝒕) < 𝟎 whenever 𝒕 ∈ 𝕀, then we are situated definitely in the area 

[𝓑𝜲
−(𝜰)](𝕀) of correlated reduction for the total vulnerability of the node 𝜰 as 

evaluated subjectively from the user(s) of 𝜲 over the time set 𝕀 ([5]).  

3. If 𝜳(𝜲⇝𝜰)(𝒕) = 𝟎 whenever 𝒕 ∈ 𝕀, there is no correlated growth or reduction of 

the total vulnerability for node 𝜰 as evaluated subjectively from the user(s) of 

𝜲 over the time set 𝕀, due to a multitude of potential reasons. 

Remark 5.1 Having defined the rate change of valuations and vulnerabilities we can 

proceed to orientation of sophistication in cyber-attacks, definition which will support 

our further posture in this paper. So, if we have one or combination of the following 
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states that declare a slow infection (constituents’ degradation) we assume that there 

should be a suspicion of sophistication �̂�(𝑽⇝𝑽) ≅ 𝟎− and �̂�(𝑽⇝𝑽) ≅ 𝟎+. ∎ 

5.2 APT Hunting Scenario 1    

The APT actor 𝒁𝑨𝑷𝑻 secretly relays and possibly alters the communication 

between two parties/nodes who believe they are directly communicating with each 

other, belongs to active cyber-attacks.  

In this scenario the node 𝒁𝑨𝑷𝑻, that is the APT actor, cyber-interacts between 

nodes 𝑼 and 𝑽 . Actually in this “active” intersection attack, instead of this “normal” 

interaction we experience an active attack from node 𝒁𝑨𝑷𝑻 to either or/and both of other 

nodes using some resources of the other interacted node. In such a case, a family of 

coherent interactions 

𝓕 = {𝒁𝑨𝑷𝑻 = 𝒁𝑨𝑷𝑻(𝒀,𝑿)(𝒕) =

((𝕫𝟏, 𝕨𝟏), (𝕫𝟐,𝕨𝟐), (𝕫𝟏
′ , 𝕨𝟏

′ ), (𝕫𝟐
′ , 𝕨𝟐

′ ))(𝒕) ∈ (ℂ𝖓×𝓴 × ℂ𝖒×𝓴)
𝟒
, 𝒕 ∈ 𝕀}, 

lying in the partial danger sector ℇ = ℇ𝒁𝑨𝑷𝑻→𝑽 to the node 𝑽 from the node 𝒁𝑨𝑷𝑻 during 

the entire time set 𝕀, is a germ of (partial) active attack against the (𝝁𝟏, … , 𝝁𝝂) − 

device parts 𝒇𝒓(𝒅𝒆𝒗𝝁𝟏
(𝑽)), 𝒇𝒓(𝒅𝒆𝒗𝝁𝟐

(𝑽)),…, 𝒇𝒓(𝒅𝒆𝒗𝝁𝝂
(𝑽)) of 𝑽 and the (𝜿𝟏, … , 𝜿𝝀) − 

resource parts 𝒇𝒓(𝒓𝒆𝒔𝜿𝟏
(𝑽)), 𝒇𝒓(𝒓𝒆𝒔𝜿𝟐

(𝑽)),…, 𝒇𝒓(𝒓𝒆𝒔𝜿𝝀
(𝑽)) of 𝑽, during a given time set 

𝕀 ⊂⊂ [𝟎, 𝟏], if, whenever 𝒕 ∈ 𝕀, the pair ((𝕫𝟏, 𝕨𝟏), (𝕫𝟐, 𝕨𝟐)) ∈ (ℂ
𝖓×𝓴 × ℂ𝖒×𝓴)

𝟐
 of 

supervisory resource perceptions of 𝒁𝑨𝑷𝑻 and 𝑽 in the system of nodes 𝒁𝑨𝑷𝑻 and 𝑽 has 

the form  

((𝕫𝟏, 𝕨𝟏), (𝕫𝟐, 𝕨𝟐)) = 

(

 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 

𝒂𝟏,𝟏
(𝒁𝑨𝑷𝑻⇝𝑽) + 𝒊  �̂�𝟏,𝟏

(𝑽⇝𝑽)

⋯

𝒂𝓶𝑽,𝟏
(𝒁𝑨𝑷𝑻⇝𝑽) + 𝒊  �̂�𝓶𝑽,𝟏

(𝑽⇝𝑽)

𝟎

…
⋯
⋯

…

𝒂𝟏,𝖓
(𝒁𝑨𝑷𝑻⇝𝑽) + 𝒊  �̂�𝟏,𝖓

(𝑽⇝𝑽)

⋯

𝒂𝓶𝑽,𝖓
(𝒁𝑨𝑷𝑻⇝𝑽) + 𝒊  �̂�𝓶𝑽,𝖓

(𝑽⇝𝑽)

𝟎
⋯
𝟎

𝒂𝓜𝑽+𝟏,𝟏
(𝒁𝑨𝑷𝑻⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝟏,𝟏

(𝑽⇝𝑽)

⋯
⋯
⋯

⋯
𝟎

𝒂𝓜𝑽+𝟏,𝖓
(𝒁𝑨𝑷𝑻⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝟏,𝖓

(𝑽⇝𝑽)

⋯

𝒂𝓜𝑽+𝓵𝑽,𝟏
(𝒁𝑨𝑷𝑻⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝓵𝑽,𝟏

(𝑽⇝𝑽)

𝟎
⋯
𝟎

⋯
⋯
⋯
⋯

⋯

𝒂𝓜𝑽+𝓵𝑽,𝖓
(𝒁𝑨𝑷𝑻⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝓵𝑽,𝖓

(𝑽⇝𝑽)

𝟎
⋯
𝟎 )

 
 
 
 
 
 
 
 
 
 

, 
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(

 
 
 
 
 
 
 
 
 
 

𝒃𝟏,𝟏
(𝒁𝑨𝑷𝑻⇝𝑽) + 𝒊  �̂�𝟏,𝟏

(𝑽⇝𝑽)

⋯

𝒃𝓶𝑽,𝟏
(𝒁𝑨𝑷𝑻⇝𝑽) + 𝒊  �̂�𝓶𝑽,𝟏

(𝑽⇝𝑽)

𝟎

…
⋯
⋯

𝒃𝟏,𝖒
(𝒁𝑨𝑷𝑻⇝𝑽) + 𝒊  �̂�𝟏,𝖒

(𝑽⇝𝑽)

⋯

𝒃𝓶𝑽,𝖒
(𝒁𝑨𝑷𝑻⇝𝑽) + 𝒊  �̂�𝓶𝑽,𝖒

(𝑽⇝𝑽)

𝟎
⋯
𝟎

𝒃𝓜𝑽+𝟏,𝟏
(𝒁𝑨𝑷𝑻⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝟏,𝟏

(𝑽⇝𝑽)

⋯
⋯
⋯

⋯
𝟎

𝒃𝓜𝑽+𝟏,𝖒
(𝒁𝑨𝑷𝑻⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝟏,𝖒

(𝑽⇝𝑽)

⋯

𝒃𝓜𝑽+𝓵𝑽,𝟏
(𝒁𝑨𝑷𝑻⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝓵𝑽,𝟏

(𝑽⇝𝑽)

𝟎
⋯
𝟎

⋯
⋯
⋯
⋯

⋯

𝒃𝓜𝑽+𝓵𝑽,𝖒
(𝒁𝑨𝑷𝑻⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝓵𝑽,𝖒

(𝑽⇝𝑽)

𝟎
⋯
𝟎 )

 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 

, 

 

(

 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 

𝒂𝟏,𝟏
(𝑽⇝𝒁𝑨𝑷𝑻) + 𝒊  �̂�𝟏,𝟏

(𝒁𝑨𝑷𝑻⇝𝒁𝑨𝑷𝑻)

⋯

𝒂𝓶𝒁𝑨𝑷𝑻
,𝟏

(𝑽⇝𝒁𝑨𝑷𝑻) + 𝒊  �̂�𝓶𝒁𝑨𝑷𝑻
,𝟏

(𝒁𝑨𝑷𝑻⇝𝒁𝑨𝑷𝑻)

𝟎

…
⋯
⋯

𝒂𝟏,𝖓
(𝑽⇝𝒁𝑨𝑷𝑻) + 𝒊  �̂�𝟏,𝖓

(𝒁𝑨𝑷𝑻⇝𝒁𝑨𝑷𝑻)

⋯

𝒂𝓶𝒁𝑨𝑷𝑻
,𝖓

(𝑽⇝𝒁𝑨𝑷𝑻) + 𝒊  �̂�𝓶𝒁𝑨𝑷𝑻
,𝖓

(𝒁𝑨𝑷𝑻⇝𝒁𝑨𝑷𝑻)

𝟎
⋯
𝟎

𝒂𝓜𝒁𝑨𝑷𝑻
+𝟏,𝟏

(𝑽⇝𝒁𝑨𝑷𝑻) + 𝒊  �̂�𝓜𝒁𝑨𝑷𝑻
+𝟏,𝟏

(𝒁𝑨𝑷𝑻⇝𝒁𝑨𝑷𝑻)

⋯
⋯
⋯

⋯
𝟎

𝒂𝓜𝒁𝑨𝑷𝑻
+𝟏,𝖓

(𝑽⇝𝒁𝑨𝑷𝑻) + 𝒊  �̂�𝓜𝒁𝑨𝑷𝑻
+𝟏,𝖓

(𝒁𝑨𝑷𝑻⇝𝒁𝑨𝑷𝑻)

⋯

𝒂𝓜𝒁𝑨𝑷𝑻
+𝓵𝒁𝑨𝑷𝑻 ,𝟏

(𝑽⇝𝒁𝑨𝑷𝑻) + 𝒊  �̂�𝓜𝒁𝑨𝑷𝑻
+𝓵𝒁𝑨𝑷𝑻𝒁,𝟏

(𝒁𝑨𝑷𝑻⇝𝒁𝑨𝑷𝑻)

𝟎
⋯
𝟎

⋯
⋯
⋯
⋯

⋯

𝒂𝓜𝒁𝑨𝑷𝑻
+𝓵𝒁𝑨𝑷𝑻 ,𝖓

(𝑽⇝𝒁𝑨𝑷𝑻) + 𝒊  �̂�𝓜𝒁𝑨𝑷𝑻
+𝓵𝒁𝑨𝑷𝑻 ,𝖓

(𝒁𝑨𝑷𝑻⇝𝒁𝑨𝑷𝑻)

𝟎
⋯
𝟎 )

 
 
 
 
 
 
 
 
 
 

, 

 

(

 
 
 
 
 
 
 
 
 
 

𝒃𝟏,𝟏
(𝑽⇝𝒁𝑨𝑷𝑻) + 𝒊  �̂�𝟏,𝟏

(𝒁𝑨𝑷𝑻⇝𝒁𝑨𝑷𝑻)

⋯

𝒃𝓶𝒁,𝟏
(𝑽⇝𝒁𝑨𝑷𝑻) + 𝒊  �̂�𝓶𝒁𝑨𝑷𝑻

,𝟏

(𝒁𝑨𝑷𝑻⇝𝒁𝑨𝑷𝑻)

𝟎

…

⋯

⋯

𝒃𝟏,𝖒
(𝑽⇝𝒁𝑨𝑷𝑻) + 𝒊  �̂�𝟏,𝖒

(𝒁𝑨𝑷𝑻⇝𝒁𝑨𝑷𝑻)

⋯

𝒃𝓶𝒁𝑨𝑷𝑻
,𝖒

(𝑽⇝𝒁𝑨𝑷𝑻) + 𝒊  �̂�𝓶𝒁𝑨𝑷𝑻
,𝖒

(𝒁𝑨𝑷𝑻⇝𝒁𝑨𝑷𝑻)

𝟎
⋯

𝟎

𝒃𝓜𝒁𝑨𝑷𝑻
+𝟏,𝟏

(𝑽⇝𝒁𝑨𝑷𝑻) + 𝒊  �̂�𝓜𝒁𝑨𝑷𝑻
+𝟏,𝟏

(𝒁𝑨𝑷𝑻⇝𝒁𝑨𝑷𝑻)

⋯

⋯

⋯

⋯

𝟎

𝒃𝓜𝒁𝑨𝑷𝑻
+𝟏,𝖒

(𝑽⇝𝒁𝑨𝑷𝑻) + 𝒊  �̂�𝓜𝒁𝑨𝑷𝑻
+𝟏,𝖒

(𝒁𝑨𝑷𝑻⇝𝒁𝑨𝑷𝑻)

⋯

𝒃𝓜𝒁𝑨𝑷𝑻
+𝓵𝒁𝑨𝑷𝑻 ,𝟏

(𝑽⇝𝒁𝑨𝑷𝑻) + 𝒊  �̂�𝓜𝒁𝑨𝑷𝑻
+𝓵𝒁𝑨𝑷𝑻𝒁,𝟏

(𝒁𝑨𝑷𝑻⇝𝒁𝑨𝑷𝑻)

𝟎
⋯

𝟎

⋯

⋯
⋯

⋯

⋯

𝒃𝓜𝒁𝑨𝑷𝑻
+𝓵𝒁𝑨𝑷𝑻 ,𝖒

(𝑽⇝𝒁𝑨𝑷𝑻) + 𝒊  �̂�𝓜𝒁𝑨𝑷𝑻
+𝓵𝒁𝑨𝑷𝑻 ,𝖒

(𝒁𝑨𝑷𝑻⇝𝒁𝑨𝑷𝑻)

𝟎
⋯

𝟎 )

 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 

 

and is depicted, at a next moment 𝒕′ = 𝒕 + ∆𝒕, at a pair ((𝕫𝟏
′ , 𝕨𝟏

′ ), (𝕫𝟐
′ , 𝕨𝟐

′ )) ∈

(ℂ𝖓×𝓴 × ℂ𝖒×𝓴)
𝟐
 of supervisory resource perceptions of 𝒁𝑨𝑷𝑻 = 𝒁 and 𝑽 having the 

form  

((𝕫𝟏
′ , 𝕨𝟏

′ ), (𝕫𝟐
′ , 𝕨𝟐

′ )) = 
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(

 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 

𝒂′𝟏,𝟏
(𝒁⇝𝑽) + 𝒊  𝒂′̂𝟏,𝟏

(𝑽⇝𝑽)

⋯

𝒂′𝓶𝑽,𝟏
(𝒁⇝𝑽) + 𝒊  𝒂′̂𝓶𝑽,𝟏

(𝑽⇝𝑽)

𝟎

…
⋯
⋯

…

𝒂′𝟏,𝖓
(𝒁⇝𝑽) + 𝒊  𝒂′̂𝟏,𝖓

(𝑽⇝𝑽)

⋯

𝒂′𝓶𝑽,𝖓
(𝒁⇝𝑽) + 𝒊  𝒂′̂𝓶𝑽,𝖓

(𝑽⇝𝑽)

𝟎
⋯
𝟎

𝒂′𝓜𝑽+𝟏,𝟏
(𝒁⇝𝑽) + 𝒊  𝒂′̂𝓜𝑽+𝟏,𝟏

(𝑽⇝𝑽)

⋯
⋯
⋯

⋯
𝟎

𝒂′𝓜𝑽+𝟏,𝖓
(𝒁⇝𝑽) + 𝒊  𝒂′̂𝓜𝑽+𝟏,𝖓

(𝑽⇝𝑽)

⋯

𝒂′𝓜𝑽+𝓵𝑽,𝟏
(𝒁⇝𝑽) + 𝒊  𝒂′̂𝓜𝑽+𝓵𝑽,𝟏

(𝑽⇝𝑽)

𝟎
⋯
𝟎

⋯
⋯
⋯
⋯

⋯

𝒂′𝓜𝑽+𝓵𝑽,𝖓
(𝒁⇝𝑽) + 𝒊  𝒂′̂𝓜𝑽+𝓵𝑽,𝖓

(𝑽⇝𝑽)

𝟎
⋯
𝟎 )

 
 
 
 
 
 
 
 
 

,   

 

(

 
 
 
 
 
 
 
 
 

𝒃′𝟏,𝟏
(𝒁⇝𝑽) + 𝒊  𝒃′̂𝟏,𝟏

(𝑽⇝𝑽)

⋯

𝒃′𝓶𝑽,𝟏
(𝒁⇝𝑽) + 𝒊  𝒃′̂𝓶𝑽,𝟏

(𝑽⇝𝑽)

𝟎

…
⋯
⋯

𝒃′𝟏,𝖒
(𝒁⇝𝑽) + 𝒊  𝒃′̂𝟏,𝖒

(𝑽⇝𝑽)

⋯

𝒃′𝓶𝑽,𝖒
(𝒁⇝𝑽) + 𝒊  𝒃′̂𝓶𝑽,𝖒

(𝑽⇝𝑽)

𝟎
⋯
𝟎

𝒃′𝓜𝑽+𝟏,𝟏
(𝒁⇝𝑽) + 𝒊  𝒃′̂𝓜𝑽+𝟏,𝟏

(𝑽⇝𝑽)

⋯
⋯
⋯

⋯
𝟎

𝒃′𝓜𝑽+𝟏,𝖒
(𝒁⇝𝑽) + 𝒊  𝒃′̂𝓜𝑽+𝟏,𝖒

(𝑽⇝𝑽)

⋯

𝒃′𝓜𝑽+𝓵𝑽,𝟏
(𝒁⇝𝑽) + 𝒊  𝒃′̂𝓜𝑽+𝓵𝑽,𝟏

(𝑽⇝𝑽)

𝟎
⋯
𝟎

⋯
⋯
⋯
⋯

⋯

𝒃′𝓜𝑽+𝓵𝑽,𝖒
(𝒁⇝𝑽) + 𝒊  𝒃′̂𝓜𝑽+𝓵𝑽,𝖒

(𝑽⇝𝑽)

𝟎
⋯
𝟎 )

 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 

, 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

𝒂
′
𝟏,𝟏

(𝑽⇝𝒁)
+ 𝒊  𝒂′̂𝟏,𝟏

(𝒁⇝𝒁)

⋯

𝒂
′
𝓶𝒁 ,𝟏

(𝑽⇝𝒁)
+ 𝒊  𝒂′̂𝓶𝒁 ,𝟏

(𝒁⇝𝒁)

𝟎

…

⋯

⋯

𝒂
′
𝟏,𝖓

(𝑽⇝𝒁)
+ 𝒊  𝒂′̂𝟏,𝖓

(𝒁⇝𝒁)

⋯

𝒂
′
𝓶𝒁 ,𝖓

(𝑽⇝𝒁)
+ 𝒊  𝒂′̂𝓶𝒁 ,𝖓

(𝒁⇝𝒁)

𝟎
⋯

𝟎

𝒂
′
𝓜𝒁+𝟏,𝟏

(𝑽⇝𝒁)
+ 𝒊  𝒂′̂𝒁+𝟏,𝟏

(𝒁⇝𝒁)

⋯

⋯

⋯

⋯

𝟎

𝒂
′
𝓜𝒁+𝟏,𝖓

(𝑽⇝𝒁)
+ 𝒊  𝒂′̂𝓜𝒁+𝟏,𝖓

(𝒁⇝𝒁)

⋯

𝒂
′
𝓜𝒁+𝓵𝒁 ,𝟏

(𝑽⇝𝒁)
+ 𝒊  𝒂′̂𝓜𝒁+𝓵𝒁 ,𝟏

(𝒁⇝𝒁)

𝒂
′
𝓜𝒁+𝓵𝒁+𝟏,𝟏

(𝑽⇝𝒁)
+ 𝒊  𝒂′̂𝓜𝒁+𝓵𝒁+𝟏,𝟏

(𝒁⇝𝒁)
= 𝒂

′
𝓜𝑾+𝟏,𝟏

(𝑽⇝𝒁)
+ 𝒊  𝒂′̂𝓜𝑾+𝟏,𝟏

(𝒁⇝𝒁)

⋯

𝒂
′
𝓜𝒁+𝓵𝒁+𝑵,𝟏

(𝑽⇝𝒁)
+ 𝒊  𝒂′̂𝓜𝒁+𝓵𝒁+𝑵,𝟏

(𝒁⇝𝒁)
= 𝒂

′
𝓜𝑾+𝓵𝑾,𝟏

(𝑽⇝𝒁)
+ 𝒊  𝒂′̂𝓜𝑾+𝓵𝑾,𝟏

(𝒁⇝𝒁)

𝟎
⋯

𝟎

⋯

⋯
⋯

⋯

⋯

𝒂
′
𝓜𝒁+𝓵𝒁 ,𝖓

(𝑽⇝𝒁)
+ 𝒊  𝒂′̂𝓜𝐙+𝓵𝒁,𝖓

(𝒁⇝𝒁)

𝒂
′
𝓜𝒁+𝓵𝒁+𝟏,𝖓

(𝑽⇝𝒁)
+ 𝒊  𝒂′̂𝓜𝒁+𝓵𝒁+𝟏,𝖓

(𝒁⇝𝒁)
= 𝒂

′
𝓜𝑾+𝟏,𝖓

(𝑽⇝𝒁)
+ 𝒊  𝒂′̂𝓜𝑾+𝟏,𝖓

(𝒁⇝𝒁)

⋯

𝒂
′
𝓜𝒁+𝓵𝒁+𝑵,𝖓

(𝑽⇝𝒁)
+ 𝒊  𝒂′̂𝓜𝒁+𝓵𝒁+𝑵,𝖓

(𝒁⇝𝒁)
= 𝒂

′
𝓜𝑾+𝓵𝑾,𝖓

(𝑽⇝𝒁)
+ 𝒊  𝒂′̂𝓜𝑾+𝓵𝑾,𝖓

(𝒁⇝𝒁)

𝟎
⋯

𝟎 )

 
 
 
 
 
 
 
 
 
 
 
 
 

, 
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(

 
 
 
 
 
 
 
 
 
 
 
 
 

𝒃′𝟏,𝟏
(𝑽⇝𝒁)

+ 𝒊  𝒃′̂𝟏,𝟏
(𝒁⇝𝒁)

⋯

𝒃′𝓶𝑽 ,𝟏

(𝑽⇝𝒁)
+ 𝒊  𝒃′̂𝓶𝑽 ,𝟏

(𝒁⇝𝒁)

𝟎

…

⋯

⋯

𝒃′𝟏,𝖒
(𝑽⇝𝒁)

+ 𝒊  𝒃′̂𝟏,𝖒
(𝒁⇝𝒁)

⋯

𝒃′𝓶𝑽 ,𝖒

(𝑽⇝𝒁)
+ 𝒊  𝒃′̂𝓶𝑽 ,𝖒

(𝒁⇝𝒁)

𝟎
⋯

𝟎

𝒃′𝓜𝑽+𝟏,𝟏

(𝑽⇝𝒁)
+ 𝒊  𝒃′̂𝓜𝑽+𝟏,𝟏

(𝒁⇝𝒁)

⋯

⋯

⋯

⋯

𝟎

𝒃′𝓜𝑽+𝟏,𝖒

(𝑽⇝𝒁)
+ 𝒊  𝒃′̂𝓜𝑽+𝟏,𝖒

(𝒁⇝𝒁)

⋯

𝒃′𝓜𝑽+𝓵𝑽,𝟏

(𝑽⇝𝒁)
+ 𝒊  𝒃′̂𝓜𝑽+𝓵𝑽,𝟏

(𝒁⇝𝒁)

𝒃
′
𝓜𝒁+𝓵𝒁+𝟏,𝟏

(𝑽⇝𝒁)
+ 𝒊  𝒃′̂𝓜𝒁+𝓵𝒁+𝟏,𝟏

(𝒁⇝𝒁)
= 𝒃

′
𝓜𝑼+𝟏,𝟏

(𝑽⇝𝑼)
+ 𝒊  𝒃′̂𝓜𝑼+𝟏,𝟏

(𝒁⇝𝑼)

⋯

𝒃
′
𝓜𝒁+𝓵𝒁+𝑵,𝟏

(𝑽⇝𝒁)
+ 𝒊  𝒃′̂𝓜𝒁+𝓵𝒁+𝑵,𝟏

(𝒁⇝𝒁)
= 𝒃

′
𝓜𝑼+𝓵𝑼,𝟏

(𝑽⇝𝑼)
+ 𝒊  𝒃′̂𝓜𝑼+𝓵𝑼,𝟏

(𝒁⇝𝑼)

𝟎
⋯

𝟎

⋯

⋯
⋯

⋯

⋯

𝒃′𝓜𝑽+𝓵𝑽 ,𝖒

(𝑽⇝𝒁)
+ 𝒊  𝒃′̂𝓜𝑽+𝓵𝑽 ,𝖒

(𝒁⇝𝒁)

𝒃
′
𝓜𝒁+𝓵𝒁+𝟏,𝖒

(𝑽⇝𝒁)
+ 𝒊  𝒃′̂𝓜𝒁+𝓵𝒁+𝟏,𝖒

(𝒁⇝𝒁)
= 𝒃

′
𝓜𝑼+𝟏,𝖓

(𝑽⇝𝑼)
+ 𝒊  𝒃′̂𝓜𝑼+𝟏,𝖓

(𝒁⇝𝑼)

⋯

𝒃
′
𝓜𝒁+𝓵𝒁+𝑵,𝖒

(𝑽⇝𝒁)
+ 𝒊  𝒃′̂𝓜𝒁+𝓵𝒁+𝑵,𝖒

(𝒁⇝𝒁)
= 𝒃

′
𝓜𝑼+𝓵𝑼,𝖓

(𝑽⇝𝑼)
+ 𝒊  𝒃′̂𝓜𝑼+𝓵𝑼,𝖓

(𝒁⇝𝑼)

𝟎
⋯

𝟎 )

 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

With exactly the same way, this attack can be conducted against 𝑼 node without the 

knowledge of node 𝑽. Most of the times the sophistication of this attack is low to 

medium due to active orientation of this attack. 

It is obvious that if the nodes have smooth valuations and smooth vulnerabilities, the 

following states applied during this attack:  

𝝋(𝑼⇝𝑽)(𝒕), �̂�(𝑽⇝𝑽)(𝒕) 𝝍(𝑼⇝𝑽)(𝒕), �̂�(𝑽⇝𝑽)(𝒕)  

𝝋(𝑼⇝𝑽)(𝒕) < 0 𝝍(𝑼⇝𝑽)(𝒕) > 0 

�̂�(𝑽⇝𝑽)(𝒕) < 0 �̂�(𝑽⇝𝑽)(𝒕) > 0 

𝝋(𝑽⇝𝑼)(𝒕) < 0 𝝍(𝑽⇝𝑼)(𝒕) > 0 

�̂�(𝑼⇝𝑼)(𝒕) < 𝟎 �̂�(𝑼⇝𝑼)(𝒕) > 0 

𝝋(𝒁𝑨𝑷𝑻⇝𝑽)(𝒕) < 0 𝝍(𝒁𝑨𝑷𝑻⇝𝑽)(𝒕) > 0 

𝝋(𝑽⇝𝒁𝑨𝑷𝑻)(𝒕) > 0 𝝍(𝑽⇝𝒁𝑨𝑷𝑻)(𝒕) < 0 

�̂�(𝒁𝑨𝑷𝑻⇝𝒁𝑨𝑷𝑻)(𝒕) > 0 �̂�(𝒁𝑨𝑷𝑻⇝𝒁𝑨𝑷𝑻)(𝒕) < 0 

𝝋(𝒁𝑨𝑷𝑻⇝𝑼)(𝒕) < 0 𝝍(𝒁𝑨𝑷𝑻⇝𝑼)(𝒕) > 0 

𝝋(𝑼⇝𝒁𝑨𝑷𝑻)(𝒕) > 0 𝝍(𝑼⇝𝒁𝑨𝑷𝑻)(𝒕) < 0 

 

5.3 APT Hunting Scenario 2    

This second scenario APT hunting is a passive attack that consists in the 

monitoring of Cyber activity, often by covert means, escalates as follows. A family of 

coherent interactions  
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𝓕 = {𝓩 = 𝓩(𝒀,𝑿)(𝒕) = ((𝕫𝟏, 𝕨𝟏), (𝕫𝟐, 𝕨𝟐), (𝕫𝟏
′ , 𝕨𝟏

′ ), (𝕫𝟐
′ , 𝕨𝟐

′ ))(𝒕) ∈ 

(ℂ𝖓×𝓴 × ℂ𝖒×𝓴)
𝟒
, 𝒕 ∈ 𝕀}, 

lying in (a partial danger sector ℇ = ℇ𝑼→𝑽 to) the node 𝑽 from the node 𝒁𝑨𝑷𝑻 = 𝒁 

during the entire time set 𝕀, is a germ of (partial) passive attack from an intermediate 

node 𝒁 against the (𝜿𝟏, … , 𝜿𝝀) − resource parts 𝒇𝒓(𝒓𝒆𝒔𝜿𝟏
(𝑽)), 

𝒇𝒓(𝒓𝒆𝒔𝜿𝟐
(𝑽)),…, 𝒇𝒓(𝒓𝒆𝒔𝜿𝝀

(𝑽)) of 𝑽, during a given time subset 𝕀 ⊂⊂ [𝟎, 𝟏], if, whenever 

𝒕 ∈ 𝕀, the pair ((𝕫𝟏, 𝕨𝟏), (𝕫𝟐, 𝕨𝟐)) ∈ (ℂ
𝖓×𝓴 × ℂ𝖒×𝓴)

𝟐
 of supervisory resource 

perceptions of 𝑼 and 𝑽 in the system of nodes 𝑼 and 𝑽 has the form 

((𝕫𝟏, 𝕨𝟏), (𝕫𝟐,𝕨𝟐)) =  

(

 
 
 
 
 
 
 

(

 
 
 
 
 
 

(

 
 
 
 
 
 

𝟎 ⋯ 𝟎
⋯
𝟎

𝒂𝓜𝑽+𝟏,𝟏
(𝒁⇝𝑽)

+ 𝒊  �̂�𝓜𝑽+𝟏,𝟏
(𝑽⇝𝑽)

⋯
⋯
⋯

⋯
𝟎

𝒂𝓜𝑽+𝟏,𝖓
(𝒁⇝𝑽)

+ 𝒊  �̂�𝓜𝑽+𝟏,𝖓
(𝑽⇝𝑽)

⋯

𝒂𝓜𝑽+𝓵𝑽,𝟏
(𝒁⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝓵𝑽,𝟏

(𝑽⇝𝑽)

𝟎
⋯
𝟎

⋯
⋯
⋯
⋯

⋯

𝒂𝓜𝑽+𝓵𝑽,𝖓
(𝒁⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝓵𝑽,𝖓

(𝑽⇝𝑽)

𝟎
⋯
𝟎 )

 
 
 
 
 
 

, 

 

(

 
 
 
 
 
 

𝟎 ⋯ 𝟎
⋯
𝟎

𝒃𝓜𝑽+𝟏,𝟏
(𝒁⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝟏,𝟏

(𝑽⇝𝑽)

⋯
⋯
⋯

⋯
𝟎

𝒃𝓜𝑽+𝟏,𝖒
(𝒁⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝟏,𝖒

(𝑽⇝𝑽)

⋯

𝒃𝓜𝑽+𝓵𝑽,𝟏
(𝒁⇝𝑽)

+ 𝒊  �̂�𝓜𝑽+𝓵𝑽,𝟏
(𝑽⇝𝑽)

𝟎
⋯
𝟎

⋯
⋯
⋯
⋯

⋯

𝒃𝓜𝑽+𝓵𝑽,𝖒
(𝒁⇝𝑽)

+ 𝒊  �̂�𝓜𝑽+𝓵𝑽,𝖒
(𝑽⇝𝑽)

𝟎
⋯
𝟎 )

 
 
 
 
 
 

)

 
 
 
 
 
 

, 

 

(

 
 
 
 
 
 

(

 
 
 
 
 
 

𝟎 ⋯ 𝟎
⋯
𝟎

𝒂𝓜𝒁+𝟏,𝟏
(𝑽⇝𝒁) + 𝒊  �̂�𝓜𝒁+𝟏,𝟏

(𝒁⇝𝒁)

⋯
⋯
⋯

⋯
𝟎

𝒂𝓜𝒁+𝟏,𝖓
(𝑽⇝𝒁) + 𝒊  �̂�𝓜𝒁+𝟏,𝖓

(𝒁⇝𝒁)

⋯

𝒂𝓜𝒁+𝓵𝒁,𝟏
(𝑽⇝𝒁)

+ 𝒊  �̂�𝓜𝒁+𝓵𝒁,𝟏
(𝒁⇝𝒁)

𝟎
⋯
𝟎

⋯
⋯
⋯
⋯

⋯

𝒂𝓜𝒁+𝓵𝒁,𝖓
(𝑽⇝𝒁)

+ 𝒊  �̂�𝓜𝒁+𝓵𝒁,𝖓
(𝒁⇝𝒁)

𝟎
⋯
𝟎 )

 
 
 
 
 
 

, 
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(

 
 
 
 
 
 

𝟎 ⋯ 𝟎
⋯

𝟎

𝒃𝓜𝒁+𝟏,𝟏
(𝑽⇝𝒁)

+ 𝒊  �̂�𝓜𝒁+𝟏,𝟏

(𝒁⇝𝒁)

⋯

⋯

⋯

⋯

𝟎

𝒃𝓜𝒁+𝟏,𝖒
(𝑽⇝𝒁)

+ 𝒊  �̂�𝓜𝒁+𝟏,𝖒

(𝒁⇝𝒁)

⋯

𝒃𝓜𝒁+𝓵𝒁,𝟏
(𝑽⇝𝒁)

+ 𝒊  �̂�𝓜𝒁+𝓵𝒁,𝟏

(𝒁⇝𝒁)

𝟎
⋯

𝟎

⋯

⋯
⋯

⋯

⋯

𝒃𝓜𝒁+𝓵𝒁,𝖒
(𝑽⇝𝒁)

+ 𝒊  �̂�𝓜𝒁+𝓵𝒁,𝖒

(𝒁⇝𝒁)

𝟎
⋯

𝟎 )

 
 
 
 
 
 

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 

 

and is depicted, at a next moment 𝒕′ = 𝒕 + ∆𝒕, at a pair ((𝕫𝟏
′ , 𝕨𝟏

′ ), (𝕫𝟐
′ , 𝕨𝟐

′ )) ∈

(ℂ𝖓×𝓴 × ℂ𝖒×𝓴)
𝟐
 of supervisory resource perceptions of 𝒁 and 𝑽 having the form  

 

((𝕫𝟏
′ , 𝕨𝟏

′ ), (𝕫𝟐
′ , 𝕨𝟐

′ )) = 

(

 
 
 
 
 
 
 

(

 
 
 
 
 
 

(

 
 
 
 
 
 

𝟎 ……… 𝟎
⋯
𝟎

𝒂′𝓜𝑽+𝟏,𝟏
(𝒁⇝𝑽) + 𝒊  𝜷′̂𝓜𝑽+𝟏,𝟏

(𝑽⇝𝑽)
………

⋯
𝟎

𝒂′𝓜𝑽+𝟏,𝖓
(𝒁⇝𝑽) + 𝒊  𝒂′̂𝓜𝑽+𝟏,𝖓

(𝑽⇝𝑽)

⋯

𝒂′𝓜𝑽+𝓵𝑽,𝟏
(𝒁⇝𝑽)

+ 𝒊  𝒂′̂𝓜𝑽+𝓵𝑽,𝟏
(𝑽⇝𝑽)

𝟎
⋯
𝟎

………

⋯

𝒂′𝓜𝑽+𝓵𝑽,𝖓
(𝒁⇝𝑽)

+ 𝒊  𝒂′̂𝓜𝑽+𝓵𝑽,𝖓
(𝑽⇝𝑽)

𝟎
⋯
𝟎 )

 
 
 
 
 
 

, 

 

(

 
 
 
 
 
 

𝟎 ……… 𝟎
⋯
𝟎

𝒃′𝓜𝑽+𝟏,𝟏
(𝒁⇝𝑽)

+ 𝒊  𝒃′̂𝓜𝑽+𝟏,𝟏
(𝑽⇝𝑽)

………

⋯
𝟎

𝒃′𝓜𝑽+𝟏,𝖒
(𝒁⇝𝑽)

+ 𝒊  𝒃′̂𝓜𝑽+𝟏,𝖒
(𝑽⇝𝑽)

⋯

𝒃′𝓜𝑽+𝓵𝑽,𝟏
(𝒁⇝𝑽) + 𝒊  𝒃′̂𝓜𝑽+𝓵𝑽,𝟏

(𝑽⇝𝑽)

𝟎
⋯
𝟎

………

⋯

𝒃′𝓜𝑽+𝓵𝑽,𝖒
(𝒁⇝𝑽) + 𝒊  𝒃′̂𝓜𝑽+𝓵𝑽,𝖒

(𝑽⇝𝑽)

𝟎
⋯
𝟎 )

 
 
 
 
 
 

)

 
 
 
 
 
 

, 

 

(

 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 

𝟎 ……… 𝟎
⋯
𝟎

𝒂′𝓜𝒁+𝟏,𝟏
(𝑽⇝𝒁)

+ 𝒊  𝒂′̂𝓜𝒁+𝟏,𝟏
(𝒁⇝𝒁)

………

⋯
𝟎

𝒂′𝓜𝒁+𝟏,𝖓
(𝑽⇝𝒁)

+ 𝒊  𝒂′̂𝓜𝒁+𝟏,𝖓
(𝒁⇝𝒁)

⋯

𝒂′𝓜𝒁+𝓵𝒁,𝟏
(𝑽⇝𝒁)

+ 𝒊  𝒂′̂𝓜𝒁+𝓵𝒁,𝟏
(𝒁⇝𝒁)

𝒂′𝓜𝒁+𝓵𝒁+𝟏,𝟏
(𝑽⇝𝒁)

+ 𝒊  𝒂′̂𝓜𝒁+𝓵𝒁+𝟏,𝟏
(𝒁⇝𝒁)

⋯

𝒂′𝓜𝒁+𝓵𝒁+𝝂,𝟏
(𝑽⇝𝒁)

+ 𝒊  𝒂′̂𝓜𝒁+𝓵𝒁+𝝂,𝟏
(𝒁⇝𝒁)

𝟎
⋯
𝟎

………

⋯

𝒂′𝓜𝒁+𝓵𝒁,𝖓
(𝑽⇝𝒁)

+ 𝒊  𝒂′̂𝓜𝒁+𝓵𝒁,𝖓
(𝒁⇝𝒁)

𝒂′𝓜𝒁+𝓵𝒁+𝟏,𝖓
(𝑽⇝𝒁)

+ 𝒊  𝒂′̂𝓜𝒁+𝓵𝒁+𝟏,𝖓
(𝒁⇝𝒁)

⋯

𝒂′𝓜𝒁+𝓵𝒁+𝝂,𝖓
(𝑽⇝𝒁)

+ 𝒊  𝒂′̂𝓜𝒁+𝓵𝒁+𝝂,𝖓
(𝒁⇝𝒁)

𝟎
⋯
𝟎 )

 
 
 
 
 
 
 
 
 
 

, 
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(

 
 
 
 
 
 
 
 
 
 

𝟎 ……… 𝟎
⋯
𝟎

𝒃′𝓜𝒁+𝟏,𝟏
(𝑽⇝𝒁)

+ 𝒊  𝒃′̂𝓜𝒁+𝟏,𝟏

(𝒁⇝𝒁)
………

⋯
𝟎

𝒃′𝓜𝒁+𝟏,𝖓
(𝑽⇝𝒁)

+ 𝒊  𝒃′̂𝓜𝒁+𝟏,𝖓

(𝒁⇝𝒁)

⋯

𝒃′𝓜𝒁+𝓵𝒁,𝟏
(𝑽⇝𝒁)

+ 𝒊  𝒃′̂𝓜𝒁+𝓵𝒁,𝟏

(𝒁⇝𝒁)

𝒃′𝓜𝒁+𝓵𝒁+𝟏,𝟏
(𝑽⇝𝒁)

+ 𝒊  𝒃′̂𝓜𝒁+𝓵𝒁+𝟏,𝟏

(𝒁⇝𝒁)

⋯

𝒃′𝓜𝒁+𝓵𝒁+𝝂,𝟏
(𝑽⇝𝒁)

+ 𝒊  𝒃′̂𝓜𝒁+𝓵𝒁+𝝂,𝟏

(𝒁⇝𝒁)

𝟎
⋯
𝟎

………

⋯

𝒃′𝓜𝒁+𝓵𝒁,𝖓
(𝑽⇝𝒁)

+ 𝒊  𝒃′̂𝓜𝒁+𝓵𝒁,𝖓

(𝒁⇝𝒁)

𝒃′𝓜𝒁+𝓵𝒁+𝟏,𝖓
(𝑽⇝𝒁)

+ 𝒊  𝒃′̂𝓜𝒁+𝓵𝒁+𝟏,𝖓

(𝒁⇝𝒁)

⋯

𝒃′𝓜𝒁+𝓵𝒁+𝝂,𝖓
(𝑽⇝𝒁)

+ 𝒊  𝒃′̂𝓜𝒁+𝓵𝒁+𝝂,𝖓

(𝒁⇝𝒁)

𝟎
⋯
𝟎 )

 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 

. 

 

With exactly the same way, this attack can be conducted against 𝑼 node without the 

knowledge of node 𝑽. Most of the times the sophistication of this attack is medium to 

high due to “passive” orientation of this.  

Specifically, during this APT attack the following states applied: 

 

𝝋(𝑼⇝𝑽)(𝒕), �̂�(𝑽⇝𝑽)(𝒕) 𝝍(𝑼⇝𝑽)(𝒕)𝝍𝝋, �̂�(𝑽⇝𝑽)(𝒕) 𝝍𝒄 

𝝋(𝑼⇝𝑽)(𝒕) = 0 𝝍(𝑼⇝𝑽)(𝒕) = 0 

�̂�(𝑽⇝𝑽)(𝒕) = 0 �̂�(𝑽⇝𝑽)(𝒕) = 0 

𝝋(𝑽⇝𝑼)(𝒕) = 0 𝝍(𝑽⇝𝑼)(𝒕) = 0 

�̂�(𝑼⇝𝑼)(𝒕) = 𝟎 �̂�(𝑼⇝𝑼)(𝒕) = 0 

𝝋(𝒁⇝𝑽)(𝒕) < 0 𝝍(𝒁⇝𝑽)(𝒕) > 0 

𝝋(𝑽⇝𝒁)(𝒕) = 0 𝝍(𝑽⇝𝒁)(𝒕) = 0 

�̂�(𝒁⇝𝒁)(𝒕) > 0 �̂�(𝒁⇝𝒁)(𝒕) < 0 

𝝋(𝒁⇝𝑼)(𝒕) < 0 𝝍(𝒁⇝𝑼)(𝒕) > 0 

𝝋(𝑼⇝𝒁)(𝒕) = 0 𝝍(𝑼⇝𝒁)(𝒕) = 0 

5.4 APT Hunting Scenario 3    

In this scenario we actually have a highly sophisticated attack where intruder gains 

access to a device/system to which he has no right for access. Again here the node 𝑼 is 

the APT actor that conducts the attack. During this attack the following general form 

of cyber-effect applies [5]:  

𝒈 = 𝒈𝒕: 𝓠𝟓
(𝑽)(𝑼)(𝒕) → 𝓟𝟏𝟏

(𝑼)(𝑽)(𝒕′) 

where 𝓠𝟓
(𝑽)(𝑼)(𝒕) and 𝓟𝟏𝟏

(𝑼)(𝑽)(𝒕′) are the combinatorial triplets  
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𝓠𝟓
(𝑽)(𝑼)(𝒕) = (𝕯(𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏)(𝑼), 𝓢𝑽𝕯

(𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏)(𝑼),𝓤𝑽𝕯
(𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏)(𝑼)) and 

𝓟𝟏𝟏
(𝑼)(𝑽)(𝒕′) = (𝕯𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆

(𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏)(𝑽), 𝓢𝑼𝕯𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆
(𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏)(𝑽),𝓤𝑼𝕯𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆

(𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏)(𝑽) ),  

respectively ([5]). 

In such a case, a family of coherent interactions 

𝓕 = {𝓩 = 𝓩(𝒀,𝑿)(𝒕) = ((𝕫𝟏, 𝕨𝟏), (𝕫𝟐, 𝕨𝟐), (𝕫𝟏
′ , 𝕨𝟏

′ ), (𝕫𝟐
′ , 𝕨𝟐

′ ))(𝒕) ∈ 

(ℂ𝖓×𝓴 × ℂ𝖒×𝓴)
𝟒
, 𝒕 ∈ 𝕀}, 

lying in (a partial danger sector ℇ = ℇ𝑼→𝑽 to) the node 𝑽 from the node 𝑼 during the 

entire time set 𝕀, is a germ of (partial) access attack against the (𝝁𝟏, … , 𝝁𝝂) − device 

parts 𝒇𝒓(𝒅𝒆𝒗𝝁𝟏
(𝑽)), 𝒇𝒓(𝒅𝒆𝒗𝝁𝟐

(𝑽)),…, 𝒇𝒓(𝒅𝒆𝒗𝝁𝝂
(𝑽)) of 𝑽 during a given time subset 𝕀 ⊂⊂

[𝟎, 𝟏], if, whenever 𝒕 ∈ 𝕀, the pair ((𝕫𝟏, 𝕨𝟏), (𝕫𝟐,𝕨𝟐)) ∈ (ℂ
𝖓×𝓴 × ℂ𝖒×𝓴)

𝟐
 of 

supervisory resource perceptions of 𝑼 and 𝑽 in the system of nodes 𝑼 and 𝑽 has the 

form  

((𝕫𝟏, 𝕨𝟏), (𝕫𝟐, 𝕨𝟐)) = 

 

(

 
 
 
 

(

 
 
 
 

(

 
 
 

𝒂𝟏,𝟏
(𝑾⇝𝑽) + 𝒊  �̂�𝟏,𝟏

(𝑽⇝𝑽)

⋯

𝒂𝓶𝑽,𝟏
(𝑾⇝𝑽) + 𝒊  �̂�𝓶𝑽,𝟏

(𝑽⇝𝑽)

𝟎

…
⋯
⋯

…

𝒂𝟏,𝖓
(𝑾⇝𝑽)

+ 𝒊  �̂�𝟏,𝖓
(𝑽⇝𝑽)

⋯

𝒂𝓶𝑽,𝖓
(𝑾⇝𝑽) + 𝒊  �̂�𝓶𝑽,𝖓

(𝑽⇝𝑽)

𝟎
⋯
𝟎

⋯
𝟎 )

 
 
 
, 

 

(

 
 
 

𝒃𝟏,𝟏
(𝑼⇝𝑽)

+ 𝒊  �̂�𝟏,𝟏
(𝑽⇝𝑽)

⋯

𝒃𝓶𝑽,𝟏
(𝑼⇝𝑽) + 𝒊  �̂�𝓶𝑽,𝟏

(𝑽⇝𝑽)

𝟎

…
⋯
⋯

𝒃𝟏,𝖒
(𝑼⇝𝑽) + 𝒊  �̂�𝟏,𝖒

(𝑽⇝𝑽)

⋯

𝒃𝓶𝑽,𝖒
(𝑼⇝𝑽) + 𝒊  �̂�𝓶𝑽,𝖒

(𝑽⇝𝑽)

𝟎
⋯
𝟎

⋯
⋯

⋯
𝟎 )

 
 
 

)

 
 
 
 

, 

 

(

 
 
 
 

(

 
 
 

𝒂𝟏,𝟏
(𝑽⇝𝑼) + 𝒊  �̂�𝟏,𝟏

(𝑼⇝𝑼)

⋯

𝒂𝓶𝑼,𝟏
(𝑽⇝𝑼)

+ 𝒊  �̂�𝓶𝑼,𝟏
(𝑼⇝𝑼)

𝟎

…
⋯
⋯

𝒂𝟏,𝖓
(𝑽⇝𝑼) + 𝒊  �̂�𝟏,𝖓

(𝑼⇝𝑼)

⋯

𝒂𝓶𝑼,𝖓
(𝑽⇝𝑼)

+ 𝒊  �̂�𝓶𝑼,𝖓
(𝑾⇝𝑾)

𝟎
⋯
𝟎

⋯
⋯

⋯
𝟎 )

 
 
 
, 
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(

 
 
 

𝒃𝟏,𝟏
(𝑽⇝𝑼)

+ 𝒊  �̂�𝟏,𝟏
(𝑼⇝𝑼)

⋯

𝒃𝓶𝑼,𝟏
(𝑽⇝𝑼)

+ 𝒊  �̂�𝓶𝑼,𝟏

(𝑼⇝𝑼)

𝟎

…

⋯

⋯

𝒃𝟏,𝖒
(𝑽⇝𝑼)

+ 𝒊  �̂�𝟏,𝖒
(𝑼⇝𝑼)

⋯

𝒃𝓶𝑼,𝖒
(𝑽⇝𝑼) + 𝒊  �̂�𝓶𝑼,𝖒

(𝑼⇝𝑼)

𝟎
⋯

𝟎

⋯

⋯

⋯

𝟎 )

 
 
 

)

 
 
 
 

)

 
 
 
 

 

and is depicted, at a next moment 𝒕′ = 𝒕 + ∆𝒕, at a pair ((𝕫𝟏
′ , 𝕨𝟏

′ ), (𝕫𝟐
′ , 𝕨𝟐

′ )) ∈

(ℂ𝖓×𝓴 × ℂ𝖒×𝓴)
𝟐
 of supervisory resource perceptions of 𝑼 and 𝑽 having the form  

((𝕫𝟏
′ , 𝕨𝟏

′ ), (𝕫𝟐
′ , 𝕨𝟐

′ )) = 

(

 
 
 
 
 

(

 
 
 
 
 

(

 
 
 
 

𝒂′𝟏,𝟏
(𝑼⇝𝑽)

+ 𝒊  𝒂′̂𝟏,𝟏
(𝑽⇝𝑽)

⋯

𝒂′𝓶𝑽,𝟏
(𝑼⇝𝑽)

+ 𝒊  𝒂′̂𝓶𝑽,𝟏
(𝑽⇝𝑽)

𝟎

…
⋯
⋯

…

𝒂′𝟏,𝖓
(𝑼⇝𝑽)

+ 𝒊  𝒂′̂𝟏,𝖓
(𝑽⇝𝑽)

⋯

𝒂′𝓶𝑽,𝖓
(𝑼⇝𝑽)

+ 𝒊  𝒂′̂𝓶𝑽,𝖓
(𝑽⇝𝑽)

𝟎
⋯
𝟎

⋯
⋯

⋯
𝟎

)

 
 
 
 

, 

 

(

 
 
 
 

𝒃′𝟏,𝟏
(𝑼⇝𝑽)

+ 𝒊  𝒃′̂𝟏,𝟏
(𝑽⇝𝑽)

⋯

𝒃′𝓶𝑼,𝟏
(𝑼⇝𝑽)

+ 𝒊  𝒃′̂𝓶𝑼,𝟏
(𝑽⇝𝑽)

𝟎

…
⋯
⋯

𝒃′𝟏,𝖒
(𝑼⇝𝑽) + 𝒊  𝒃′̂𝟏,𝖒

(𝑽⇝𝑽)

⋯

𝒃′𝓶𝑼,𝖒
(𝑼⇝𝑽) + 𝒊  𝒃′̂𝓶𝑼,𝖒

(𝑽⇝𝑽)

𝟎
⋯
𝟎

⋯
⋯

⋯
𝟎

)

 
 
 
 

)

 
 
 
 
 

, 

 

(

 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 

𝒂′𝟏,𝟏
(𝑽⇝𝑼)

+ 𝒊  𝒂′̂𝟏,𝟏
(𝑼⇝𝑼)

= 𝒂′𝟏,𝟏
(𝑼⇝𝑽)

+ 𝒊  𝒂′̂𝟏,𝟏
(𝑽⇝𝑽)

⋯

𝒂′𝓶𝑼,𝟏
(𝑽⇝𝑼)

+ 𝒊  𝒂′̂𝓶𝑼,𝟏
(𝑼⇝𝑼)

= 𝒂′𝓶𝑽,𝟏
(𝑼⇝𝑽)

+ 𝒊  𝒂′̂𝓶𝑽,𝟏
(𝑽⇝𝑽)

𝒂′𝒎𝑽+𝟏,𝟏
(𝑼⇝𝑽)

+ 𝒊  𝒂′̂𝒎𝑽+𝟏,𝟏
(𝑽⇝𝑽)

…
⋯
⋯

𝒂′𝟏,𝖓
(𝑽⇝𝑼)

+ 𝒊  𝒂′̂𝟏,𝖓
(𝑼⇝𝑼)

= 𝒂′𝟏,𝖓
(𝑼⇝𝑽)

+ 𝒊  𝒂′̂𝟏,𝖓
(𝑽⇝𝑽)

⋯

𝒂′𝓶𝑼 ,𝖓
(𝑽⇝𝑼)

+ 𝒊  𝒂′̂𝓶𝑼,𝖓
(𝑼⇝𝑼)

= 𝒂′𝓶𝑽,𝖓
(𝑼⇝𝑽)

+ 𝒊  𝒂′̂𝓶𝑽,𝖓
(𝑽⇝𝑽)

𝒂′𝒎𝑽+𝟏,𝖓
(𝑼⇝𝑽)

+ 𝒊  𝒂′̂𝒎𝑽+𝟏,𝖓
(𝑽⇝𝑽)

⋯

𝒂′𝒎𝑽+𝝀,𝟏
(𝑼⇝𝑽)

+ 𝒊  𝒂′̂𝒎𝑽+𝝀,𝟏
(𝑽⇝𝑽)

⋯
⋯
⋯

⋯

𝒂′𝒎𝑽+𝝀,𝖓
(𝑼⇝𝑽)

+ 𝒊  𝒂′̂𝒎𝑽+𝝀,𝖓
(𝑽⇝𝑽)

𝟎
⋯
𝟎

⋯
⋯

𝟎
⋯
𝟎 )

 
 
 
 
 
 
 
 
 

, 
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(

 
 
 
 
 
 
 
 
 

𝒃′𝟏,𝟏
(𝑽⇝𝑼)

+ 𝒊  𝒃′̂𝟏,𝟏
(𝑼⇝𝑼)

= 𝒃′𝟏,𝟏
(𝑼⇝𝑽)

+ 𝒊  𝒃′̂𝟏,𝟏
(𝑽⇝𝑽)

⋯

𝒃′𝓶𝑼,𝟏
(𝑽⇝𝑼)

+ 𝒊  𝒃′̂𝓶𝑼,𝟏

(𝑼⇝𝑼)
= 𝒃′𝓶𝑽,𝟏

(𝑼⇝𝑽)
+ 𝒊  𝒃′̂𝓶𝑽,𝟏

(𝑽⇝𝑽)

𝒃′𝒎𝑽+𝟏,𝟏
(𝑼⇝𝑽)

+ 𝒊  𝒃′̂𝒎𝑽+𝟏,𝟏
(𝑽⇝𝑽)

…
⋯
⋯

𝒃′𝟏,𝖓
(𝑽⇝𝑼)

+ 𝒊  𝒃′̂𝟏,𝖓
(𝑼⇝𝑼)

= 𝒃′𝟏,𝖓
(𝑼⇝𝑽)

+ 𝒊  𝒃′̂𝟏,𝖓
(𝑽⇝𝑽)

⋯

𝒃′𝓶𝑼,𝖓
(𝑽⇝𝑼)

+ 𝒊  𝒃′̂𝓶𝑼,𝖓

(𝑼⇝𝑼)
= 𝒃′𝓶𝑽,𝖓

(𝑼⇝𝑽)
+ 𝒊  𝒃′̂𝓶𝑽,𝖓

(𝑽⇝𝑽)

𝒃′𝒎𝑽+𝟏,𝖓
(𝑼⇝𝑽)

+ 𝒊  𝒃′̂𝒎𝑽+𝟏,𝖓
(𝑽⇝𝑽)

⋯

𝒃′𝒎𝑽+𝝀,𝟏
(𝑼⇝𝑽)

+ 𝒊  𝒃′̂𝒎𝑽+𝝀,𝟏
(𝑽⇝𝑽)

⋯
⋯
⋯

⋯

𝒃′𝒎𝑽+𝝀,𝖓
(𝑼⇝𝑽)

+ 𝒊  𝒃′̂𝒎𝑽+𝝀,𝖓
(𝑽⇝𝑽)

𝟎
⋯
𝟎

⋯
⋯

𝟎
⋯
𝟎 )

 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 

. 

Most of the times the sophistication of this attack is medium to high. Specifically, 

during this scenario the following states applied: 

 

𝝋(𝑼⇝𝑽)(𝒕), �̂�(𝑽⇝𝑽)(𝒕) 𝝍(𝑼⇝𝑽)(𝒕), �̂�(𝑽⇝𝑽)(𝒕)  

𝝋(𝑼⇝𝑽)(𝒕) < 𝟎 𝝍(𝑼⇝𝑽)(𝒕) > 𝟎 

�̂�(𝑽⇝𝑽)(𝒕) = 𝟎 �̂�(𝑽⇝𝑽)(𝒕) = 𝟎 

𝝋(𝑽⇝𝑼)(𝒕) = 𝟎 𝝍(𝑽⇝𝑼)(𝒕) = 𝟎 

�̂�(𝑼⇝𝑼)(𝒕) > 𝟎 �̂�(𝑼⇝𝑼)(𝒕) < 𝟎 

Proposition 5.1 It is clear that during this scenario the attack 𝓕 from 𝑼 that plays 

the role of APT actor against the (𝝁𝟏, … , 𝝁𝝂) − device parts 𝒇𝒓(𝒅𝒆𝒗𝝁𝟏
(𝑽)), 

𝒇𝒓(𝒅𝒆𝒗𝝁𝟐
(𝑽)),…, 𝒇𝒓(𝒅𝒆𝒗𝝁𝝂

(𝑽)) of 𝑽, the following elementary properties hold. 

i. The (Euclidean) norm ‖ 𝒂′(𝑼⇝𝑽)‖ of the resulting overall valuation in the node 𝑽 

as evaluated from the viewpoint of the user(s) of 𝑼 at the next moment 𝒕′ is less 

than the (Euclidean) norm ‖𝒂(𝑼⇝𝑽)‖ of the initial overall valuation in the node 𝑽 

as evaluated from the viewpoint of the user(s) of𝑼 at the preceding moment 𝒕: 

‖ 𝒂′(𝑼⇝𝑽)‖ < ‖𝒂(𝑼⇝𝑽)‖. 

ii. The (Euclidean) norm ‖ 𝒃′(𝑼⇝𝑽)‖ of the resulting overall vulnerability in the 

node 𝑽 as evaluated from the viewpoint of the user(s) of 𝑼 at the next moment 𝒕′ 

is greater than the (Euclidean) norm ‖𝒃(𝑼⇝𝑽)‖:= (∑ ∑ |𝒃𝓜𝑼+𝝀,𝒋
(𝑼⇝𝑽) |

𝟐
𝓵𝑽
𝜆=1

𝖒
𝑗=1 )

𝟏 𝟐⁄

 of 

the initial overall vulnerability in the node 𝑽 as evaluated from the viewpoint of 

the user(s) of 𝑼 at the preceding moment 𝒕: 

‖ 𝒃′(𝑼⇝𝑽)‖ > ‖𝒃(𝑼⇝𝑽)‖. 
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iii. The (Euclidean) norm ‖𝒂′̂(𝑼⇝𝑼)‖ of the resulting overall valuation in the variant 

node 𝑼 as evaluated from the viewpoint of the user(s) of 𝑼 at the next moment 𝒕′ 

is greater than the (Euclidean) norms  

‖�̂�(𝑼⇝𝑼)‖ and ‖𝒂(𝑼⇝𝑽)‖ 

of the initial overall valuations in the nodes 𝑼 and 𝑽 as evaluated from the 

viewpoint of the user(s) of 𝑼 at the preceding moment 𝒕: 

‖𝜷′̂(𝑼⇝𝑼)‖ > 𝒎𝒂𝒙{‖�̂�(𝑼⇝𝑼)‖, ‖𝜷(𝑼⇝𝑽)‖ }. 

iv. The (Euclidean) norm ‖𝒃′̂(𝑼⇝𝑼)‖ of the resulting overall vulnerability in the 

variant node 𝑼 as evaluated from the viewpoint of the user(s) of 𝑼 at the next 

moment 𝒕′ is less than the (Euclidean) norms 

‖�̂�(𝑼⇝𝑼)‖ and ‖𝒃(𝑼⇝𝑽)‖ 

of the initial overall vulnerabilities in the nodes 𝑼 and 𝑽 as evaluated from the 

viewpoint of the user(s) of 𝑼 at the preceding moment 𝒕: 

‖𝒃′̂(𝑼⇝𝑼)‖ < 𝒎𝒊𝒏{‖�̂�(𝑼⇝𝑼)‖, ‖𝒃(𝑼⇝𝑽)‖ }. ∎ 

Remark 5.2 Of course, in the special case where there is a fully successful access 

attack the following hold:  

‖ 𝒂′(𝑼⇝𝑽)‖ ≈ 𝟎, ‖ 𝒂′(𝑼⇝𝑼)‖ = √𝒎𝑼, ‖ 𝒃′(𝑼⇝𝑽)‖ = √𝒎𝑼. ∎ 

An access attack, besides a reflexive homomorphism, can take place physically 

when an attacker 𝑼, physically gains access of victim node devices 𝑽.  

5.5 APT Hunting Scenario 4   

In this scenario the actual attack vector which involves is an unauthorized detection 

mapping and services to steal data. This attack can potentially take place both actively 

and passively. Specifically, in passive scenario 4, an intruder monitors systems for 

vulnerabilities without interaction, through methods like session capture. In active 

scenario, the intruder engages with the target system through methods like port scans. 

Again here the node that plays the role of the APT actor is the 𝑼. 

Thus, during this attack the following general form of cyber-effect applies:  

𝒈 = 𝒈𝒕: 𝓠𝟗
(𝑽)(𝑼)(𝒕) → 𝓟𝟕

(𝑼)(𝑽)(𝒕′) 

where 𝓠𝟗
(𝑽)(𝑼)(𝒕′) and 𝓟𝟕

(𝑼)(𝑽)(𝒕′) are the combinatorial triplets   
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𝓠𝟗
(𝑽)(𝑼) = 𝓠𝟗

(𝑽)(𝑼)(𝒕′) = (𝕽𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆(𝑽), 𝓢𝑼𝕽𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆(𝑽),𝓤𝑼𝕽𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆(𝑽)  ) 

and  

𝓟𝟕
(𝑼)(𝑽)(𝒕′) = (𝕮𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆(𝑽), 𝓢𝑼𝕮𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆(𝑽),𝓤𝑼𝕮𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆(𝑽) )  

respectively ([5]). 

It is obvious that the purpose of this attack is for node 𝑼 to uncover all constituents’ 

vulnerabilities of node 𝑽. 

A family of coherent interactions 

𝓕 = {𝓩 = 𝓩(𝒀,𝑿)(𝒕) = ((𝕫𝟏, 𝕨𝟏), (𝕫𝟐, 𝕨𝟐), (𝕫𝟏
′ , 𝕨𝟏

′ ), (𝕫𝟐
′ , 𝕨𝟐

′ ))(𝒕) ∈ 

(ℂ𝖓×𝓴 × ℂ𝖒×𝓴)
𝟒
, 𝒕 ∈ 𝕀}, 

lying in (the partial danger sector ℇ = ℇ𝑼→𝑽 to) the node 𝑽 from the node 𝑼 during the 

entire time set 𝕀, is a germ of scenario 4 attack against the (𝝁𝟏, … , 𝝁𝝂) − device 

parts 𝒇𝒓(𝒅𝒆𝒗𝝁𝟏
(𝑽)
), 𝒇𝒓(𝒅𝒆𝒗𝝁𝟐

(𝑽)
),…, 𝒇𝒓(𝒅𝒆𝒗𝝁𝝂

(𝑽)
) and the (𝜿𝟏, … , 𝜿𝝀) − resource 

parts 𝒇𝒓(𝒓𝒆𝒔𝜿𝟏
(𝑽)), 𝒇𝒓(𝒓𝒆𝒔𝜿𝟐

(𝑽)),…, 𝒇𝒓(𝒓𝒆𝒔𝜿𝝀
(𝑽)) of 𝑽 during a given time set 𝕀 ⊂⊂

[𝟎, 𝟏], if, whenever 𝒕 ∈ 𝕀, the pair ((𝕫𝟏, 𝕨𝟏), (𝕫𝟐,𝕨𝟐)) ∈ (ℂ
𝖓×𝓴 × ℂ𝖒×𝓴)

𝟐
 of 

supervisory constituents perceptions of 𝑼 and 𝑽 in the system of nodes 𝑼 and 𝑽 has the 

form  

((𝕫𝟏, 𝕨𝟏), (𝕫𝟐, 𝕨𝟐)) = 

(

 
 
 
 
 
 
 

(

 
 
 
 
 
 

(

 
 
 
 
 
 

𝟎 ……… 𝟎
⋯
𝟎

𝒂𝓜𝑽+𝟏,𝟏
(𝑼⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝟏,𝟏

(𝑽⇝𝑽)
………

⋯
𝟎

𝒂𝓜𝑽+𝟏,𝖓
(𝑼⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝟏,𝖓

(𝑽⇝𝑽)

⋯

𝒂𝓜𝑽+𝓵𝑽,𝟏
(𝑼⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝓵𝑽,𝟏

(𝑽⇝𝑽)

𝟎
⋯
𝟎

………

⋯

𝒂𝓜𝑽+𝓵𝑽,𝖓
(𝑼⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝓵𝑽,𝖓

(𝑽⇝𝑽)

𝟎
⋯
𝟎 )

 
 
 
 
 
 

, 

 

(

 
 
 
 
 
 

𝟎 ……… 𝟎
⋯
𝟎

𝒃𝓜𝑽+𝟏,𝟏
(𝑼⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝟏,𝟏

(𝑽⇝𝑽)
………

⋯
𝟎

𝒃𝓜𝑽+𝟏,𝖒
(𝑼⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝟏,𝖒

(𝑽⇝𝑽)

⋯

𝒃𝓜𝑽+𝓵𝑽,𝟏
(𝑼⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝓵𝑽,𝟏

(𝑽⇝𝑽)

𝟎
⋯
𝟎

………

⋯

𝒃𝓜𝑽+𝓵𝑽,𝖒
(𝑼⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝓵𝑽,𝖒

(𝑽⇝𝑽)

𝟎
⋯
𝟎 )

 
 
 
 
 
 

)

 
 
 
 
 
 

, 
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(

 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 

𝒂𝟏,𝟏
(𝑽⇝𝑼)

+ 𝒊  �̂�𝟏,𝟏
(𝑼⇝𝑼)

⋯

𝒂𝓶𝑼,𝟏
(𝑽⇝𝑼)

+ 𝒊  �̂�𝓶𝑼,𝟏
(𝑼⇝𝑼)

………
𝒂𝟏,𝖓
(𝑽⇝𝑼)

+ 𝒊  �̂�𝟏,𝖓
(𝑼⇝𝑼)

⋯

𝒂𝓶𝑼,𝖓
(𝑽⇝𝑼) + 𝒊  �̂�𝓶𝑼,𝖓

(𝑼⇝𝑼)

⋯
𝟎
⋯

𝒂𝓜𝑼+𝟏,𝟏
(𝑽⇝𝑼)

+ 𝒊  �̂�𝓜𝑼+𝟏,𝟏
(𝑼⇝𝑼)

………

⋯
𝟎
⋯

𝒂𝓜𝑼+𝟏,𝖓
(𝑽⇝𝑼)

+ 𝒊  �̂�𝓜𝑼+𝟏,𝖓
(𝑼⇝𝑼)

⋯

𝒂𝓜𝑼+𝓵𝑼,𝟏
(𝑽⇝𝑼)

+ 𝒊  �̂�𝓜𝑼+𝓵𝑼,𝟏
(𝑼⇝𝑼)

𝟎
⋯
𝟎

………

⋯

𝒂𝓜𝑼+𝓵𝑼,𝖓
(𝑽⇝𝑼)

+ 𝒊  �̂�𝓜𝑼+𝓵𝑼,𝖓
(𝑼⇝𝑼)

𝟎
⋯
𝟎 )

 
 
 
 
 
 
 
 
 
 

, 

 

(

 
 
 
 
 
 
 
 
 
 

𝒃𝟏,𝟏
(𝑽⇝𝑼)

+ 𝒊  �̂�𝟏,𝟏
(𝑼⇝𝑼)

⋯

𝒃𝓶𝑼,𝟏
(𝑽⇝𝑼)

+ 𝒊  �̂�𝓶𝑼,𝟏

(𝑼⇝𝑼)
………

𝒃𝟏,𝖓
(𝑽⇝𝑼)

+ 𝒊  �̂�𝟏,𝖓
(𝑼⇝𝑼)

⋯

𝒃𝓶𝑼,𝖓
(𝑽⇝𝑼) + 𝒊  �̂�𝓶𝑼,𝖓

(𝑼⇝𝑼)

⋯

𝟎

⋯

𝒃𝓜𝑼+𝟏,𝟏
(𝑽⇝𝑼)

+ 𝒊  �̂�𝓜𝑼+𝟏,𝟏

(𝑼⇝𝑼)

………

⋯

𝟎

⋯

𝒃𝓜𝑼+𝟏,𝖓
(𝑽⇝𝑼)

+ 𝒊  �̂�𝓜𝑼+𝟏,𝖓

(𝑼⇝𝑼)

⋯

𝒃𝓜𝑼+𝓵𝑼,𝟏
(𝑽⇝𝑼)

+ 𝒊  �̂�𝓜𝑼+𝓵𝑼,𝟏

(𝑼⇝𝑼)

𝟎
⋯

𝟎

………

⋯

𝒃𝓜𝑼+𝓵𝑼,𝖓
(𝑽⇝𝑼)

+ 𝒊  �̂�𝓜𝑼+𝓵𝑼,𝖓

(𝑼⇝𝑼)

𝟎
⋯

𝟎 )

 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 

 

and is depicted, at a next moment 𝒕′ = 𝒕 + ∆𝒕, at a pair ((𝕫𝟏
′ , 𝕨𝟏

′ ), (𝕫𝟐
′ , 𝕨𝟐

′ )) ∈

(ℂ𝖓×𝓴 × ℂ𝖒×𝓴)
𝟐
 of supervisory resource perceptions of 𝑼 and 𝑽 having the form 

((𝕫𝟏
′ , 𝕨𝟏

′ ), (𝕫𝟐
′ , 𝕨𝟐

′ )) = 

(

 
 
 
 
 
 
 

(

 
 
 
 
 
 

(

 
 
 
 
 
 

𝟎 ……… 𝟎
⋯
𝟎

𝒂′𝓜𝑽+𝟏,𝟏
(𝑼⇝𝑽) + 𝒊  𝒂′̂𝓜𝑽+𝟏,𝟏

(𝑽⇝𝑽)
………

⋯
𝟎

𝒂′𝓜𝑽+𝟏,𝖓
(𝑼⇝𝑽) + 𝒊  𝒂′̂𝓜𝑽+𝟏,𝖓

(𝑽⇝𝑽)

⋯

𝒂′𝓜𝑽+𝓵𝑽,𝟏
(𝑼⇝𝑽) + 𝒊  𝒂′̂𝓜𝑽+𝓵𝑽,𝟏

(𝑽⇝𝑽)

𝟎
⋯
𝟎

………

⋯

𝒂′𝓜𝑽+𝓵𝑽,𝖓
(𝑼⇝𝑽) + 𝒊  𝒂′̂𝓜𝑽+𝓵𝑽,𝖓

(𝑽⇝𝑽)

𝟎
⋯
𝟎 )

 
 
 
 
 
 

, 

 

(

 
 
 
 
 
 

𝟎 ……… 𝟎
⋯
𝟎

𝒃′𝓜𝑽+𝟏,𝟏
(𝑼⇝𝑽) + 𝒊  𝒃′̂𝓜𝑽+𝟏,𝟏

(𝑽⇝𝑽)
………

⋯
𝟎

𝒃′𝓜𝑽+𝟏,𝖒
(𝑼⇝𝑽) + 𝒊  𝒃′̂𝓜𝑽+𝟏,𝖒

(𝑽⇝𝑽)

⋯

𝒃′𝓜𝑽+𝓵𝑽,𝟏
(𝑼⇝𝑽) + 𝒊  𝒃′̂𝓜𝑽+𝓵𝑽,𝟏

(𝑽⇝𝑽)

𝟎
⋯
𝟎

………

⋯

𝒃′𝓜𝑽+𝓵𝑽,𝖒
(𝑼⇝𝑽) + 𝒊  𝒃′̂𝓜𝑽+𝓵𝑽,𝖒

(𝑽⇝𝑽)

𝟎
⋯
𝟎 )

 
 
 
 
 
 

)

 
 
 
 
 
 

, 
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(

 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 

𝒂′𝟏,𝟏
(𝑽⇝𝑼)

+ 𝒊  𝒂′̂𝟏,𝟏
(𝑼⇝𝑼)

⋯

𝒂′𝓶𝑼,𝟏
(𝑽⇝𝑼) + 𝒊  𝒂′̂𝓶𝑼,𝟏

(𝑼⇝𝑼)
………

𝒂′𝟏,𝖓
(𝑽⇝𝑼)

+ 𝒊  𝒂′̂𝟏,𝖓
(𝑼⇝𝑼)

⋯

𝒂′𝓶𝑼,𝖓
(𝑽⇝𝑼) + 𝒊  𝒂′̂𝓶𝑼,𝖓

(𝑼⇝𝑼)

⋯
𝟎
⋯

𝒂′𝓜𝑼+𝟏,𝟏
(𝑽⇝𝑼)

+ 𝒊  𝒂′̂𝓜𝑼+𝟏,𝟏
(𝑼⇝𝑼)

………

⋯
𝟎
⋯

𝒂′𝓜𝑼+𝟏,𝖓
(𝑽⇝𝑼)

+ 𝒊  𝒂′̂𝓜𝑼+𝟏,𝖓
(𝑼⇝𝑼)

⋯

𝒂′𝓜𝑼+𝓵𝑼,𝟏
(𝑽⇝𝑼)

+ 𝒊  𝒂′̂𝓜𝑼+𝓵𝑼,𝟏
(𝑼⇝𝑼)

𝟎
⋯
𝟎

………

⋯

𝒂′𝓜𝑼+𝓵𝑼,𝖓
(𝑽⇝𝑼)

+ 𝒊  𝒂′̂𝓜𝑼+𝓵𝑼,𝖓
(𝑼⇝𝑼)

𝟎
⋯
𝟎 )

 
 
 
 
 
 
 
 
 
 

, 

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝒃′𝟏,𝟏
(𝑽⇝𝑼) + 𝒊  𝒃′̂𝟏,𝟏

(𝑼⇝𝑼)

⋯

𝒃′𝓶𝑼,𝟏
(𝑽⇝𝑼)

+ 𝒊  𝒃′̂𝓶𝑼,𝟏
(𝑼⇝𝑼)

………
𝒃′𝟏,𝖓
(𝑽⇝𝑼)

+ 𝒊  𝒃′̂𝟏,𝖓
(𝑼⇝𝑼)

⋯

𝒃′𝓶𝑼,𝖓
(𝑽⇝𝑼) + 𝒊  𝒃′̂𝓶𝑼,𝖓

(𝑼⇝𝑼)

𝒃′𝓶𝑼+𝟏,𝟏
(𝑽⇝𝑼) + 𝒊  𝒃′̂𝓶𝑼+𝟏,𝟏

(𝑼⇝𝑼)

⋯

𝒃′𝓶𝑼+𝓵𝑽,𝟏
(𝑽⇝𝑼) + 𝒊  𝒃′̂𝓶𝑼+𝓵𝑽,𝟏

(𝑼⇝𝑼)

𝟎
⋯
𝟎

𝒃′𝓜𝑼+𝟏,𝟏
(𝑽⇝𝑼)

+ 𝒊  𝒃′̂𝓜𝑼+𝟏,𝟏
(𝑼⇝𝑼)

………

𝒃′𝓶𝑼+𝟏,𝖓
(𝑽⇝𝑼) + 𝒊  𝒃′̂𝓶𝑼+𝟏,𝖓

(𝑼⇝𝑼)

⋯

𝒃′𝓶𝑼+𝓵𝑽,𝒏
(𝑽⇝𝑼) + 𝒊  𝒃′̂𝓶𝑼+𝓵𝑽,𝒏

(𝑼⇝𝑼)

𝟎
⋯
𝟎

𝒃′𝓜𝑼+𝟏,𝖓
(𝑽⇝𝑼)

+ 𝒊  𝒃′̂𝓜𝑼+𝟏,𝖓
(𝑼⇝𝑼)

⋯

𝒃′𝓜𝑼+𝓵𝑼,𝟏
(𝑽⇝𝑼) + 𝒊  𝒃′̂𝓜𝑼+𝓵𝑼,𝟏

(𝑼⇝𝑼)

𝒃′𝓜𝑼+𝓵𝑼+𝟏,𝟏
(𝑽⇝𝑼)

+ 𝒊  𝒃′̂𝓜𝑼+𝓵𝑼+𝟏,𝟏

(𝑼⇝𝑼)

⋯

𝒃′𝓜𝑼+𝓵𝑼+𝓵𝑽𝟏
(𝑽⇝𝑼)

+ 𝒊  𝒃′̂𝓜𝑼+𝓵𝑼+𝓵𝑽,𝟏

(𝑼⇝𝑼)

𝟎
⋯
𝟎

………

⋯

𝒃′𝓜𝑼+𝓵𝑼,𝖓
(𝑽⇝𝑼) + 𝒊  𝒃′̂𝓜𝑼+𝓵𝑼,𝖓

(𝑼⇝𝑼)

𝒃′𝓜𝑼+𝓵𝑼+𝟏,𝒏
(𝑽⇝𝑼)

+ 𝒊  𝒃′̂𝓜𝑼+𝓵𝑼+𝟏,𝒏

(𝑼⇝𝑼)

⋯

𝒃′𝓜𝑼+𝓵𝑼+𝓵𝑽,𝒏
(𝑽⇝𝑼)

+ 𝒊  𝒃′̂𝓜𝑼+𝓵𝑼+𝓵𝑽,𝒏

(𝑼⇝𝑼)

𝟎
⋯
𝟎 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

Most of the times the sophistication of this attack is very low and highly 

“transparent” to attacked node. Frequently, after this attack a more sophisticated attack 

is expected. Specifically, during scenario 4 attack the following states applied: 

 

𝝋(𝑼⇝𝑽)(𝒕), �̂�(𝑽⇝𝑽)(𝒕) 𝝍(𝑼⇝𝑽)(𝒕), �̂�(𝑽⇝𝑽)(𝒕)  

𝝋(𝑼⇝𝑽)(𝒕) < 𝟎 𝝍(𝑼⇝𝑽)(𝒕) > 𝟎 

�̂�(𝑽⇝𝑽)(𝒕) = 𝟎 �̂�(𝑽⇝𝑽)(𝒕) = 𝟎 

𝝋(𝑽⇝𝑼)(𝒕) = 𝟎 𝝍(𝑽⇝𝑼)(𝒕) = 𝟎 

�̂�(𝑼⇝𝑼)(𝒕) > 𝟎 �̂�(𝑼⇝𝑼)(𝒕) < 𝟎 
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Proposition 5.2 It is obvious that during this attack 𝓕 from 𝑼 against the 

(𝝁𝟏, … , 𝝁𝝂) − resource parts 𝒇𝒓(𝒓𝒆𝒔𝝁𝟏
(𝑽)), 𝒇𝒓(𝒓𝒆𝒔𝝁𝟐

(𝑽)),…, 𝒇𝒓(𝒓𝒆𝒔𝝁𝝂
(𝑽)) of 𝑽, the 

following elementary properties hold: 

i. The (Euclidean) norm ‖ 𝒂′(𝑼⇝𝑽)‖ of the resulting overall valuation in the node 𝑽 

as evaluated from the viewpoint of the user(s) of 𝑼 at the next moment 𝒕′ is much 

less than the (Euclidean) norm ‖𝒂(𝑼⇝𝑽)‖ of the initial overall valuation in the 

node 𝑽 as evaluated from the viewpoint of the user(s) of 𝑼 at the preceding 

moment 𝒕: 

‖ 𝒂′(𝑼⇝𝑽)‖ ≪ ‖𝒂(𝑼⇝𝑽)‖. 

ii. The (Euclidean) norm ‖ 𝒃′(𝑼⇝𝑽)‖ of the resulting overall vulnerability in the 

node 𝑽 as evaluated from the viewpoint of the user(s) of 𝑼 at the next moment 𝒕′ 

is much greater than the (Euclidean) norm ‖𝒃(𝑼⇝𝑽)‖:=

(∑ ∑ |𝒃𝓜𝑼+𝝀,𝒋
(𝑼⇝𝑽) |

𝟐
𝓵𝑽
𝜆=1

𝖒
𝑗=1 )

𝟏 𝟐⁄

 of the initial overall vulnerability in the node 𝑽 as 

evaluated from the viewpoint of the user(s) of 𝑼 at the preceding moment 𝒕: 

‖ 𝒃′(𝑼⇝𝑽)‖ ≫ ‖𝒃(𝑼⇝𝑽)‖. 

iii. The (Euclidean) norm ‖𝒂′̂(𝑼⇝𝑼)‖ of the resulting overall valuation in the variant 

node 𝑼 as evaluated from the viewpoint of the user(s) of 𝑼 at the next moment 𝒕′ 

is much greater than the (Euclidean) norms  

‖�̂�(𝑼⇝𝑼)‖ and ‖𝒂(𝑼⇝𝑽)‖ 

of the initial overall valuations in the nodes 𝑼 and 𝑽 as evaluated from the 

viewpoint of the user(s) of 𝑼 at the preceding moment 𝒕: 

‖𝒂′̂(𝑼⇝𝑼)‖ ≫ 𝒎𝒂𝒙{‖�̂�(𝑼⇝𝑼)‖, ‖𝒂(𝑼⇝𝑽)‖ }. 

iv. The (Euclidean) norm ‖𝒃′̂(𝑼⇝𝑼)‖ of the resulting overall vulnerability in the 

variant node 𝑼 as evaluated from the viewpoint of the user(s) of 𝑼 at the next 

moment 𝒕′ is less than the (Euclidean) norms 

‖�̂�(𝑼⇝𝑼)‖ and ‖𝒃(𝑼⇝𝑽)‖ 

of the initial overall vulnerabilities in the nodes 𝑼 and 𝑽 as evaluated from the 

viewpoint of the user(s) of 𝑼 at the preceding moment 𝒕: 

‖𝒃′̂(𝑼⇝𝑼)‖ < 𝒎𝒊𝒏{‖�̂�(𝑼⇝𝑼)‖, ‖𝒃(𝑼⇝𝑽)‖ }. ∎ 



36  Mathematical Study of APT Hunting Techniques 

The criticality of this attack is high since most of times it is the omen of a more 

severe or more sophisticated attack. 

5.6 APT Hunting Scenario 5   

In this scenario we orient 2 attacks that intent to sophisticatedly deny services and 

generally resources to authorized users. The attacker 𝑼  that again plays the role of the 

APT actor makes a computing or memory resource too busy or too full to handle 

legitimate requests, thus denying legitimate user access to a machine. The difference 

between these 2 types of attacks is actually the source. In the first type the attack is 

initiated by only one node. On the other hand, the second vector has the engagement of 

a multitude of nodes (intentionally or not, e.g. via Botnets). 

Thus, during this kind of attack the following general form of cyber-effect applies:  

𝒈 = 𝒈𝒕: 𝓠𝟗
(𝑽)(𝑼)(𝒕) → 𝓟𝟗

(𝑼)(𝑽)(𝒕′) 

where 𝓠𝟗
(𝑽)(𝑼)(𝒕′) and 𝓟𝟗

(𝑼)(𝑽)(𝒕′) are the combinatorial triplets 

𝓠𝟗
(𝑽)(𝑼) = 𝓠𝟗

(𝑽)(𝑼)(𝒕′) = (𝕽𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆(𝑽), 𝓢𝑼𝕽𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆(𝑽),𝓤𝑼𝕽𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆(𝑽)  ) 

and  

𝓟𝟗
(𝑼)(𝑽)(𝒕′) = (𝕽𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆(𝑽), 𝓢𝑼𝕽𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆(𝑽),𝓤𝑼𝕽𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆(𝑽) )  

respectively ([5]). 

It is obvious that the purpose of this attack is for node 𝑼 to keep all 

resources/services of node 𝑽  busy in order to make them unavailable to all users that 

really need them. 

A family of coherent interactions 

𝓕 = {𝓩 = 𝓩(𝒀,𝑿)(𝒕) = ((𝕫𝟏, 𝕨𝟏), (𝕫𝟐, 𝕨𝟐), (𝕫𝟏
′ , 𝕨𝟏

′ ), (𝕫𝟐
′ , 𝕨𝟐

′ ))(𝒕) ∈ 

(ℂ𝖓×𝓴 × ℂ𝖒×𝓴)
𝟒
, 𝒕 ∈ 𝕀}, 

lying in the partial danger sector ℇ = ℇ𝑼→𝑽 to the node 𝑽 from the node 𝑼 during the 

entire time set 𝕀, is a germ of scenario 5 attack against the (𝝁𝟏, … , 𝝁𝝂) − 

𝒇𝒓(𝒅𝒆𝒗𝝁𝟐
(𝑽)),…, 𝒇𝒓(𝒅𝒆𝒗𝝁𝝂

(𝑽)) resource parts 𝒇𝒓(𝒓𝒆𝒔𝜿𝟏
(𝑽)), 𝒇𝒓(𝒓𝒆𝒔𝜿𝟐

(𝑽)),…,  

𝒇𝒓(𝒓𝒆𝒔𝜿𝝀
(𝑽)) of 𝑽 during a given time set 𝕀 ⊂⊂ [𝟎, 𝟏], if, whenever 𝒕 ∈ 𝕀, the pair 

((𝕫𝟏, 𝕨𝟏), (𝕫𝟐, 𝕨𝟐)) ∈ (ℂ
𝖓×𝓴 × ℂ𝖒×𝓴)

𝟐
 of supervisory constituents perceptions of 𝑼 

and 𝑽 in the system of nodes 𝑼 and 𝑽 has the form  
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((𝕫𝟏, 𝕨𝟏), (𝕫𝟐,𝕨𝟐)) =  

(

 
 
 
 
 
 
 

(

 
 
 
 
 
 

(

 
 
 
 
 
 

𝟎 ……… 𝟎
⋯
𝟎

𝒂𝓜𝑽+𝟏,𝟏
(𝑼⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝟏,𝟏

(𝑽⇝𝑽)
………

⋯
𝟎

𝒂𝓜𝑽+𝟏,𝖓
(𝑼⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝟏,𝖓

(𝑽⇝𝑽)

⋯

𝒂𝓜𝑽+𝓵𝑽,𝟏
(𝑼⇝𝑽)

+ 𝒊  �̂�𝓜𝑽+𝓵𝑽,𝟏
(𝑽⇝𝑽)

𝟎
⋯
𝟎

………

⋯

𝒂𝓜𝑽+𝓵𝑽,𝖓
(𝑼⇝𝑽)

+ 𝒊  �̂�𝓜𝑽+𝓵𝑽,𝖓
(𝑽⇝𝑽)

𝟎
⋯
𝟎 )

 
 
 
 
 
 

, 

 

(

 
 
 
 
 
 

𝟎 ……… 𝟎
⋯
𝟎

𝒃𝓜𝑽+𝟏,𝟏
(𝑼⇝𝑽)

+ 𝒊  �̂�𝓜𝑽+𝟏,𝟏
(𝑽⇝𝑽)

………

⋯
𝟎

𝒃𝓜𝑽+𝟏,𝖒
(𝑼⇝𝑽)

+ 𝒊  �̂�𝓜𝑽+𝟏,𝖒
(𝑽⇝𝑽)

⋯

𝒃𝓜𝑽+𝓵𝑽,𝟏
(𝑼⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝓵𝑽,𝟏

(𝑽⇝𝑽)

𝟎
⋯
𝟎

………

⋯

𝒃𝓜𝑽+𝓵𝑽,𝖒
(𝑼⇝𝑽) + 𝒊  �̂�𝓜𝑽+𝓵𝑽,𝖒

(𝑽⇝𝑽)

𝟎
⋯
𝟎 )

 
 
 
 
 
 

)

 
 
 
 
 
 

, 

(

 
 
 
 
 
 

(

 
 
 
 
 
 

𝟎 ……… 𝟎
⋯
𝟎

𝒂𝓜𝑼+𝟏,𝟏
(𝑽⇝𝑼)

+ 𝒊  �̂�𝓜𝑼+𝟏,𝟏
(𝑼⇝𝑼)

………

⋯
𝟎

𝒂𝓜𝑼+𝟏,𝖓
(𝑽⇝𝑼)

+ 𝒊  �̂�𝓜𝑼+𝟏,𝖓
(𝑼⇝𝑼)

⋯

𝒂𝓜𝑼+𝓵𝑼,𝟏
(𝑽⇝𝑼) + 𝒊  �̂�𝓜𝑼+𝓵𝑼,𝟏

(𝑼⇝𝑼)

𝟎
⋯
𝟎

………

⋯

𝒂𝓜𝑼+𝓵𝑼,𝖓
(𝑽⇝𝑼) + 𝒊  �̂�𝓜𝑼+𝓵𝑼,𝖓

(𝑼⇝𝑼)

𝟎
⋯
𝟎 )

 
 
 
 
 
 

, 

(

 
 
 
 
 
 

𝟎 ……… 𝟎
⋯

𝟎

𝒃𝓜𝑼+𝟏,𝟏
(𝑽⇝𝑼)

+ 𝒊  �̂�𝓜𝑼+𝟏,𝟏

(𝑼⇝𝑼)
………

⋯

𝟎

𝒃𝓜𝑼+𝟏,𝖒
(𝑽⇝𝑼)

+ 𝒊  �̂�𝓜𝑼+𝟏,𝖒

(𝑼⇝𝑼)

⋯

𝒃𝓜𝑼+𝓵𝑼,𝟏
(𝑽⇝𝑼)

+ 𝒊  �̂�𝓜𝑼+𝓵𝑼,𝟏

(𝑼⇝𝑼)

𝟎
⋯

𝟎

………

⋯

𝒃𝓜𝑼+𝓵𝑼,𝖒
(𝑽⇝𝑼)

+ 𝒊  �̂�𝓜𝑼+𝓵𝑼,𝖒

(𝑼⇝𝑼)

𝟎
⋯

𝟎 )

 
 
 
 
 
 

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 

 

and is depicted, at a next moment 𝒕′ = 𝒕 + ∆𝒕, at a pair ((𝕫𝟏
′ , 𝕨𝟏

′ ), (𝕫𝟐
′ , 𝕨𝟐

′ )) ∈

(ℂ𝖓×𝓴 × ℂ𝖒×𝓴)
𝟐
 of supervisory resource perceptions of 𝑼 and 𝑽 having the form 

((𝕫𝟏
′ , 𝕨𝟏

′ ), (𝕫𝟐
′ , 𝕨𝟐

′ )) = 
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(

 
 
 
 
 
 
 

(

 
 
 
 
 
 

(

 
 
 
 
 
 

𝟎 ……… 𝟎
⋯
𝟎

𝒂′𝓜𝑽+𝟏,𝟏
(𝑼⇝𝑽)

+ 𝒊  𝒂′̂𝓜𝑽+𝟏,𝟏
(𝑽⇝𝑽)

= 𝟎
………

⋯
𝟎

𝒂′𝓜𝑽+𝟏,𝖓
(𝑼⇝𝑽)

+ 𝒊  𝒂′̂𝓜𝑽+𝟏,𝖓
(𝑽⇝𝑽)

= 𝟎
⋯

𝒂′𝓜𝑽+𝓵𝑽,𝟏
(𝑼⇝𝑽) + 𝒊  𝒂′̂𝓜𝑽+𝓵𝑽,𝟏

(𝑽⇝𝑽) = 𝟎

𝟎
⋯
𝟎

………

⋯

𝒂′𝓜𝑽+𝓵𝑽,𝖓
(𝑼⇝𝑽) + 𝒊  𝒂′̂𝓜𝑽+𝓵𝑽,𝖓

(𝑽⇝𝑽) = 𝟎

𝟎
⋯
𝟎 )

 
 
 
 
 
 

, 

 

(

 
 
 
 
 
 

𝟎 ……… 𝟎
⋯
𝟎

𝒃′𝓜𝑽+𝟏,𝟏
(𝑼⇝𝑽)

+ 𝒊  𝒃′̂𝓜𝑽+𝟏,𝟏
(𝑽⇝𝑽)

= 𝟏
………

⋯
𝟎

𝒃′𝓜𝑽+𝟏,𝖒
(𝑼⇝𝑽)

+ 𝒊  𝒃′̂𝓜𝑽+𝟏,𝖒
(𝑽⇝𝑽)

= 𝟏
⋯

𝒃′𝓜𝑽+𝓵𝑽,𝟏
(𝑼⇝𝑽)

+ 𝒊  𝒃′̂𝓜𝑽+𝓵𝑽,𝟏
(𝑽⇝𝑽)

= 𝟏

𝟎
⋯
𝟎

………

⋯

𝒃′𝓜𝑽+𝓵𝑽,𝖒
(𝑼⇝𝑽)

+ 𝒊  𝒃′̂𝓜𝑽+𝓵𝑽,𝖒
(𝑽⇝𝑽)

= 𝟏

𝟎
⋯
𝟎 )

 
 
 
 
 
 

)

 
 
 
 
 
 

, 

 

(

 
 
 
 
 
 

(

 
 
 
 
 
 

𝟎 ……… 𝟎
⋯
𝟎

𝒂′𝓜𝑼+𝟏,𝟏
(𝑽⇝𝑼) + 𝒊  𝒂′̂𝓜𝑼+𝟏,𝟏

(𝑼⇝𝑼)
………

⋯
𝟎

𝒂′𝓜𝑼+𝟏,𝖓
(𝑽⇝𝑼) + 𝒊  𝒂′̂𝓜𝑼+𝟏,𝖓

(𝑼⇝𝑼)

⋯

𝒂′𝓜𝑼+𝓵𝑼,𝟏
(𝑽⇝𝑼) + 𝒊  𝒂′̂𝓜𝑼+𝓵𝑼,𝟏

(𝑼⇝𝑼)

𝟎
⋯
𝟎

………

⋯

𝒂′𝓜𝑼+𝓵𝑼,𝖓
(𝑽⇝𝑼) + 𝒊  𝒂′̂𝓜𝑼+𝓵𝑼,𝖓

(𝑼⇝𝑼)

𝟎
⋯
𝟎 )

 
 
 
 
 
 

, 

 

(

 
 
 
 
 
 

𝟎 ……… 𝟎
⋯
𝟎

𝒃′𝓜𝑼+𝟏,𝟏
(𝑽⇝𝑼)

+ 𝒊  𝒃′̂𝓜𝑼+𝟏,𝟏
(𝑼⇝𝑼)

………

⋯
𝟎

𝒃′𝓜𝑼+𝟏,𝖒
(𝑽⇝𝑼)

+ 𝒊  𝒃′̂𝓜𝑼+𝟏,𝖒
(𝑼⇝𝑼)

⋯

𝒃′𝓜𝑼+𝓵𝑼,𝟏
(𝑽⇝𝑼) + 𝒊  𝒃′̂𝓜𝑼+𝓵𝑼,𝟏

(𝑼⇝𝑼)

𝟎
⋯
𝟎

………

⋯

𝒃′𝓜𝑼+𝓵𝑼,𝖒
(𝑽⇝𝑼) + 𝒊  𝒃′̂𝓜𝑼+𝓵𝑼,𝖒

(𝑼⇝𝑼)

𝟎
⋯
𝟎 )

 
 
 
 
 
 

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 

. 

During this attack the results depicted in previous matrices are usually temporary 

and only strictly during the application of the attack. Most of the times the 

sophistication of this attack is very low and highly “transparent” to attacked node since 

the lack of resources is more than obvious. Frequently, after or during this attack a more 

sophisticated attack is expected. Specifically, during these attacks the following states 

applied: 

𝝋(𝑼⇝𝑽)(𝒕), �̂�(𝑽⇝𝑽)(𝒕) 𝝍(𝑼⇝𝑽)(𝒕), �̂�(𝑽⇝𝑽)(𝒕)  
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𝝋(𝑼⇝𝑽)(𝒕) < 𝟎 𝝍(𝑼⇝𝑽)(𝒕) > 𝟎 

�̂�(𝑽⇝𝑽)(𝒕) < 𝟎 �̂�(𝑽⇝𝑽)(𝒕) > 𝟎 

𝝋(𝑽⇝𝑼)(𝒕) > 𝟎 𝝍(𝑽⇝𝑼)(𝒕) < 𝟎 

�̂�(𝑼⇝𝑼)(𝒕) > 𝟎 �̂�(𝑼⇝𝑼)(𝒕) < 𝟎 

Proposition 5.3 It is obvious that during this scenario’s attack 𝓕 from 𝑼 against 

the (𝝁𝟏, … , 𝝁𝝂) − resource parts 𝒇𝒓(𝒓𝒆𝒔𝝁𝟏
(𝑽)), 𝒇𝒓(𝒓𝒆𝒔𝝁𝟐

(𝑽)),…, 𝒇𝒓(𝒓𝒆𝒔𝝁𝝂
(𝑽)) of 𝑽, the 

following elementary properties hold: 

i. The (Euclidean) norm ‖ 𝒂′(𝑼⇝𝑽)‖ of the resulting overall valuation in the node 𝑽 

as evaluated from the viewpoint of the user(s) of 𝑼 at the next moment 𝒕′ is 

temporary 𝟎: 

‖ 𝒂′(𝑼⇝𝑽)‖ = 𝟎. 

ii. The (Euclidean) norm ‖ 𝒃′(𝑼⇝𝑽)‖ of the resulting overall vulnerability in the 

node 𝑽 as evaluated from the viewpoint of the user(s) of 𝑼 at the next moment 𝒕′ 

is temporary 𝟏: 

‖ 𝒃′(𝑼⇝𝑽)‖ = 𝟏. 

iii. The (Euclidean) norm ‖𝒂′̂(𝑼⇝𝑼)‖ of the resulting overall valuation in the variant 

node 𝑼 as evaluated from the viewpoint of the user(s) of 𝑼 at the next moment 𝒕′ 

is much greater than the (Euclidean) norms  

‖�̂�(𝑼⇝𝑼)‖ and ‖𝒂(𝑼⇝𝑽)‖ 

of the initial overall valuations in the nodes 𝑼 and 𝑽 as evaluated from the 

viewpoint of the user(s) of 𝑼 at the preceding moment 𝒕: 

‖𝜷′̂(𝑼⇝𝑼)‖ ≥ 𝒎𝒂𝒙{‖�̂�(𝑼⇝𝑼)‖, ‖𝜷(𝑼⇝𝑽)‖ }. 

iv. The (Euclidean) norm ‖𝒃′̂(𝑼⇝𝑼)‖ of the resulting overall vulnerability in the 

variant node 𝑼 as evaluated from the viewpoint of the user(s) of 𝑼 at the next 

moment 𝒕′ is less than the (Euclidean) norms 

‖�̂�(𝑼⇝𝑼)‖ and ‖𝒃(𝑼⇝𝑽΅΅)‖ 

of the initial overall vulnerabilities in the nodes 𝑼 and 𝑽 as evaluated from the 

viewpoint of the user(s) of 𝑼 at the preceding moment 𝒕: 

‖𝒃′̂(𝑼⇝𝑼)‖ < 𝒎𝒊𝒏{‖�̂�(𝑼⇝𝑼)‖, ‖𝒃(𝑼⇝𝑽)‖ }. ∎ 
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The importance of this attack is high since most of the time, especially during 

distributed one, the nodes that participate are already compromised via Access attack 

that has already discussed. 
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