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Testing how a chosen model fits the data and checking the effectiveness of the present model is
important in statistics to be efficient. In this paper, the analysis of residuals was used to evaluate
BUSOGO Climate Statistical Model. Some variable selection method (stepwise selection) has been
used to decide how the rainfall can be predicted at BUSOGO region. The predicted values (Yi) were
found and a residual plot was constructed against the fitted values, and the assumptions made for
the selected model were verified and outliers were identified. Residual plots were investigated for
setting up a mean shift model for each observation and the distribution and independence of Ri was
assessed. Furthermore, n statistic tests (Ti) about µ for each residual test were conducted. by using
null hypothesis (H0 : µ = 0) against alternative hypothesis (H1 : µ 6= 0). Findings showed that the
glass minimum temperature and the relative humidity are the major attributes to predict rainfall at
BUSOGO region. The test of normality shows that the observed sample comes from a distribution
which is normal. Outliers analysis showed that null hypothesis (µ = 0) is accepted. This implies
that there are no outliers in the selected model.
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1. Introduction

In statistical analysis, one of the main objectives is to test how a chosen model fits the data and check whether
these data fulfill the chosen model assumptions. However, there exist many ways of doing this and different
statistical tests for evaluating the model assumptions. One of these ways is the so called analysis of residuals where
the residuals are defined to be the deviation from the observed value to the predicted ones in the model. Thus, by
looking carefully at the residuals one can observe whether the assumptions made are reasonable and of course if
the choice of the model is appropriate. In this work we will proceed as said above and investigate the fitness of a
selected model (Busogo climate model) for made assumptions by studying different residual plots and there after
perform the analysis for patterns and trends.

however, at the ISAE-BUSOGO station, recording rainfall data on daily basis is particulary important. This
is very laborious and makes the system less predictable for the future; resulting in lack of planning for farmers
for example in cropping periods. Besides, no available predicting model that has been developed at the present
station until today. Other major factors include the role of every parameter involved in the model, interpretation of
coefficients, etc. In this paper the main problem is to find the ”best” subset of independent variables in the model

Y = Xβ + ε (1)

using one (or more) of the model selection criteria; where Y is a n × 1 vector of observations of the response
variable, β is a p× 1 vector of parameters to estimate, ε is a n× 1 vector of random errors and X is a fixed n× p
design matrix.

Then, the development of the present model will proceed by different steps, such as proposing a regression
equation, model diagnostic, results understanding, etc. Therefore we want to use numerical or graphical methods
to analyze the assumptions. The statistical method commonly used is the residual analysis.

Therefore, the rainfall is a major characteristic of climate system, and is used to determine climate fluctuations
due to having a significant influence on ecosystem. Latitude, altitude, flora, and landscape are the main factors of
climate variations from one place to another. Other climate variations include seasonal, annual, centurial, or even
for much longer time. Climate change or climate variability refers to significant variations of the mean of the climate
data over at least a decade. In this paper, the broad objective is to develop a predicting model of monthly rainfall
at BUSOGO region based on daily records on climatic elements and to perform a residual analysis. The variables
are: X1 : temperature under Stevensoon (Celsius degree), X2 : glass minimum temperature (Celsius degree), X3 :
maximum temperature (Celsius degree), X4 : minimum temperature (Celsius degree ), X5 : soil temperature on
10cm (Celsius degree), X6 : soil temperature on 20cm (Celsius degree), X7 : cloud cover (in octas), X8 : sunshine (in
hours)/day, X9 : evaporation under Stevensoon screen (in mm), X10 : back evaporometer (in mm), X11 : relative
humidity (in percentage), X12 : vapour pressure (in hPa) and Y : precipitation (Rainfall) (in mm)/day.

2. Methodology

In order to achieve our objectives we will proceed as follows:

(i) Use some variable selection method to decide how the rainfall can be predicted.

(ii) Find out the predicted value Ŷi.

(iii) Calculate the residuals Ri = Yi − Ŷi, where Yi is n× 1 vector of observations of the response variable,

(iv) Construct a residual plot against the fitted value, verify the assumptions made for the selected model and
identify outliers.

(v) By investigating the residual plots, set up a mean shift model for each observation: Ri = µzi + ε, where zi = 1
for the ith observation and 0 elsewhere. Investigate the distribution of ε and check the independence of Ri.

(vi) Construct n test statistics Ti about µ, such that for each residual test via Ti the hypothesis is

H0 : µ = 0

against

H1 : µ 6= 0.

The present study will focus on two aspects. The first will be the regression diagnostic by using residual analysis
through statistical tests and plotting. Another aspect is model improvement by variable selection. For the fitted
regression model, the relationship between each predictor and the response variable is approximately linear. This
assertion is verified by drawing a scatter plot and checking if predictors and the response variable are linked by a
linear relationship. The assumptions related to residuals are highlighted as follows. The residuals are:
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• uncorrelated and

• normally distributed with mean zero; i.e E(ε) = 0 and constant variance σ2.

From the summary statistics, such as SSR (Sum of square of regression), SSRes (Sum of square of residuals),
t-and F-test statistics or R2 (coefficient of determination) it can be very hard (or impossible) to tell whether the
assumptions are satisfied or violated.

2.1. Matrix Form of Multiple Linear Regression

Let Y denote the dependent variable that is linearly related to p− 1 independent (or explanatory) variables X’s
through the parameters β’s and write the corresponding model as follows:

Yi = β0 + β1Xi,1 + β2Xi,2 + · · ·+ βp−1Xi,p−1 + εi. (2)

The model above is called multiple linear regression model, where i = 1, · · · , n. The parameters βi’s are the
regression coefficients associated with Xi,p−1’s respectively and ε is the error vector. The matrix form of this model
is of the form:


Y1
Y2
...
Yn


︸ ︷︷ ︸

Y

=


1 X1,1 X1,2 . . . X1,p−1
1 X2,1 X2,2 . . . X2,p−1
...

...
...

. . .
...

1 Xn,1 Xn,2 . . . Xn,p−1


︸ ︷︷ ︸

X


β0
β1
...

βp−1


︸ ︷︷ ︸

β

+


ε1
ε2
...
εn


︸ ︷︷ ︸

ε

. [?]

It is clear that our model has the matrix form

Y = Xβ + ε. (3)

2.2. Estimation

Consider the model 3 and the assumptions made here above and let B be the set of all possible vectors β.
Note that ε = Y −Xβ. The sum of squared residuals [? ] is

SSRes =

n∑
i=1

ε2i = ε′ε = (Y −Xβ)′(Y −Xβ). (4)

The aim is to find a vector β̂ = (β̂1, ..., β̂n) from B that minimizes 4. Let us rewrite 4 as

SSRes = Y ′Y + β′X ′Xβ − 2β′X ′Y. (5)

To find the value of β that minimizes 5, we differentiate 4 with respect to β. We obtain

∂SSRes
∂β

= 2X ′Xβ − 2X ′Y.

Set the first derivative to zero (first order condition) yields what are called the normal equations

X ′Xβ̂ = X ′Y.

If X is of full rank p, then X ′X is positive definite and we obtain a unique solution

β̂ = (X ′X)−1X ′Y (6)

where β̂ is a minimizer of

SSRes = (Y −Xβ)′(Y −Xβ),

the sum square of residuals (SSRes) [? ? ]. Thus we have the estimator Ŷ of Y given by

Ŷ = Xβ̂. (7)
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2.3. Prediction Matrix

One can see that Ŷ = Xb = X(X ′X)−1X ′Y = PY , where

P = X(X ′X)−1X ′ (8)

is called the prediction matrix (Hat matrix) which is symmetric and idempotent. We call this ”Hat matrix”,

because it turns Y ’s into Ŷ . Hat matrix relates the fitted values to the observed values. It describes the influence
each observed value has on each fitted value and contains useful information for detecting outliers and identifying
influential observations.

2.4. Residuals

From the defined prediction matrix 8, we define the residual vector as

R = Y −Xβ̂
= Y −X(X ′X)−1X ′Y

= [In −X(X ′X)−1X ′]Y

= MY

where In denotes the identity matrix and M = In − X(X ′X)−1X ′ is a symmetric idempotent matrix. For
idempotent matrices the rank is equal to the trace. Substituting for Y we obtain:

R = M(Xβ + ε)

= MXβ +Mε

Since

MX = (In −X(X ′X)−1X ′)X

= X −X
= 0

Thus

R = (I − P )ε [?] (9)

2.5. Variable selection in multiple linear regression

Regression analysis has three major applications: description, control and prediction.
The method of sustainable regressions is infeasible when the number of predictors is large. A common alternative

method in this case is focused on applying a stepwise algorithm. There exist three types of stepwise procedures
available: forward addition, backward elimination and stepwise search [? ? ? ].

Forward addition begins by determining which one of the X-variables provides most information about Y .
This variable is retained in all future models. At the second stage the procedure considers the remaining (p − 1)
variables and determines which, in conjunction with the first variable, provides most additional information about
Y . This procedure continues until there are no further variables that make useful extra contributions to the fit of
the model.

Backward elimination represents forward selection by starting with the model containing all X-variables and
removing ineffective variables one by one. A variable is considered to be ineffective if its contribution results in a
value for the F -test that fails to exceed the critical valueF to remove in the model.

Stepwise search itself is more similar to the forward addition algorithm. Therefore, as in the forward addition,
the most significant variable is added to the model at each step, if its corresponding F−test is significant at the level
of α to enter. However, before the next variable is removed in, the stepwise search procedure takes an additional
look-back step to check all variables contained in the current model and deletes any variable that has a p-value
greater than α to stay.
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2.6. Measures based on residuals

The residuals play an important role in regression diagnostics, since the ith residual Ri may be regarded as
an appropriate guess for the unknown random error εi. The relationship R = (I − P )ε implies that R is a good
estimator for ε if (I − P ) ≈ I [? ], that is, if all pij are sufficiently small and if the diagonal elements pii are
of the same size. Furthermore, even if the random errors εi have the property E(εε′) = σ2In, it follows that the
identity R = (I − P )ε shows also that the residuals are not independent (unless P is diagonal) and do not have
the same variance (unless the diagonal elements of P are equal). Consequently, the residuals can be expected to be
reasonable substitutes for the random errors if the following hold:

• the diagonal elements pii of the matrix P are almost equal, that is, the rows of X are almost homogeneous,
implying homogeneity of variances of the εi and

• the off-diagonal elements pij , (i 6= j) are sufficiently small, imply uncorrelated residuals.

We may use transformed residuals for diagnostic purposes. This means that instead of using Ri we should use a
transformed standardized residual, say ri = Ri/σ̂i, where σ̂i is the standard deviation of the ith residual. We can
obtain several standardized residuals with specific diagnostic power according to different choices of σ̂i. For our
choice, we will need the so called Studentized residual. This can be defined as externally or internally as follows.

For internally Studentized residual, with σ̂i = s
√

1− pii, we have

ri =
Ri

s
√

1− pii
, (i = 1, · · · , n). [?] (10)

Note that σ is unknown and it can be estimated by s, where s is the mean square error of a regression model defined
by

s =
√

(R′R)/(n− p). (11)

The externally Studentized residual follows by assuming that the ith observation is omitted. This fact will be
indicated by writing the index (i) in brackets. Using this indicator, we may define the estimator of σ2

i with the ith

row (Yi, Xi) omitted as

S2
(i) =

Y ′(i)(I − P(i))Y(i)

n− p− 1
, (i = 1, · · · , n) (12)

and by taking

σ̂i = s(i)
√

1− pii,

we have that the ith externally Studentized residual is defined as

r∗i =
Ri

s(i)
√

1− pii
, (i = 1, · · · , n). (13)

2.7. Linear model of residuals

After fitting a multiple regression model, and calculate the parameter estimates, we need to make analysis of the
residuals in order to detect the outliers. Once the outliers are detected, we consider the so called ”mean shift model
for outliers”. This is defined as:

Y = Xβ +Ri (14)

with

Ri = ziµ+ εi

where zi is the ith unit vector, so that z′i = (0, · · · , 0, 1, 0, · · · , 0). This model is known as the linear model of
residuals and it is used to test the systematic deviation between Yi and Xβ from the model (1). To do this we need
to test the hypothesis

H0 : µ = 0 =⇒ E(Y ) = Xβ

against the alternative

H1 : µ 6= 0 =⇒ E(Y ) = Xβ + ziµ
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and this using the t−test statistic;

ti =
Yi − Ŷi

S(i)

√
1− pii

∼ tn−p−1 (15)

In this case the ith observation is a potential mean shift outlier and then S2 is a biased estimate of the error variance
σ2; therefore, to construct the above test statistic, we would prefer to use the leave-one-out S(i) and replacing σ by

S(i). This t−statistic is often called the R−student statistic. If the ith observation is a mean shift outlier, so the

t−statistic tends to be larger and the rejection of H0 implies that the ith observation may be a possible mean shift
outlier [? ].

3. Results and Discussion

3.1. Variable selection

The data are recorded at ISAE-BUSOGO station. We will now illustrate model choice in detail by means of the
introduced criteria on the basis of a data set. Consider the following model with 12 real regressors and N = 66
observations referring to our data set.

Yi = β0 + β1Xi,1 + β2Xi,2 + β3Xi,3 + β4Xi,4 + β5Xi,5

+ β6Xi,6 + β7Xi,7 + β8Xi,8 + β9Xi,9 + β10Xi,10

+ β11Xi,11 + β12Xi,12 + εi, i = 1, 2, · · · , 66.

3.1.1. Procedure of stepwise selection

Using Matlab software,

1. The stepwise procedure starts with no variables in the model and chooses the predictor with the largest
correlation in absolute value with Y , as shown in Table 1.

TABLE 1. Xi in the correlation with Y

Xi X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Correlation
with Y

0.1252 0.4749 -0.1747 0.4123 0.1791 0.1695 0.4714 -0.2352 -0.4902 -0.2291 0.5755 0.3658

2. Test if this predictor is significant: β1 = 0 against β1 6= 0.

3. Take the first chosen predictor and add one predictor at the time: (choose the one with smallest SSRes) and
test if this predictor is also significant: (β2 = 0 against β2 6= 0).

4. Repeat 3).

For our case, stepwise procedure starts with no variable in the model and first chooses the variable X11: relative
humidity ( Figure 1), since X11 shows the largest correlation with Y ; i.e 0.5755 as shown in Table 1.

FIG. 1. Step 1: Variable Relative humidity entered

The upper left hand displays estimates of the coefficients for all potential terms, with horizontal bars indicating
90% (colored) and 95% (grey) confidence intervals. The red color shows that, initially, the terms are not in the
model.
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3.1.2. Step 2: Variable glass minimum temperature entered

The chosen next step adds the most significant term (X2: Glass minimum temperature) in the model (Figure
2). At this level, the stepwise procedure computes the t-statistic for each variable currently in the model and for
its estimated coefficient; squares it and describes this as its ”F-to-remove” statistic. Thereafter, it computes the
t-statistic for each variable not in the model that its coefficient would have if it was the next variable added; squares
it and reports this as its ”F-to-enter” statistic.

FIG. 2. Step 2: Variable glass minimum temperature entered

At the level 3, the stepwise procedure shows that there is no new predictor that can be entered in the model. It
means that the predictors: X2; and X11 are added in the model whereas X1, X3, X4, X5, X6, X7, X8, X9, X10,
X12 do not contribute significantly to the model. Therefore, those ones are eliminated from the model. As a result,
our model will be:

Ŷi = β0 + β2Xi,2 + β11Xi,11 (16)

One can say that the rainfall at BUSOGO region depends on the glass minimum temperature and on the relative
humidity. Others attributes do not contribute significantly to the model.

3.1.3. Model summary

The model summary in Table 2 presents two models: model 1 refers to the first stage and contains X11 as
predictor. Model 2 refers to the final model and contains X11 and X2 as predictors.

TABLE 2. Model Summary.

Model R R square Adjusted Std. Error of Change Statistics
R square the estimate R square change F change df1 df2 Sig. F change

1 .575a .331 .321 1.53829 .331 31.690 1 64 .000

2 .634b .401 .382 1.46679 .070 7.391 1 63 .008

[1.] Predictors in the model: (Constant), X11

[2.] Predictors in the model: (Constant), X11, X2

3.1.4. ANOVA

The ANOVA shown in Table 3 gives a formal F test for the parameters effect. Therefore, we have to test the
null hypothesis H0: all regression coefficients are zero, against alternative hypothesis H1: all regression coefficients
are not zero. This statistic follows an F distribution with p and N − p − 1 degrees of freedom. For our case in
the model 1, the critical F value for α = 0.05, p = 1, and N − p − 1 = 64 degree of freedom is 3.99. Since the
F statistic 31.697, is greater than the critical value, H0 will be rejected. In the model 2, the critical F value for
α = 0.05, p = 2, and N − p − 1 = 63 degree of freedom is 3.142 . Since the F statistic 21.114, is greater than the
critical value, we conclude that H0 is rejected and we say that all regression coefficients in the model 1 and in the
model 2 are significant and the model 2 improves significantly our ability to predict the rainfall.
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TABLE 3. Anova.
Model Sum of square df Mean square F Sig.
1 Regression 75.052 1 75.052 31.697 .000a

Residual 151.537 64 2.368
Total 226.588 65

2 Regression 90.931 2 45.465 21.114 .000b

Residual 135.658 63 2.153
Total 226.588 65

[1.] Predictors in the model: (Constant), X11.
[2.] Predictors in the model: (Constant), X11, X2

3.1.5. Coefficients

For all those steps, if we compare t-statistic to enter in the model with

t(α,N−p−1) = 1.6694

we find that t-statistic is always greater than t(α,N−p−1), as shown in Table 4. In this case, we reject H0: βi = 0
for i = 2, 11 and the chosen model will be

Ŷi = −16.384 + 0.446Xi,2 + 0.202Xi,11.

Compare now the model with all variables: i.e, we test if

β1 = β3 = β4 = β5 = β6 = β7 = β8 = β9 = β10 = β12 = 0.

TABLE 4. Betas.
Unstandardized Coefficients Standardized

Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) −17.251 3.782 −4.462 .000

X11 .254 .045 .576 5.630 .000
2 (Constant) −16.384 3.620 −4.526 .000

X11 .202 .047 .459 4.305 .000
X2 .446 .164 .289 2.716 .009

3.1.6. ANOVA of the model [2′]

Consider:

• the model [1′] :

Yi = β0 + β2Xi,2 + β11Xi,11 + ε.

• the model [2′] :

Yi = β0+β1Xi,1+β2Xi,2+β3Xi,3+β4Xi,4+β5Xi,5+β6Xi,6+β7Xi,7+β8Xi,8+β9Xi,9+β10Xi,10+β11Xi,11+
β12Xi,12 + ε.

We have to test the hypothesis: H0: all regression coefficients are zero (not β2 and β11); ( H0 cannot be rejected
at the 5% significance level), against alternative hypothesis H1: all regression coefficients are not zero; (the null
hypothesis can be rejected at the 5% level). The test statistic applied here is

W =
(SSE(1) − SSE(2))/p

SSE(2)(/N − (k + p)− 1)
∼ F (p,N − (k + p)− 1). [?] (17)

With p = 10 and k = 2. We reject H0 if W > C = F1−α(p,N − (k + p)− 1)
According to the Table 3 and the Table 5, the equation 17 becomes

W =
(135.658− 123.096)/10

123.096/63
= 0.642918.

As C = F1−α(p,N − (k + p)− 1) is 0.379983, this implies that C < W and we reject H0. These, we conclude that
all predictors (not β2 and β11) don’t make a significant contribution to predict the rainfall at BUSOGO region.
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TABLE 5. Anova of the model [2′]

Model Sum of squares df Mean square F Sig.
2′ Regression 103.339 12 8.612 3.708 .000a

Residual 123.096 53 2.323
Total 226.434 65

3.2. Residual analysis

According to the Figure 3, the residuals are evenly distributed on both sides of X−axis. This implies that the
assumptions E(εi) = 0 and constant variance V ar(εi) = σ2 are appropriate and the normality assumption is verified
here by sketched histogram of residuals, by the normal plot of residuals and by the test of normality. After this we
will test if the outliers, represented by the red bars, are significant.

FIG. 3. Residual plot

3.3. Test of normality

According to the Figure 4, the distribution of residuals approximates a normal distribution. Therefore we should
always check if this assumption is efficient by test.

(a) (b)

FIG. 4. (a) Normal Plot and (b) Histogram of Residuals

We know that for the data set small than 2000 elements, we use the Shapiro-Wilk test, otherwise, the Kolmogorov-
Smirnov test is used [? ]. In our case, since we have only 66 elements, the Shapiro-Wilk test is preferred. In the
last column of the Table 6, the p-value (0.780) is greater than alpha 0.05. We can reject the alternative hypothesis
(H1: the data are not normally distributed) and accept the null hypothesis (H0: the data are normally distributed.
Therefore we conclude that the data comes from a normal distribution.
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TABLE 6. Test of normality.

Kolmogorov-Smirnov Shapiro-Wilk
Statics df Sig. Statics df Sig.

Residuals .061 66 .200a .988 66 .780

3.4. Detection of Outliers

From the section 3.1 we have selected model containing the dependent variable Y and the predictors X2, X11.
Therefore, this model is detected to be the best compared to others. The remaining task is to identify if there
are some outlier observations in the new fitted model. The calculated t-statistics ti were found to be less than
tα,N−p−1 = t0.95,63 = 1.6694. Thus, our null hypothesis H0 : µ = 0 is accepted; it implies that there are no outliers
in our selected model. Next if we look at the residual plot (Figure 3) and referring to our test analysis, we conclude
that the intervals shown in red are not really outliers. Hence, the residuals

Ri = µzi + εi

are independent and εi are normally distributed.

4. Conclusion

In statistical study, it is important to assess if a model under study fits the data and check whether these data
fulfill the chosen model assumptions. This can be done in different ways, including analysis of residuals, and this
can be done on different parameters. Climate fluctuation is one of these parameters that can be studied. One
of major factors of climate fluctuation is rainfall. In this work, the major objective was to develop a predicting
model of monthly rainfall at BUSOGO region based on daily records on climatic elements and to perform a residual
analysis. The variables were: temperature under Stevensoon, glass minimum temperature, maximum temperature,
soil temperature, cloud cover, sunshine, evaporation under Stevensoon screen, Back evaporometer, relative humidity,
vapour pressure, and precipitation (Rainfall).
The stepwise selection method has been used to decide how the rainfall can be predicted at BUSOGO region.
The findings from the present work show that the rainfall at BUSOGO region depends on the glass minimum
temperature (X2) and on the relative humidity (X11). Therefore, the chosen model that can predict rainfall at
BUSOGO region is:

Ŷi = −16.384 + 0.446Xi,2 + 0.202Xi,11.

The test of normality and outliers detection have been assessed and has shown that the data set comes from a
distribution which is normal and there are no outliers in the selected model. Hence, the residuals Ri = µzi + εi is
independent and εi is normally distributed.
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