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Abstract

Black and Scholes (B-S) in 1973 introduced the famous B-S formula

for pricing a European-style stock option. The B-S formula depends

on some assumptions that are too restrictive and cannot be entirely

met. This paper relaxes some of the assumptions underpinning the B-

S model by deriving the equity price process within the framework of

a vector autoregressive (VAR) model using stock market indices. The

constant risk-free interest rate is replaced by a cointegrated VAR (CO-

VAR) model using Treasury securities. Value of a European call option

via Monte Carlo simulation is provided. We used antithetic and control

variates as variance reduction techniques to improve upon the accuracy

of our simulation.
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1 Introduction

An option is an agreement that gives the right to sell or buy an underlying

risky asset at a given price on a predetermined date. There are two types of

options: puts and calls [1]. In terms of style, options are either European or

American. While American-style options are exercised at any time before the

expiration date, European-style options are exercised only at the expiration

date.

The B-S method for modeling European option prices was first introduced

in 1973, by [2] and [3], after which the model is named. The pricing model

under B-S is premised on several assumptions, such as constant volatility, fixed

and known risk-free interest rate. These assumptions are restrictive and cannot

be met entirely; therefore; applying the standard B-S formula to real-world

situations result in an erroneous price of an option.

There are many econometric models that have been introduced in the litera-

ture. Perhaps the most widely applied in modeling the risky asset price, but on

no account, the only such model is Autoregressive Conditional Heteroscedastic-

ity (ARCH) models [4]. Then it was followed by [5] who extended the ARCH to

a Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model.

Both the ARCH and GARCH have improved the pricing performance of the

B-S option pricing formula [6, 7].

According to the literature, time-varying interest rate also has attracted

considerable attention. It was first introduced by [3], a few empirical studies

incorporating stochastic interest rates [8, 9, 10] followed afterward.

Thus, the big question, of course, is: Whether time-varying interest rates

incorporating the common stochastic trends among Treasury rates could be

indispensable in pricing a European-style option? Inspired by this question,

this paper relaxes the constant risk-free interest rate assumption underlying

the B-S model by incorporating a time-varying model that follows a COVAR

process. As empirical evidence has indicated that the geometric Brownian

motion (GBM) process underlying the series of first differences of the log of

asset prices are not uncorrelated, this paper introduces correlation in the first

differences of the log of asset prices through VAR process.

The purpose of this paper is twofold. The first is to introduce two multi-

variate time series for modeling the risky asset price and the risk-free interest
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rate processes. The second is to employ simulation methods to arrive at the

value of a European-style option. The remainder of the paper is organized

as follows. Section 2 presents VAR and COVAR processes for modeling the

risky asset and the risk-free interest rate, respectively. Section 3 demonstrates

the empirical results of the VAR process using the Standard & Poor’s 500

(S&P 500), the National Association of Securities Dealers Automated Quota-

tions (NASDAQ), and the Dow Jones Industrial Average (DJIA) indices and

the COVAR process using the U.S 3-month Treasury bill (TB3MS), 6-month

Treasury bill (DTB6), and 1-year Treasury bill (DTB1YR) rates. These rates

were from the secondary market. Section 4 introduces risky asset dynamics

and pricing formulas of B-S. Section 5 highlights the crude MC method and

variance reduction techniques used to arrive at the option price. Extensive

results are presented in section 6, and section 7 concludes the paper.

2 Risky Asset Returns and the Risk-free In-

terest Rate Models

This section presents the VAR model for calculating the risky asset returns

and the COVAR model for determining the risk free-interest rates.

2.1 Risky Asset Return model

The risky asset return process follows a VAR model. The log returns of a risky

asset is presented as follows:

xt = log (1 + rt)

where rt is the actual returns and it can be obtained by the following expres-

sion:

rt =
Pt
Pt−1

where Pt−1 and Pt are the risky asset price at time t− 1 and t, respectively. A

multivariate times series xt follows a VAR(p) process if it satisfies (1):

xt = b+ Φ1 xt−1 + ...+ Φk xt−k + εt p > 0 (1)
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where b is k-dimensional vector, Φ is k × k matrix, and {εt} is a sequence

of serially uncorrelated random vectors with mean zero and a positive definite

covariance matrix Σ [1]. The VAR model of order 1 (VAR (1)) can be obtained

by letting p = 1.

The first step in building a VAR(p) model is to specify an order of p i.e.

p = 0, ..., p = pmax, which by selecting a value of p that minimizes some infor-

mation criteria. The following criteria were used in this paper: Akaike informa-

tion criterion (AIC), Bayesian information criterion (BIC), and Hannan-Quinn

information criterion (HQC) [11, 12, 13]. Once a value of p has been deter-

mined, then methods to test the existence of unit-root in time series follows.

These tests are the Augmented Dicky Fuller (ADF) test by [14] and Philip and

Perrion (PP) test by [15]. Also, several tests are used for diagnostic purpose

(residual analyses). The purpose of model checking is to ensure that fitted

VAR(p) model are adequate and not over fitted. The portmanteau test in [16]

is used to check that there are no cross or auto autocorrelation in vector series

xt.

The estimation of VAR(p) parameters under the assumption of a known

value of p can be accomplished by the ordinary least squares (OLS) method

or the maximum likelihood (ML) method. Details on OLS and ML methods

for a VAR model are provided by [17, 18] and [19] respectively. According

to [20] the OLS and ML, under some regularity conditions, the estimates are

asymptotically normal. Thus, a test of normality can be performed using

Jarque-Bera (JB) test- a statistical test often used for residual analysis [21,

22, 23].

2.2 Risk-free Interest Rate Model

The risk-free interest rate model follows a COVAR process. The VAR model in-

troduced in the previous subsection is appropriate for handling stationary time

series (I(0)). It is well-known that modeling several unit-root nonstationary

(I(1)) time series exhibit equilibrium relationship in the long run (cointegra-

tion). A systematic process for cointegration in this paper is followed to what

is introduced in [1]. To comprehend cointegration in a better way, re-write (1)

in such a way that b is replaced by a deterministic function: bt = b0+b1t, where

b0 and b1 are k-dimensional constant vectors. The characteristic polynomial is
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defined as:

|Φ (B)| = |I − Φ1B − ...− ΦpB
p|

if all the zeros of |Φ (B)| are outside the unit circle, then xt is I(1). Adding

the error-correction term Πxt−1 to a VAR(p) model in differences produces the

vector error-correction (VEC) model:

∆xt = bt + Π xt−1 + Φ∗1 ∆xt−1 + ...+ Φ∗t−p+1 ∆xt−1 + εt (2)

Assume 0 < rank(Π) = m < k, then xt is cointegrated with m linearly

independent cointegrating vectors, and k − m unit-roots that gives k − m

common stochastic trend of xt. A COVAR model can be estimated by ML

method presented in [19]. The rank of Π can be tested using likelihood ratio

(LR) tests in [24]. In this paper, the Johannsen trace and maximal eigenvalue

tests were conducted. Critical values of these test statistics are nonstandard

but evaluated via simulations, see [25] for details.

3 Empirical Results

This section provides the empirical results of the two processes introduced in

section 2. The data used in this paper for the stock returns were the monthly

average stock market indices and the risk-free interest rate were the Treasury

security bills.

3.1 Descriptive Statistics

Table 1 illustrates minimum and maximum monthly return values, standard

deviation, skewness, and kurtosis. The table shows that, the mean returns

for the three stock market indices were all positive, ranging from a minimum

of 0.006859 (DJIA) to a maximum of 0.010125 (NASDAQ). The table further

reveals that, the three series were negatively skewed. It can also be noticed

that the sample standard deviation for DJIA stock returns was the highest

(0.034493), while that of the NASDAQ was the lowest (0.044224). The three

stock returns showed evidence of positive kurtosis, as well as heavy-tailed.

The normality test based on the JB statistic is also shown in Table 1. It is

indicative from the table that, the probability value of all series is greater than

the 5% significant level.
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Table 1: Descriptive statistics for return series

S&P 500 NASDAQ DJIA

Mean 0.008202 0.010125 0.006859

Median 0.010999 0.011026 0.011602

Min. -0.085532 -0.086591 -0.099558

Max. 0.102307 0.113711 0.059671

Std. Dev 0.037596 0.044224 0.028459

Variance 0.001413 0.001955 0.000809

Skewness -0.202624 0.159546 -1.055568

Kurtosis 3.019715 2.689164 4.779707

JB 0.528140 0.636660 24.461000

p-value 0.767900 0.727400 0.000004

Sources: S&P 500, NASDAQ, and DJIA indices for the period December 2009

to August 2016 [27].

Table 2 presents the summary statistics for the 3-month, 6-month, and

1-year Treasury bill rates. The table shows that, the highest mean return

is reported for DTB1YR followed by DTB6 and TB3MS. The table further

display the three series are positively skewed. Also, they show evidence of

positive kurtosis, but also heavy tailed.
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Table 2: Descriptive Statistics for Treasury Bills

TB3MS DTB6 DTB1YR

Mean 0.000824 0.001431 0.002222

Median 0.000600 0.001150 0.001800

Min. 0.000100 0.000400 0.000900

Max. 0.003100 0.004900 0.006400

Std. Dev 0.000693 0.001016 0.001324

Variance 0.000000 0.000001 0.000002

Skewness 1.444716 1.831815 1.479051

Kurtosis 4.759633 6.109353 4.682721

JB 37.19700 75.04300 37.64100

p-value 8.372× 10−9 2.2× 10−16 6.704× 10−9

Sources: TB3MS, DTB6, and DTB1YR rates. These rates were from secondary

market, from December 2009 to June 2016 [28].

3.2 Unit-Root Tests and Lag Length Selection

A crucial issue in practice is distinguishing between I(0) process and one which

is I(1). This part of the empirical analysis further attempts to determine

whether a time series is consistent with a unit root. In this paper the ADF,

and PP tests were used to check the presence of unit roots in both the return

in the stock indices and the Treasury securities series.

Table 3 illustrates the test results. The results indicate that the null hy-

pothesis of the presence of unit root in S&P 500, NASDAQ and DJIA return

series can be rejected at 1% level of significance, concluding that all the three

return series were I(0). According to the AIC and HQC in Table 5, the opti-

mal lag lenght was two with values −23.88, and −23.67, respectively, however,

the BIC criterion shows an optimal lag length of 1, with value of −23.41. It

can be concluded that the smallest value is −23.88, which is associated with

lag 2. However, priority is given to lag 1 on the grounds of parsimony.
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Table 3: ADF and PP Tests for the Three Stock Markets.

Stock Index ADF Test PP Test

Test Statistic p-value Test Statistic p-value

S&P 500 -7.2853 0.01 -9.9914 0.01

NASDQ -7.3896 0.01 -10.2120 0.01

DJIA -7.1648 0.01 -8.0902 0.01

Table 4: ADF and PP Tests for the Three Treasury Bills.

Treasury bill ADF Test PP Test

Test Statistic p-value Test Statistic p-value

TB3MS -1.2330 0.5980 -1.1216 0.9132

DTB6 -0.9893 0.6875 -0.8746 0.9510

DTB1YR -0.1423 0.9363 -0.4203 0.9830

The ADF and PP unit root tests confirm that the three Treasury bills are

I(1). The tests include the case of no trend (constant) as a deterministic term.

That is, the I(1) series of Treasury bills can be represented by a COVAR model,

and the information criteria were used to determine the order. The order p = 3

was chosen by both BIC and HQC.

Table 5: Appropriate lag order for the Three Stock Return

p AIC BIC HQC p-value

0 -23.1335 -23.1335 -23.1335 0.0000

1 -23.6855 -23.4116 -23.5760 0.0000

2 -23.8893 -23.3414 -23.6701 0.0033

3 -23.7894 -22.9675 -23.4606 0.6203

4 -23.6619 -22.5661 -23.2236 0.8010

5 -23.5299 -22.1601 -22.9820 0.8488
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Table 6: Appropriate lag order for the Three Treasury Bills

p AIC BIC HQC p-value

0 -46.2975 -46.2975 -46.2975 0.0000

1 -50.4459 -50.1759 -50.3377 0.0000

2 -50.6798 -50.1399 -50.4635 0.0014

3 -51.1507 -50.3408 -50.8262 0.0000

4 -51.2349 -50.1552 -50.8023 0.0593

5 -51.2292 -49.8795 -50.6885 0.2760

6 -51.2735 -49.6539 -50.6246 0.1789

7 -51.1755 -49.2860 -50.4185 0.7744

8 -51.1920 -49.0325 -50.3269 0.3589

9 -51.2786 -48.8492 -50.3053 0.2254

10 -51.4114 -48.7120 -50.3299 0.1896

11 -51.4820 -48.5127 -50.2924 0.4009

12 -51.6226 -48.3833 -50.3249 0.3116

13 -51.7315 -48.2223 -50.3256 0.4762

3.3 The VAR (1) Process

The estimated matrix equations from the three stock returns are as follows:

 SP500t

NASDQt

DIJNt

 =



0.009

(0.047)

0.011

(0.034)

0.006

(0.077)


+



−0.137 −0.366 0.682

(0.742) (0.453) (0.021)

−0.073 0.078 0.244

(0.835) (0.849) (0.320)

0.288 0.274 −0.260

(0.0.249) (0.236) (0.061)


 SP500t−1

NASDQt−1

DJIAt−1

+

 ε1t

ε2t

ε3t

 (3)

where the p-values are in parenthesis below each coefficient and the residual

covariance matrix is

Σ̂ε =

0.0014 0.0016 0.0008

0.0016 0.0019 0.0009

0.0008 0.0009 0.0007


where εt ∼ N (0,Σ)
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3.4 Cointegration Test and Vector ECM Representa-

tion

In empirical studies of multivariate time series, the number of linearly indepen-

dent vectors in a COVAR model affects the model set up and the parameter

estimation procedures at other stages of the analysis. Therefore, the trace

and maximum eigenvalue statistical tests were preformed in this subsection to

verify the exact number. Table 7 illustrates the test for cointegration ranks.

The three eigenvalues for the null hypothesis were 0.295, 0.168, and 0.032,

respectively. It can be noticed that the eigenvalues were all less than 1, in-

dicating that the test is stable. If the the maximum eigenvalue test in [24]

is used, then it can achieved that LRmax (2) = 2.47, LRmax (1) = 14.14, and

LRmax (0) = 26.95. The maximum eigenvalue tests reject with critical values

r = 0, and r = 1, but fail to reject at critical value r = 2. Therefore, there

exist 2 linearly independent cointegrating vectors and one common stochastic

trend. The trace statistic test in [24] were used and reported the following

results: LRtrace (2) = 2.47, LRtrace (1) = 16.61, and LRtrace (0) = 43.56. In

the trace test statistic, the null hypothesis of a cointgeration was not rejected.

Table 7: Cointegration tests for interest rates

Hypothesis Test Statistic Test Statistic

Max 10% 5% 1% Trace 10% 5% 1%

r ≤ 2 2.47 6.50 8.18 11.65 2.47 6.50 8.18 11.65

r ≤ 1 14.14 12.91 14.90 19.19 16.61 15.66 17.95 23.52

r = 0 26.95 18.90 21.07 25.75 43.56 28.71 31.52 37.22

The fitted vector ECM is given as: TB3MSt

DTB6t

DTB1Y Rt

 =

 TB3MSt−1

DTB6t−1

DTB1Y Rt−1

+

−0.691

−0.646

−0.840

ωt +

0.518 −0.205 −0.169

0.640 0.000 −0.365

0.794 0.000 −0.499

∆xt−1

+

0.000 −0.195 0.000

0.275 −1.019 0.338

0.623 −1.333 0.284

∆xt−2 + εt,

(4)
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where

Lag 1 and lag 2 are obtained by replacing t with t − 1 and t − 2 respectively

in xt.

ωt = [1.000,−1.027, 0.254]
′
xt.

Σ̂ε =
1

107

0.50 0.57 0.39

0.57 1.01 0.88

0.39 0.88 1.16


The ADF test for ωt indicates that the series has no unit root. The test statistic

is −2.156 with p-value 0.033.

4 B-S Model

This section introduces the B-S model for pricing a European-style option.

The pricing model is presented below.

Vc (T ) = PtΦ(d1)−Ke−r (T − t)Φ(d2) (5)

Using (5), then,

Vp (T ) = Ke−r (T − t)Φ(−d2)− PtΦ(−d1) (6)

d1 =
ln
(
Pt

K

)
+
(
r + 1

2
σ2
)

(T − t)
σ
√

(T − t)

d2 =
ln
(
Pt

K

)
+
(
r − 1

2
σ2
)

(T − t)
σ
√
T

= d1 − σ
√

(T − t)

where Vc(T ) and Vp(T ) are the value of the call and put option, respectively.

Also, Pt is the current risky-asset price, K is the exercise price of the call or

the put option, r is the annualized risk-free interest rate, T is the future time

to a call or a put option expiration and t is the current time of the risky-asset,

σ is the standard deviation of the logarithmic risky-asset return, and Φ is the

cumulative normal distribution function; that is,

Φ(x) =

∫ x

−∞

1√
2π
e

−t2

2 dt
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The B-S model assumes that the underlying risky-asset moves randomly,

following a GBM process, that is:

dPt = µPt dt+ σ Pt dwt (7)

where wt is a Wiener process [19]. Estimation of the parameters µ and σ is

presented in [1].

Therefore, in the risk-neutral world the value at time t < T of the call

option with payoff at time T is the expected value of the payoff, discounted to

time t, that is

e−r(T−t) [max (P −K, 0)] (8)

Similarly, for the put option

e−r(T−t) [max (K − P, 0)] (9)

5 MC Simulation

This section illustrates the concepts of crude Monte Carlo simulation. It also

discusses the antithetic variates, and control variates as ways of reducing the

variance of MC estimators. Again, it highlights a quite general technique for

pricing a European-style option using crude Monte Carlo methods.

5.1 Crude Monte Carlo (MC)

Let h be a real-valued function and U = (U1, U2, ..., Uk) is a random vector of

independent and identically distributed (i.i.d) U (0, 1) random variables. Run

a simulation of the form X = h(U). Then, the crude MC estimator q is the

sample mean of {Xi} as it is given by [29]

q̂(cmc) =
1

k

k∑
i=1

h (Ui) (10)

=
1

k

k∑
i=1

Xi (11)

where q = Eh (U), with U a random variable uniformly distributed on [0, 1].

It can be noted that the Xi’s are the results of k independent experiments
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that have the same probability distributions as X. In other words, each Xi is

distributed as X. Given that V ar(X) = σ2, then

V ar (q̂) =
1

k2

k∑
i=1

V ar (Xi) =
σ2

k
.

Assuming that σ2 is unknown, it can be estimated through the sample variance

of {Xi}; that is,

S2 =
1

k − 1

k∑
i=1

(h (Vi)− q̂)2 .

For large k, the central limit theorem (CTL) [29, 30] may be used to form

approximate confidence interval for q as follows:(
1

k

k∑
i=1

Xi − z1−α/2
σ√
k
,

1

k

k∑
i=1

Xi + z1−α/2
σ√
k

)
,

where zγ denotes the γ-quantile of the N (0, 1) distribution.

5.2 Variance Reduction

In this section methods to reduce the variance of q̂ are presented, specifically

antithetic, and control variates will be highlighted.

5.2.1 Antithetic Variates (AV)

Let U∗ = (U∗1 , U
∗
2 , ....) be a random vector of i.i.d U (0, 1) random variable

which is independent of U . A pair of real-valued random variables (X,X∗)

are said to be an antithetic pair if X and X∗ for which X and X∗ = h (U∗)

are negatively correlated and have the same distribution. Let k = 2m or

k/2 = m, for some m ≥ 1, that is k is even and (X1, X
∗
1 ) , ..., (Xm, X

∗
m) are

independent antithetic pairs of random variables, where Xi and X∗i share the

same distribution, say X, then the antithetic estimator

q̂(a) =
1

2m

m∑
i=1

(Xi +X∗i ) (12)
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is an unbiased estimator of q = E(X) with variance

V ar(q̂) =
V ar (X) + V ar (X∗) + 2 Cov (X,X∗)

4m2

=
V ar (X) + Cov (X,X∗)

2m

=
V ar (X)

2m
(1 + ρ), (13)

where ρ = Corr (X,X∗). Recall the well known fact that the correlation

estimate between any two random variables should be less than the absolute

value of 1, in other words

−1 ≤ ρ ≤ 1

Since the pair of (X,X∗) are antithetic variables, then we have

−1 ≤ ρ ≤ 0. (14)

Which implies

0 ≤(1 + ρ) ≤ 1. (15)

The variance obtained in (13) leads to a similar result for the crude MC solution

in a manner that as k becomes arbitrarily large, V ar (q̂) shrinks towards 0,

therefore, (13) shrinks as the absolute correlation between X and X∗ increases

as a result of (15). Furthermore, results in (13) and (15) is enhancing the

antithetic estimation, which makes it more accurate than the standard crude

MC [31].

The antithetic estimation process is as follows:

1. Generate X1 = h(U1), ..., Xm = h(Um).

2. Let X∗1 = h(1− U1), ..., X
∗
m = h(1− Um) via independent simulations.

3. Calculate the sample covariance matrix for each pair {(Xi, X
∗
i )}:

Q =

(
1

m−1
∑m

i=1(Xi − X̄)2 1
m−1

∑m
i=1

[
(Xi − X̄)(X∗i − X̄∗)

]
1

m−1
∑m

i=1

[
(Xi − X̄)(X∗i − X̄∗)

]
1

m−1
∑m

i=1(X
∗
i − X̄∗)2

)
.

4. Estimate the mean, q using the antithetic estimator q̂(a) given in (12)

and determine an approximate (1− α) confidence interval as(
q̂(a) − zγ · SE, q̂(a) + zγ · SE

)
. (16)
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Where SE denotes the standard error, which is given by

SE =

√
Q1,1 +Q2,2 + 2Q1,2

4m
, (17)

and zγ is the γ-quantile of the standard normal distribution, i.e., N (0, 1)

[31].

5.2.2 Control Variates (CV)

Let X be the output of a simulation run. A random variable X̃ achieved

from the same simulation run, is called a control variable for X if X and X̃

are negatively or positively correlated and the exception of X̃ is known i.e

EX̃i = q̂(c). Thus, the following illustrates the use of control variables as a

variance reduction method:

Let X1, ..., Xk and X̃1, ..., X̃k be the output of k independent simulation,

and the corresponding control variables, respectively.

Let α ∈ R then the estimator:

q̂(c) =
1

k

k∑
i=1

[
Xi − α

(
X̃i − q̃

)]
(18)

is an unbiased estimator of q = E(X), where q̃ = EX̃i and α =
Cov(X,X̃)
V ar(X̃)

.

with the minimal variance

V ar(q̂(c)) =
1

k

(
1− ρ2

)
V ar(X), (19)

where ρ = Corr
(
Xi, X̃i

)
. The control estimation process is as follows:

1. From k independent simulation runs generate X1, ..., Xk and the control

variables X̃1, ..., X̃k

2. Compute the sample covariance matrix for each pair {(Xi, X̃i)}:

C =

 1
k−1
∑k

i=1(Xi − X̄)2 1
k−1
∑k

i=1

[
(Xi − X̄)(X̃i − ¯̃X)

]
1

k−1
∑k

i=1

[
(Xi − X̄)(X̃i − ¯̃X)

]
1

k−1
∑k

i=1(X̃i − ¯̃X)2

 .

3. Estimate the mean, q̂(c) given in (18) with α = C1,2

C2,2
and determine an

approximate (1− α) confidence interval as(
q̂(c) − zγ · SE, q̂(c) + zγ · SE

)
. (20)
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Where SE is given by

SE =

√
1

k

(
1−

C2
1,2

C1,1C2,2

C1,1

)
, (21)

and zγ is the γ-quantile of the standard normal distribution, i.e., N (0, 1).

Recall (8), the discounted payoff for a European call. To obtain the crude

MC European call option price, let

Xi = e−r(T−t) ·max{P (i)
T −K, 0}

for i = 1, ..., k.

To arrive at the AV European call option option price , let

Xi = e−r(T−t) ·max{P (i)
T −K, 0}

for i = 1, ...,m.

Similarly,

X∗i = e−r(T−t) ·max{P ∗(i)T −K, 0}

for i = 1, ...,m.

Also, to arrive at the CV European call option price , let

Xi = e−r(T−t) ·max{P (i)
T −K, 0}

for i = 1, ..., k.

while,

X̃i = er(T−t) PT − Pt

6 Results

This section provides the paper results and starts with the specification of

the simulation parameters used in computing the crude MC
(
V

(cmc)
c

)
, the

AV
(
V

(a)
c

)
, and the CV

(
V

(c)
c

)
based European call option price. Results

of the simulated European call option prices in the case of VAR-COVAR was

compared to the BS-COVAR using crude MC method, AV, and CV techniques.
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6.1 Simulation Parameters

To compare the European call option price from VAR-COVAR and BS-COVAR

models, we used the DJIA for the asset return and the 3-month risk-free interest

rate models respectively. For ease of reference, refer to (3) and (4).

The lag 1 log-returns in the simulation of the European call option price

for the stock part were −0.00127, 0.00426, and −0.00150 for the S&P 500,

NASDAQ, and DJIA respectively. Also, the DJIA mean and standard deviation

of the log-returns were 0.00600 and 0.02645 respectively.

A similar approach was followed in the case of the risk-free interest rate

model. The lag 1 rates for the model were fixed at 0.00270, 0.0040, 0.00540

for the 3-month, 6-month, and the 1-year, respectively. The lag 2 rates were

respectively 0.00270, 0.00410, and 0.00570 for the 3-month, 6-month, and the 1-

year. Also, the 3-month mean and standard deviation of the rates were −0.691

and
√

(0.50)(10−7), respectively.

In the case of the BS-COVAR model, we allowed the asset return process

to follow a normal distribution. That is, the stock part of the option pricing

model was driven by a GBM in (7) with the parameters estimated using the

sample mean and standard deviation formulas in [1]. The risk-free interest rate

model follows the COVAR model for pricing the option under the BS-COVAR

model.

6.2 European Call Option Value

Using the parameters provided under 6.1. This section provides the European

call option for the 3-month, 6-month, 9-month, and 1-year expiration date. The

tables comprise of the call option prices, their standard errors (SE(Vc)), and

corresponding 95% confidence intervals (CI(Vc)). In these tables, the Euro-

pean call option prices were obtained by using BS-COVAR and VAR-COVAR

models.

6.2.1 3-month Call Option

Tables 8, 9, and 10 give results for European call option price for 3-month

expiration date. For Table 8, it is obvious that the BS-COVAR price was

lower compared to the VAR-COVAR price for all k. While BS-COVAR call

option price was in the range of $71.49 to $72.34, the VAR-COVAR was in the
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range of $161.62 to $181.58. For BS-COVAR and VAR-COVAR option price

as k increases the SE(V
(cmc)
c ) decreases as well. It is clear the BS-COVAR

model was estimated at $71.99 (N = 100000, SE(V
(cmc)
c ) = 0.0004157, and

95% CI(V
(cmc)
c ) = ($71.989, $71.991)). While it is notable that VAR-COVAR

model for a European call option price for the same period was reported

at $165.83 (k = 100000, SE(V
(cmc)
c ) = 0.0009575, and 95% CI(V

(cmc)
c ) =

($165.828, $165.832)).

Table 9 shows that the BS-COVR price was relatively closer to the VAR-

COVAR price for all k. While BS-COVAR call option price was in the range

of $35.75 to $35.82, the VAR-COVAR was in the range of $56.41 to $56.66.

Furthermore, for the BS-COVAR and the VAR-COVAR option prices as k

goes up the SE(V
(a)
c ) goes down. It is clear the BS-COVAR model was es-

timated at $35.75 (k = 100000, SE(V
(a)
c ) = 0.000007, and 95% CI(V

(a)
c ) =

($35.75, $35.75)). While it is notable that VAR-COVAR model for the same

period was reported at $56.44 (k = 100000, SE(V
(a)
c ) = 0.0001400, and

95% CI(V
(a)
c ) = ($56.44, $56.44)).

Table 10 indicates that the BS-COVAR was slightly higher than the value

of VAR-COVAR for all k. BS-VAR reported values from $151.34 to $151.46.

While the VAR-COVAR value converged to $150.60. Besides, for BS-COVAR

and VAR-COVAR option price as k increases the SE(V
(c)
c ) decreases as well.

The BS-COVAR model was estimated at $151.42 (N = 100000, SE(V
(c)
c ) =

0.022950, and 95% CI(V
(c)
c ) = ($151.37336, $151.46330)). While it is clear that

VAR-COVAR model for a European call option price for the same period was

reported at $150.60 (k = 100000, SE(V
(c)
c ) = 0.000005, and 95% CI(V

(c)
c ) =

($150.60294, $150.60296)).
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6.2.2 6-month Call Option

Tables 11, 12, and 13 show results for European call option price for 6-month

expiration date. Table 11 indicates that the VAR-COVAR model always pro-

duced larger values of a European call option price than the BS-COVAR model.

However, the BS-VAR and the VAR-COVAR model obtain value in the range

$76.46 to $79.19 and $163.02 to $184.30 respectively. It should be noted that

BS-COVAR and VAR-COVAR option prices as k increases the SE(V
(cmc)
c )

decrease as well. Also, it can be seen that the BS-COVAR was estimated

at $76.63 (k = 100000, SE(V
(cmc)
c ) = 0.0.0004434, and 95% CI(V

(cmc)
c ) =

($76.629, $76.631)). Meanwhile, the VAR-COVAR option price for the same

maturity period was estimated at $168.31 (k = 100000, SE(V
(cmc)
c ) = 0.0.0009718,

and 95% CI(V
(cmc)
c ) = ($168.308, $168.132)).

Table 12 indicates that the value of the VAR-COVAR model is quit simi-

lar to the value from the BS-COVAR model. However, with BS-COVAR and

VAR-COVAR model, the European call option achieved value in the range

$37.18 to $37.26 and $57.52 to $57.76, respectively. The BS-COVAR and VAR-

COVAR option prices as the simuation path increases, the SE(V
(a)
c ) decreases.

It is observed that the BS-COVAR was estimated at $37.18 (k = 100000,

SE(V
(a)
c ) = 0.000005, and 95% CI(V

(a)
c ) = ($37.18, $37.18)). Meanwhile, the

VAR-COVAR option price for the same expriation was estimated at $57.55

(k = 100000, SE(V
(a)
c ) = 0.000143, and 95% CI(V

(a)
c ) = ($57.55, $57.55)).

In Table 13, it is obvious that the BS-COVAR price was higher compared

to the VAR-COVAR price for all k. While BS-COVAR call option price was

in the range $166.70 to $167.13, the VAR-COVAR converged to $163.30. For

BS-COVAR and VAR-COVAR option price as k increases the SE(V
(c)
c ) de-

creases as well. The BS-COVAR model was estimated at $167.01 (N = 100000,

SE(V
(c)
c ) = 0.057930, and 95% CI(V

(c)
c ) = ($166.89219, $167.11928)). While

it is notable that VAR-COVAR model for a European call option prices for

the same period was reported at $163.30 (k = 100000, SE(V
(c)
c ) = 0.000008,

and 95% CI(V
(c)
c ) = ($163.29776, $163.29779)).
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6.2.3 9-month Call Option

Tables 14, 15, and 16 provide results for European call option price for 9-month

expiration date. Table 14 shows that regardless of the number of simulations

of the European call option value, the BS-COVAR model produce values lower

than using the VAR-COVAR model. Using BS-COVAR model gave values in

the range of $82.01 to $85.27. While VAR-COVAR reports values in the range

of $165.59 to $187.20, for the same expiration date. Noted that for the BS-

COVAR and the VAR-COVAR option prices as k increases the SE(V
(cmc)
c )

reduces as well. There is a very conspicuous difference in the value of the

European call option of the BS-COVAR model and the VAR-COVAR model,

which were reported as $82.19 (k = 100000, SE(V
(cmc)
c ) = 0.0004756, and

95% CI(V
(cmc)
c ) = ($82.189, $82.191)), and $170.96 (k = 100000, SE(V

(cmc)
c ) =

0.000927, and 95% CI(V
(cmc)
c ) = ($170.958, $170.963)), respectively.

Table 15 indicates that the difference between the value of the call op-

tion of the BS-COVAR and the VAR-COVAR stays about the same regardless

to the increases of the value of k. However, the value of BS-COVAR model

was quite lower compared to the value of the VAR-COVAR model. It has

to be noted that for BS-COVAR and VAR-COVAR option prices as k in-

creases the SE(V
(a)
c ) significantly decrease as well. Using BS-COVAR model

produced values in the range of $38.79 to $38.86. While VAR-COVAR re-

ported values in the range $58.78 to $58.95, for the same expiry date. The

value of the European call option based on the the BS-COVAR and the VAR-

COVAR models, were reported as $38.79 (k = 100000, SE(V
(a)
c ) = 0.0001,

and 95% CI(V
(a)
c ) = ($38.79, $38.79)), and $58.79 (k = 100000, SE(V

(a)
c ) =

0.000134, and 95% CI(V
(a)
c ) = ($58.79, $58.79)), respectively.

Table 16 illustrates that the BS-COVAR model always produced larger

values of a European call option price than the VAR-COVAR model. How-

ever, the BS-VAR and VAR-COVAR model obtain value in the range $183.79

to $184.63 and $165.59 to $187.20 respectively. It should be noted that BS-

COVAR and VAR-COVAR option prices as k increases the SE(V
(c)
c ) decrease

as well. Bessides, the BS-COVAR was estimated at $170.96 (k = 100000,

SE(V
(c)
c ) = 0.087690, and 95% CI(V

(c)
c ) = ($184.04738, $184.39113)). Mean-

while, the VAR-COVAR option price for the same maturity period was esti-

mated at $170.96 (k = 100000, SE(V
(c)
c ) = 0.000987, and 95% CI(V

(c)
c ) =

($170.95807, $170.96193)).
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6.2.4 1-year Call Option

Tables 17, 18, and 19 display results for European call option price for 1-year

expiration date. Table 17 shows that the BS-COVAR model offers a lower

value of the European call option than the VAR-COVAR model, regardless

of the value of k. Notice that for the BS-COVAR and the VAR-COVAR

option prices as the number of simulations rises the SE(V
(cmc)
c ) falls. The

results of the simulation presented in the table report the value of the BS-

COVAR European call option to be in the range $87.73 to $91.46, while the

VAR-COVAR model provide a value in the range $172.40 to $190.06. Observe

that the BS-COVAR call option price was reported as $87.90 (k = 100000,

SE(V
(cmc)
c ) = 0.0005087, and 95% CI(V

(cmc)
c ) = ($87.899, $87.901)), while the

VAR-COVAR was reported at $173.58 (k = 100000, SE(V
(cmc)
c ) = 0.0010022,

and 95% CI(V
(cmc)
c ) = ($173.578, $173.582)).

Table 18 displays that the BS-COVAR model offer a closer value of the

European call option with 1-year expiry date to the VAR-COVAR model as the

value of k increases. The results of the simulation presented in the table reports

the value of the BS-COVAR model of a European call option price was in the

range $40.42 to $40.49. For BS-COVAR and VAR-COVAR option prices as

the number of simulations paths increases the SE(V
(a)
c ) decreases. The VAR-

COVAR model provide a value in the range $60.03 to $60.21. Observe that

the BS-COVAR call option was reported as $40.42 (k = 100000, SE(V
(a)
c ) =

0.000013, and 95% CI(V
(a)
c ) = ($40.42, $40.42)), while the VAR-COVAR was

esitmated at $60.04 (k = 100000, SE(V
(a)
c ) = 0.000137, and 95% CI(V

(a)
c ) =

($60.04, $60.04)).

Table 19 indicate that regardless of the number of simulations of the Eu-

ropean call option value, the BS-COVAR model produce values higher than

using the VAR-COVAR model. Using BS-COVAR model reported values in

the range of $201.65 to $202.97. While VAR-COVAR reports value in that

converges to $192.10, for the same expiration date. The BS-COVAR and the

VAR-COVAR option prices as k increases the SE(V
(c)
c ) reduces as well. Mean-

while, the BS-COVAR model and the VAR-COVAR model, which were re-

ported as $201.97 (k = 100000, SE(V
(c)
c ) = 0.113500, and 95% CI(V

(c)
c ) =

($201.75210, $202.19690)), and $192.10 (k = 100000, SE(V
(c)
c ) = 0.000014,

and 95% CI(V
(c)
c ) = ($192.09983, $192.09988)), respectively.
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7 CONCLUSIONS

In this paper, the European call option price based on the BS-COVAR model

retained all the B-S properties with the exception of the constant risk-free

interest rate assumption. Rather, the 3-month Treasury bill rate model re-

placed the constant risk-free interest rate. This modeling approach for the

BS-COVAR model was adopted to provide a common ground for comparison

between the BS-COVAR and the VAR-COVAR based European call option

prices at varying maturity dates.

The crude MC simulation results of the comparison between the BS-COVAR

and VAR-COVAR European call option prices showed that the price of the BS-

COVAR model was consistently lower than that of the VAR-COVAR model

for all expiration dates (3-month, 6-month, 9-month, and 1-year). Though, the

results of the simulation incorporating AV indicated that the European call

option price from the VAR-COVAR and BS-COVAR models for all expiration

dates were closer compared to the results from the crude MC method. Besides,

the effects of the simulation including CV showed that the European call op-

tion price from the VAR-COVAR and BS-COVAR models for all expiration

dates were closer compared to the results from the crude MC method.

In conclusion, this research makes two contributions. First, the constant

risk-free rate assumption under the B-S formula was relaxed via the COVAR

model. Second, the B-S formula relies on a single stock price. However, this

paper has considered stock market indices within the framework of a VAR

model where the selected model in the valuation process was permitted to be

dependent on other stock indices. With these modifications to the standard

B-S formula, it can be inferred that the European call option price emanating

from the VAR-COVAR model provides a more realistic market value of the

call option in comparison with the value based on the BS-COVAR model.
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