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Abstract
A stochastic age-structured malaria epidemic model is formulated and analysed.The proposed
stochastic model is a perturbation of a deterministic age-structured model where the diffusion
terms are driven by a multidimensional Brownian motion. Numerical simulations show that
sample paths converge to deterministic trajectories whenR0 < 1 whereas a significant difference
is observed for R0 > 1.

1 Introduction

Since 1880, malaria is known as an infectious disease caused by the bites of infected female
mosquitoes of the genus Anopheles[9]. With the current global warming phenomenon due
to climate changes, mosquitoes multiplication is favoured. According to the World Health
Organisation(W.H.O)[18], malaria is one the main cause of deaths in the world and essentially
in sub-Saharan Africa. Actual estimates indicate that malaria is responsible of about 429 000
deaths annually world wide(2015). Among them, the African continent is leading with 92% of
malaria deaths. High risk groups include pregnant women and children under five years. It
is reported that malaria is responsible for death of a child each 30 seconds. It has become a
major public health problem in many countries where a significant part of national budgets are
oriented in the national malaria control programmes. The main target of preventive measures
is to reduce the human-mosquito contact such as the use insecticide-treated mosquito nets,
indoor residual spraying and jelly that are repellent to mosquitoes. There is no licensed malaria
vaccines, potential candidates are undergoing evaluation.

Mathematical models have played a crucial role in understanding its transmission dynamic
and are helping in designing control measures and eradication strategies. Since 1911, Ross
proposed the first malaria epidemic model and suggested the reduction of mosquito population
as the main control strategy. In 1957, MacDonald [14] did some modifications to Ross model
and showed that reducing the mosquito population is not enough for eradication of the disease.
More elaborated compartment models have then been used by different authors, including sub-
divisions of both human and mosquito population into classes such Susceptible-Latent-Infected-
Recovered. Effects of important parameters influencing the dynamics of the disease have been
in studied in different mathematical models in literature: models considering varying popula-
tion sizes [16] through migration[6][20] are proposed. Effects of drugs resistance[5], acquired
immunity in endemic areas[22][5] and duration of the incubation period[13].

1



Deterministic models using Ordinary Differential Equations(ODEs) have been extensively
studied in modelling malaria transmission dynamic[5][7] [8][7][16] [17]. Recently, age-structured
models using Partial Differential Equations(PDEs) have been used in modelling different dis-
eases [12][1][24][19] . In the present works, we included two mains features in malaria modelling
that are ignored in the existing models in literature: the age-structure and stochastic effects.
Stochastic models are assumed to be more realistic while studying physical phenomena,reason
while we decided to include noise terms driven by a multidimensional Brownian motion in the
malaria transmission dynamic.

The remainder of this work is structured as follows: in section 2, an age-structured model is
formulated and parameters are explained. Details of the stochastic model formulation from the
deterministic model are given. Section 3 deals with the existence of solutions whereas section
4 is devoted to the study of steady states of the model. In section 5, stability analysis of the
disease free equilibrium point is investigated. Numerical simulations are presented in section 6
and a conclusion is given in section 7.

2 Model formulation

2.1 Deterministic model

We consider 4 distinct subclasses in the human population that are: Susceptible, Latent, In-
fected and Recovered denoted by: Sh, Lh, Ih, Rh respectively. The total human population is
denoted by Nh. The mosquito population is classified into two compartments namely: Suscep-
tible and Infected denoted by Sv, Iv. The mosquito total population is denoted by Nv. The
recruitment of new susceptible individuals in the human population is at an age-dependent
birth rate αh(a). A natural death rate µh(a) is imposed to all the human subclasses. With a
constant biting rate σ, a proportion b of bites produces infection in human individuals. Among
the bites, a proportion c infects susceptible mosquitoes. Latent individuals become infectious at
an age-dependent rate δ(a). Infected host individuals recover at a rate λ(a) and an additional
death rate η(a) due to the disease is imposed to the infected human subclass. The recov-
ered individuals return to the susceptible subclass at an age-dependent rate γ(a). Mosquito
population changes through by natural death and birth rates, λv(a) and µv(a), respectively.

Figure 1: Flow diagram of malaria transmission dynamic

The following system of first order partial differential equations describes the dynamic of
the malaria disease transmission.
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

( ∂
∂t

+ ∂
∂a

)Sh(t, a) = αh(a)Nh(t, a)− σbSh(t,a)Iv(t,a)
Nh(t,a)

+ γ(a)Rh(t, a)− µh(a)Sh(t, a),

( ∂
∂t

+ ∂
∂a

)Lh(t, a) = σbSh(t,a)Iv(t,a)
Nh(t,a)

− (δ(a) + µh(a))Lh(t, a),

( ∂
∂t

+ ∂
∂a

)Ih(t, a) = δ(a)Lh(t, a)− (η(a) + λ(a) + µh(a))Ih(t, a),

( ∂
∂t

+ ∂
∂a

)Rh(t, a) = λ(a)Ih(t, a)− (γ(a) + µh(a))Rh(t, a),

( ∂
∂t

+ ∂
∂a

)Sv(t, a) = αv(a)Nv(t, a)− σcSv(t,a)Ih(t,a)
Nh(t,a)

− µv(a)Sv(t, a),

( ∂
∂t

+ ∂
∂a

)Iv(t, a) = σcSv(t,a)Ih(t,a)
Nh(t,a)

− µv(a)Iv(t, a).

(1)

with initial and boundary conditions

{
Sh(t, 0) = S0

h;Lh(t, 0) = Ih(t, 0) = Rh(t, 0) = 0;Sv(t, 0) = S0
v .

Sh(0, a) = S0h;Lh(0, a) = L0h; Ih(0, a) = I0h;Rh(0, a) = R0h;Sv(0, a) = S0v; Iv(0, a) = I0v.

The total populations, Nh and Nv are given by Nh = Sh + Lh + Ih +Rh and Nv = Sv + Iv.
Summing equations in (1), we get ( ∂

∂t
+ ∂

∂a
)Nh(t, a) = (αh − µh)Nv(t, a)− ηIh(t, a)

and ( ∂
∂t

+ ∂
∂a

)Nv(t, a) = (αv − µv)Nv(t, a)

By rescaling the state variables as{
sh(t, a) = Sh(t,a)

Nh(t,a)
, lh(t, a) = Lh(t,a)

Nh(t,a)
, i(t, a) = Ih(t,a)

Nh(t,a)
,

rh(t, a) = Rh(t,a)
Nh(t,a)

, sv(t, a) = Sv(t,a)
Nv(t,a)

, iv(t, a) = Iv(t,a)
N(t,a)

,m = Nv

Nh
,

system (1) is rewritten as



( ∂
∂t

+ ∂
∂a

)sh(t, a) = αh(a)− σbmsh(t, a)iv(t, a) + γ(a)rh(t, a)− µh(a)sh(t, a),

( ∂
∂t

+ ∂
∂a

)lh(t, a) = σbmsh(t, a)iv(t, a)− (δ(a) + µh(a))lh(t, a),

( ∂
∂t

+ ∂
∂a

)ih(t, a) = δ(a)lh(t, a)− (η(a) + λ(a) + µh(a))ih(t, a),

( ∂
∂t

+ ∂
∂a

)rh(t, a) = λ(a)ih(t, a)− (γ(a) + µh(a))rh(t, a),

( ∂
∂t

+ ∂
∂a

)sv(t, a) = αv(a)− σcsv(t, a)ih(t, a)− µv(a)sv(t, a),

( ∂
∂t

+ ∂
∂a

)iv(t, a) = σcsv(t, a)ih(t, a)− µv(a)iv(t, a)

(2)

with initial and boundary conditions

{
sh(t, 0) = s0h; lh(t, 0) = ih(t, 0) = rh(t, 0) = 0; sv(t, 0) = s0v.

sh(0, a) = s0h; lh(0, a) = l0h; ih(0, a) = i0h; rh(0, a) = r0h; sv(0, a) = s0v; iv(0, a) = i0v.

Let E be a Banach space defined as E := (L1(0, ω))6 (where ω is the maximum age) endowed
with the norm ||φ|| =

∑6
j=1 ||φj||, φ ∈ E. The state space is given by Ω = {(sh, lh, ih, rh, sv, iv) ∈

E+, 0 6 sh + lh + ih + rh 6 1, 0 6 sv + iv 6 1}, where E+ is the positive cone of E.

2.2 Stochastic model

We derive the stochastic model from the deterministic model using the approach found in [2],
[3], [4] and [15] and references therein. We consider a small interval of time ∆t in which at
most one individual can enter or get out from a given subclass. Changes are denoted by +1,−1
or 0. The following table gives the possible changes and their corresponding probabilities.
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Table of probabilities associated to each possible transition

(1, 0, 0, 0, 0, 0) αh∆t
(−1, 1, 0, 0, 0, 0) σbmshiv∆t
(1, 0, 0,−1, 0, 0) γrh∆t
(−1, 0, 0, 0, 0, 0) µhsh∆t
(0,−1, 1, 0, 0, 0) δlh∆t
(0,−1, 0, 0, 0, 0) µhlh∆t
(0, 0,−1, 0, 0, 0) ηih∆t
(0, 0,−1, 1, 0, 0) λih∆t
(0, 0,−1, 0, 0, 0) µhih∆t
(0, 0, 0,−1, 0, 0) µhrh∆t
(0, 0, 0, 0, 1, 0) αv∆t
(0, 0, 0, 0,−1, 1) σcsvih∆t
(0, 0, 0, 0,−1, 0) µvsv∆t
(0, 0, 0, 0, 0,−1) µviv∆t

We obtain the following covariance matrix.

V =


V11 −σbmshiv 0 −γrh 0 0

−σbmshiv V22 −δlh 0 0 0
0 −δlh V33 −λih 0 0
−γrh 0 −λih V44 0 0

0 0 0 0 V55 −σcsvih
0 0 0 0 −σcsvih V66

 (3)

with V11 = αh + σbmshiv + γrh + µhsh, V22 = σbmshiv + (δ + µh)lh, V33 = δlh + (η + λ+ µh)ih,
V44 = λih + (γ + µh)rh, V55 = αv + σcsvih + µvsv, V66 = σcsvih + µviv.

The stochastic model is given as follows



( ∂
∂t

+ ∂
∂a

)sh = αh − σbmshiv + γrh − µhsh +
√
αhdW1 +

√
σbmshivdW2 +

√
γrhdW3 +

√
µhshdW4,

( ∂
∂t

+ ∂
∂a

)lh = σbmshiv − (δ + µh)lh −
√
σbmshivdW2 +

√
δlhdW5 +

√
µhlhdW6,

( ∂
∂t

+ ∂
∂a

)ih = δlh − (η + λ+ µh)ih −
√
δlhdW5 +

√
ηihdW7 +

√
λihdW8 +

√
µhihdW9,

( ∂
∂t

+ ∂
∂a

)rh = λih − (γ + µh)rh −
√
γrhdW3 −

√
λihdW8 +

√
µhrhdW10,

( ∂
∂t

+ ∂
∂a

)sv = αv − σcsvih − µvsv +
√
λvdW11 +

√
σcsvihdW12 +

√
µvsvdW13,

( ∂
∂t

+ ∂
∂a

)iv = σcsvih − µviv −
√
σcsvihdW12 +

√
µvivdW14.

(4)

with initial and boundary conditions

{
sh(t, 0) = s0h; lh(t, 0) = ih(t, 0) = rh(t, 0) = 0; sv(t, 0) = s0v.

sh(0, a) = s0h; lh(0, a) = l0h; ih(0, a) = i0h; rh(0, a) = r0h; sv(0, a) = s0v; iv(0, a) = i0v.

3 Existence and uniqueness of solutions

3.1 Deterministic model

In order to investigate the existence of solutions for system (2), we rewrite it in a simplified
form as follows.
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We define a linear operator A, a generator of a C0-semigroup, by

(Aφ)(x) := (−dφ1

dx
, ...,−dφ6

dx
)T , φi ∈ D(A)

with D(A) := {φ ∈ E : φi ∈ AC[0, ω), φi(0) = 0},

where AC[0, ω) denotes the space of absolutely continuous functions on [0, ω). We consider a
nonlinear and Fréchet differentiable operator F defined by

F (φ)(x) :=


αh(x)− σbmφ1(x)φ6(x) + γ(x)φ4(x)− µh(x)φ1(x)

σbmφ1(x)φ6(x)− (δ(x) + µh(x))φ2(x)
δ(x)φ2(x)− (η(x) + λ(x) + µh(x))φ3(x)

λ(x)φ3(x)− (γ(x) + µh(x))φ4(x)
αv(x)− σcφ5(x)φ3(x)− µv(x)φ5(x)

σcφ5(x)φ3(x)− µv(x)φ6(x)

 (5)

Therefore, system (2) takes the following form{
dX
dt

= AX(t) + F (X(t)),

X(0) = X0,
(6)

where X(t) = (sh(., t), lh(., t), ih(., t), rh(., t), sv(., t), iv(., t))
T . It has been shown in [12] that

the Cauchy problem (6) admits a unique positive mild solution with respect to positive initial
conditions.

3.2 Stochastic model

System (4) can be rewritten as{
dX = (AX(t) + F (X(t)))dt+G(X(t))dWt,

X(0) = X0,
(7)

where G(X) is a 6 × 14 matrix obtained from system(4). In [21], a proof of a unique mild
solution to (7) is given. The existence and uniqueness are guaranteed by the global Lipschitz
and linear growth conditions of both F and G. In what follows we show that there exist positive
constants L and L′ such that

||F (X1)− F (X2)||1 ≤ L||X1 −X2||,
||G(X1)−G(X2)||2 ≤ L′||X1 −X2||,

and that there exist positive constants K and K ′ such that

||F (X1)||1 ≤ K(1 + ||X1||),
||G(X1)||2 ≤ K ′(1 + ||X1||).

Using Young’s inequality for terms in shiv and svih, and applying the triangle inequality, we
obtain

||F (X1)− F (X2)||1 ≤
3

2
µh|s1h − s2h|+ (2σ + µh)|l1h − l2h|+ (η + 2λ+

3

2
µh)|i1h − i2h|

+(γ + µh)|r1h − r2h|+
3

2
µv|s1v − s2v|+

3

2
µv|i1v − i2v|.
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Taking L := max(2σ + µh, η + 2λ+ 3
2
µh, γ + µh,

3
2
µv),

||F (X1)− F (X2)||1 ≤ L(|s1h − s2h|+ |l1h − l2h|+ |i1h − i2h|
+|r1h − r2h|+ |s1v − s2v|+ |i1v − i2v|) = L||X1 −X2||.

Applying the same approximations, we arrive to similar result for the linear growth of F .

||F (X)||1 ≤ αh + αv +
3

2
µh|sh|+ (2δ + µh)|lh|+ (η + 2λ+

3

2
µh)|ih|+ (2γ + µh)|rh|+

3

2
µv|sv|+

3

2
µv|iv|.

Setting K := max(L, αh + αv)

||F (X)||1 ≤ K(1 + |sh|+ |lh|+ |ih|+ |rh|+ |sv|+ |iv|) = K(1 + ||X||1).

In the same way,by neglecting product terms shiv and svih, we show the following for G.

||G(X1)−G(X2)||2 ≤
[
µh(s

1
h − s2h)2 + (2δ + µh)(l

1
h − l2h)2 + (η + 2λ+ µh)(i

1
h − i2h)2

+(2γ + µh)(r
1
h − r2h)2 + µv(s

1
v − s2v)2 + µv(i

1
v − i2v)2

]1/2
,

Taking L′ := max(µv, η + 2λ+ µh, 2γ + µh, 2δ + µh), we get

||G(X1)−G(X2)||2 ≤ L′
[
(s1h − s2h)2 + (l1h − l2h)2 + (i1h − i2h)2 + (r1h − r2h)2 + (s1v − s2v)2 + (i1v − i2v)2

]1/2
,

which shows that ||G(X1)−G(X2)||2 ≤ L′||X1 −X2||2. In the same way, the linear growth of
G follows.

4 Steady state solutions

In this section, we deal with the deterministic model. The perturbation introduced to get the
stochastic model is driven by a Brownian motion, a stochastic process which vanishes at t = 0.
Numerical simulations of sample paths are used to study the behaviour of the system around
the steady states.

4.1 Disease free equilibrium solutions

By setting lh = ih = rh = iv = 0, the steady state of system (2) is given by solution of the
following system {

dsh
a

= αh(a)− µh(a)sh(a),
dsv
da

= αv(a)− µv(a)sv(a),
(8)

Thus, the disease free equilibrium point is (s∗h, l
∗
h, i
∗
h, r
∗
h, s
∗
v, i
∗
v) = (1, 0, 0, 0, 1, 0).

4.2 Basic reproduction number

We compute the malaria reproduction number by the next generation matrix method. Let F
denotes the vector of terms corresponding to news infections, ν = ν+ + ν−, where ν+ is the
vector of terms corresponding individuals entering a given compartment and ν− corresponds
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to individuals going out of a subclass in each population. We rewrite system (2) starting with
equations with terms containing new infections in the two populations.

( ∂
∂t

+ ∂
∂a

)lh(t, a) = σbmsh(t, a)iv(t, a)− (δ(a) + µh(a))lh(t, a),

( ∂
∂t

+ ∂
∂a

)ih(t, a) = δ(a)lh(t, a)− (η(a) + λ(a) + µh(a))ih(t, a),

( ∂
∂t

+ ∂
∂a

)iv(t, a) = σcsv(t, a)ih(t, a)− µv(a)iv(t, a),

( ∂
∂t

+ ∂
∂a

)sh(t, a) = αh(a)− σbmsh(t, a)iv(t, a) + γ(a)rh(t, a)− µh(a)sh(t, a),

( ∂
∂t

+ ∂
∂a

)rh(t, a) = λ(a)ih(t, a)− (γ(a) + µh(a))rh(t, a),

( ∂
∂t

+ ∂
∂a

)sv(t, a) = αv(a)− σcsv(t, a)ih(t, a)− µv(a)sv(t, a).

(9)

Then, matrices F and ν are given by

F =


σbmshiv
δlh

σcsvih
0
0
0

 ν =


(µh + δ)lh

(η + λ+ µh)ih
µviv

σbmshiv − αh − γrh + µhsh
(γ + µh)rh − λih
σcsvih + µvsv − αv


As we have three subclasses containing new infections, the partial derivatives of F and ν

with respect to lh, ih and iv are given by the following 3× 3 matrices F and V , respectively.

F =

0 0 σbmsh
δ 0 0
0 σcsv 0

 V =

µh + δ 0 0
0 η + λ+ µh 0
0 0 µv


The spectral radius of the product FV −1 evaluated at the disease free equilibrium state,

corresponds to the basic reproduction number denoted by R0 and it is given by

R0 = 3

√
σ2δbcm[

µv(µh + δ)(η + λ+ µh)
]2 . (10)

4.3 Endemic steady state

We determine the endemic equilibrium state of system (2) whenR0 > 1 by solving the following
system



dsh(a)
da

= αh(a)− σbmsh(a)iv(a) + γ(a)rh(a)− µh(a)sh(a),
dlh(a)
da

= σbmsh(a)iv(a)− (δ(a) + µh(a))lh(a),
dih(a)
da

= δ(a)lh(a)− (η(a) + λ(a) + µh(a))ih(a),
drh(a)
da

= λ(a)ih(a)− (γ(a) + µh(a))rh(a),
dsv(a)
da

= αv(a)− σcsv(a)ih(a)− µv(a)sv(a),
div(a)
da

= σcsv(a)ih(a)− µv(a)iv(a)

(11)

with boundary conditions



sh(0) = s0h,

lh(0) = l0h,

ih(0) = i0h,

rh(0) = r0h,

sv(0) = s0v, iv(0) = i0v.
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which is rewritten as

{
dX(a)
da

= F (X(a)),

X(0) = (s0h, l0h, i0h, r0h, s0v, i0v)
T .

(12)

The Cauchy problem (12) where F (X) is globally Lipschitz continuous as shown in section (2.2)
admits a unique solution which corresponds to the endemic state of the deterministic model
(2). Thus, we have



sh(a)∗∗ =
∫ a
0

[αh(τ)− σbmsh(τ)iv(τ) + γ(τ)rh(τ)− µh(τ)sh(τ)]dτ,

lh(a)∗∗ =
∫ a
0

[σbmsh(τ)iv(τ)− (δ(τ) + µh(τ))lh(τ)]dτ,

ih(a)∗∗ =
∫ a
0

[δ(a)lh(τ)− (η(τ) + λ(τ) + µh(τ))ih(τ)]dτ,

rh(a)∗∗ =
∫ a
0

[λ(τ)ih(τ)− (γ(τ) + µh(τ))rh(τ)]dτ,

sv(a)∗∗ =
∫ a
0

[αv(τ)− σcsv(τ)ih(τ)− µv(τ)sv(τ)]dτ,

iv(a)∗∗ =
∫ a
0

[σcsv(τ)ih(τ)− µv(τ)iv(τ)]dτ

(13)

5 Stability analysis

Theorem: The disease-free equilibrium state is globally asymptotically stable if R0 ≤ 1 and
(δ + µh)(η + λ+ µh)µv < 1.

Proof:
We consider the lyapunov function V = Alh + Biv + ih and take its partial derivative with
respect to (t, a).

(
∂

∂t
+

∂

∂a
)V = A(

∂

∂t
+

∂

∂a
)lh +B(

∂

∂t
+

∂

∂a
)iv + (

∂

∂t
+

∂

∂a
)ih,

= A(σbshiv − (δ + µh)lh) +B(σcsvih − µviv)
+δlh − (η + λ+ µh)ih

= [Aσbmsh −Bµv]iv + [Bσcsv − (η + λ+ µh)]ih + [−A(δ + µh) + δ]lh

We choose the values of A and B in such way that the coefficients of lh and ih are equal to
zero. That implies, {

A = δ
δ+µh

,

B = η+λ+µh
δcsv

(14)

Replacing the values of A and B and evaluating the derivative at the disease free equilibrium,
we obtain

(
∂

∂t
+

∂

∂a
)VDFE =

1

σc(δ + µh)

[
σ2δbcm− (δ + µh)(η + λ+ µh)µv

]
iv, (15)

=
1

σc(δ + µh)(δ + µh)(η + λ+ µh)µv

[
βR3

0 − 1

]
iv

with β = (δ + µh)(η + λ + µh)µv. Thus, we have ( ∂
∂t

+ ∂
∂a

)VDFE ≤ 0 if R0 ≤ 1. Therefore, by
the LaSalle’s invariance principle, the global asymptotic stability of the disease-free equilibrium
point follows.
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6 Numerical simulation

In this section, the numerical method used in our simulations is based on the finite difference
method. Forward in time-backward in age numerical scheme is used as in[1]. Each equation in
system (2) can be rewritten as

(
∂

∂t
+

∂

∂a
)f(t, a) = g(t, a),

and can be approximated by

f(tk+1, ai)− f(tk, ai)

∆t
+
f(tk, ai)− f(tk, ai−1)

∆a
= g(tk, ai).

In what follows, we present simulations of the deterministic model (2) and the stochastic one
(4). In figures (2.a-2.d), the evolution in time of the state variables shows that the effects of
the perturbation are more remarkable when R0 > 1. In figures (3)-(6), we present an age-time
evolution of both the deterministic and stochastic case. We observe that stochastic evolution
approaches the deterministic one when R0 < 1.

(a) Case where R0 < 1 for the human popu-
lation.

(b) Mosquito population
when R0 < 1.

(c) Human population when R0 > 1. (d) Mosquito population when R0 > 1.

Figure 2: We compare the deterministic and stochastic evolution over time when R0 < 1
(R0 = 0.10528) and R0 > 1(R0 = 11.885). Sub-figures 2.(a)-(b) Show an increasing number of
susceptible both for humans and mosquitoes over time. In the other compartments, populations
are decreasing, which implies that the disease will disappear even without intervention. In sub-
figures 2.(c)-(d), we observe that infected individuals are increasing. An intervention is need
to stop the disease progression.
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(a) Case where R0 < 1 for the
deterministic model.

(b) Stochastic model when
R0 < 1.

(c) Deterministic model when
R0 > 1.

(d) Stochastic model when
R0 > 1.

Figure 3: The age-time evolution of the deterministic and stochastic models for the susceptible
humans shows that when R0 < 1, the population will continue to increase. The disease has
life effect in lowing susceptible individuals. When R0 > 1, the susceptible individuals decrease
and attain a stable state: the endemic equilibrium state.

(a) Deterministic model when
R0 < 1.

(b) Stochastic model when
R0 < 1.

(c) Deterministic model when
R0 > 1.

(d) Stochastic model when
R0 > 1.

Figure 4: Figure4 compare infected human individuals for both deterministic and stochastic
models. In the case of R0 < 1, the infected individuals disappear over time whereas an endemic
state is reached when R0 > 1.
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(a) Susceptible mosquitoes when
R0 < 1 for the deterministic model. (b) Stochastic model when R0 < 1.

(c) Deterministic model when R0 >
1. (d) Stochastic model when R0 > 1.

Figure 5: Susceptible mosquito population compared in the deterministic and stochastic models.

(a) Deterministic model when R0 <
1. (b) Stochastic model when R0 < 1.

(c) Infected mosquitoes
when R0 > 1. (d) Stochastic case when R0 > 1.

Figure 6: Comparison between the deterministic and stochastic cases for infected mosquitoes.
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7 Conclusion

In this work, we considered an age-structured model and introduced a perturbation to the
deterministic model. A comparison between sample paths and deterministic trajectories has
been presented. We observed that, when R0 < 1, the perturbation is inducing small variations
in deterministic system whereas remarkable differences appears when R0 > 1. The parameters
of the basic reproduction number show that reducing the contact human-mosquito has large
effect in controlling the disease. Therefore, much effort is required to reduce mosquito biting
rate by using protectives tools such insecticide treated bed nets and indoor residual spraying.
In areas of high mosquitoes concentration, reducing the number of biting producing infections
in humans is to be included for an eradication of the disease; more efforts to obtain effective
vaccine are necessary. Effects of migrations on the present model are to be investigated for
future works.
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