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Abstract 
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1. Introduction. 

As the theory of fuzzy sets, introduced by Zadeh [18] appeared in 1965 it has been used 

in a variety of areas of mathematics.. Zadeh  [19] estimated that medical diagnosis would 

be the most liable application domain of Fuzzy set theory. Following Zadeh’s idea, 

Atanassov [1] introduced the concept of intuitionistic fuzzy set to permit grouping 

elements according to degrees of closeness and isolation. Fuzzy topology is another 

example of use of Zadeh’s theory. George and Veeramani [4] and Kramosil and Michalek 

[7] have introduced the concept of fuzzy metric spaces which can be regarded as a 

simplification of the statistical (probabilistic) metric space. Afterwards, Grabiec [5] 

defined the completeness of the fuzzy metric space. Following Grabiec’s work, Fang [3] 

further established some new fixed point theorems for contractive type mappings in G-

complete fuzzy metric spaces. Soon after, Mishra et. al. [8] also obtained numerous 

common fixed point theorems for asymptotically commuting maps in the same space, 
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which generalize a number of fixed point theorems in metric, Menger, fuzzy and uniform 

spaces. 

The concepts of semi-compatibility and weak-compatibility in fuzzy metric space 

were given by Singh and Jain [15] which was simplification of commuting and 

compatible maps. Popa [10, 11] introduced the idea of implicit function to prove a 

common fixed point theorem in metric spaces. Singh and Jain [16] further extended the 

result of Popa [10-11] in fuzzy metric spaces. Using the concept of R-weak commutative 

mappings,  Vasuki [17] proved the fixed point theorems for fuzzy metric space. In 2009, 

using the concept of sub-compatible maps, Bouhadjera et. al. [2] proved common fixed 

point theorems. In 2010 and 2011, Singh et. al. [14, 16] proved fixed point theorems in 

fuzzy metric space using the concept of semi-compatibility, weak compatibility and 

compatibility of type (β) respectively. Ranadive et.al. [13] introduced the concept of 

absorbing mapping in fuzzy metric space and proved the common fixed point theorem in 

this space.  Moreover, Ranadive et.al. [13] observed that the new notion of absorbing 

map is neither a sub class of compatible maps nor a subclass of non compatible maps . 

Afterwards, Mishra et. al. [9] proved fixed point theorems using absorbing mappings in 

fuzzy metric space. 

2.  Preliminaries. 
 
Definition 2.1. [7] A binary operation *: [0, 1] × [0, 1] → [0, 1] is continuous t-norm if it 

satisfies the following conditions: 

(1)  * is associative and commutative, 

 (2)  * is continuous, 

(3)  a * 1 = a for all a [0,1], 

(4)  a * b ≤ c * d whenever a ≤ c and b ≤ d, for each a, b, c, d [0,1]. 

Two typical examples of continuous t-norm are a * b = ab and a * b = min (a, b) 

Definition 2.2. [7] The three tuple (X, M,*) is called a fuzzy metric space if X is an 
arbitrary set,* is a continuous t-norm and M is a fuzzy set in X2×[0,∞) satisfying the 
following conditions: 
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for all x, y, z  X and s,t > 0, 

(FM-1)  M(x, y, 0) = 0, 

(FM-2)  M(x, y, t) =1, for all t > 0 if and only if x = y 

(FM-3)  M(x, y, t) = M(y, x, t), 

(FM-4)  M(x, y, t)* M(y, z, s) ≥ M(x, z, t+s) 

(FM-5) M(x, y, .) : [0, )  [0, 1] is left continuous. 

(FM-6) limtM(x, y, t) = 1.  

Example 2.1.[7] Let (X,d) be a metric space. Define a*b = min{a,b} and 
tM(x, y, t)

t d(x, y)



 for all x, y X and all t > 0. Then (X, M, *) is a fuzzy metric 

space. It is called the fuzzy metric space induced by d. 

Definition 2.3. [7] A sequence {xn} in a Fuzzy metric space (X,M,*) is said to be a 
Cauchy sequence if and only if for each ε > 0 , t > 0 there exists n0 N such that 
M(xn,xm,t) > 1 -  for all n, m n0. 

       The sequence {xn} is said to converge to a point x in X  if and only if for each ε > 0,  
t > 0 there exists n0  N such that M(xn, x, t) > 1 -  for all n  ≥  n0. 

A fuzzy metric space (X,M,*) is said to be complete if every Cauchy sequence in 
it converges to a point in it. 

Definition 2.4.  A pair (A, B) of self maps of a fuzzy metric space (X, M, *) is said to be 
reciprocal continuous if limnABxn = Ax and limnBAxn = Bx whenever there exists a 
sequence {xn}  X such that limnAxn  = limnBxn = x X. If A and B are both 
continuous then they are obviously reciprocally continuous but the converse need not be 
true. 
                                               
Definition 2.5. [15] Let A and B be mappings from fuzzy metric space (X, M, *) into 
itself. The mappings A and B are said to be compatible if and only if  
M(ASxn, SAxn, t) → 1, for all t > 0 whenever {xn} is a sequence in X such that  
Sxn, Axn → p for some p in  X as n → ∞. 

Definition 2.6. [15] Let A and S be mappings from fuzzy metric space (X,M,*) in to 
itself. Then the mappings A and S are said to be semi-compatible if  
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limnASxn = Sx,  

whenever {xn}is a sequence in X such that limnAxn = limnSxn = x X.    

It follows that if (A,S) is semi compatible and Ay = Sy, then ASy = SAy  by taking  
{xn} = y and x = Ay = Sy. 

Definition 2.7. [9]. A pair of maps A and B is called weakly compatible pair if they 
commute at their coincidence points i.e. Ax = Bx if and only if ABx = BAx. 

Definition 2.8. [13]. Let A and B be two self maps on a fuzzy metric space  
(X, M, *) then A is called B-absorbing if there exists a positive integer R  > 0 such that 
M(Bx, BAx, t) ≥ M(Bx, Ax, t/R) for all x  X.  

Similarly B is called A-absorbing if there exists a positive integer R > 0 such that 
M(Ax, ABx, t) ≥ M(Ax, Bx, t/R) for all x  X. 

Preposition 2.1. In a fuzzy metric space (X, M, *) limit of a sequence is unique. 

Preposition 2.2. [9] If (A,S) is a semi compatible pair of self maps of a fuzzy metric 
space (X, M, *)  and S is continuous, then (A,S) is compatible. 

Lemma 2.1. [8] Let (X, M, *) be a fuzzy metric space. Then for all x, y  X,  
M(x, y, .) is a non-decreasing function. 

Lemma 2.2. [8] Let (X, M, *) be a fuzzy metric space. If there exists k  (0, 1) such that 
for all x, y  X,   M(x, y, kt) ≥ M(x, y, t) for all t > 0, then x = y. 

Lemma 2.3. [8]  Let {xn} be a sequence in a fuzzy metric space (X, M, *). If there exists 
a number  k  (0, 1) such that M(xn+2, xn+1 , kt) ≥ M(xn+1, xn, t), for all   t > 0 and  
n  N. Then {xn} is a Cauchy sequence in X. 

Preposition 2.3. [6] Let A and B be mappings from a fuzzy metric space (X, M, *) into 
itself. Assume that (A, B) is reciprocal continuous then (A, B) is semi-compatible if and 
only if (A, B)  is compatible. 

Definition 2.9. [6] Self mappings A and S of a fuzzy metric space (X, M, *) are said to 
be sub-compatible  if  there exists a sequence {xn} in X such that   

n
lim


Axn =  
n
lim


Sxn = z,  z  X     and  satisfy  
n
lim


M(ASxn, SAxn, t) = 1.     

Clearly, semi-compatible maps are sub-compatible maps but converse is not true. 



5 

 

Example 2.2. Let X = [0,∞) with usual metric d and define tM(x, y, t)
t d(x, y)




 for all     

x, y X , t > 0 define the self maps A, S as 

2 x, 0 x 2
Ax

3x 1, 2 x
  

     
  and  

2 x, 0 x 2
Sx .

3x 2, 2 x
  

     
 

Define a sequence n
2{x }
n

  in X.  Then   

Axn = 22
n

    and  Sxn = 12
n

 .     

Also,   
n
lim


M(ASxn, SAxn, t)  =   
n
lim


M(4, 4, t) = 1. 

Now,   
n
lim


 Axn = 2   and 
n
lim


 Sxn = 2    

This implies 
n
lim


 Axn = 
n
lim


 Sxn = 2.  But 
n
lim


ASxn  ≠ Sx.  

Thus, A and S are sub-compatible but not semi-compatible.   

Definition 2.10. Self mappings A and S of a fuzzy metric space  (X, M, *) are  said to be 

sub-sequentially continuous  if and only if there exists a sequence {xn} in X such that   

      
n
lim


Axn =  
n
lim


Sxn = z, z  X  and  satisfy  

n
lim


ASxn = Az and  
n
lim


SAxn = Sz. 

Clearly,  if A and S are continuous or reciprocally continuous then they are obviously 

sub-sequentially continuous. However, the converse is not true in general. 
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Example 2.3.  Let X = R, endowed with metric d and Md(x,y, t) = tM(x, y, t)
t d(x, y)




  

for all x, y X , t > 0.   Define the self maps A, S as 

2, x 3
Ax

x, x 3


  
     and   

2x 4, x 3
Sx

3, x 3
 

  
 . 

Consider a sequence n
1{x } 3
n

    then    

Axn =  13
n

  
 

→3 and   SAxn = S 13
n

  
 

= 3 ≠ S(3) = 2 as n→∞. 

Thus A and S are not reciprocally continuous but, if we consider a sequence   

{xn} =  13
n

  
 

, then Axn = 2, Sxn =  2,  ASxn = 2 = A(2), SAxn = 0 = S(2) as n→∞. 

Therefore , A and S are sub-sequentially continuous. 

Definition 2.11. [13] A class of implicit relation 

Let  be the set of all real continuous functions F : (R+)5  R non-decreasing in first 
argument satisfying the following conditions : 

(i)  For u, v  0,  F(u, v, v, u, 1)  0 implies that u  v. 

(ii)  F(u, 1, 1, u, 1)  0 or F(u, 1, u, 1, u)  0,  or  F(u, u, 1, 1, u)  0 implies that u1. 

Example 2.4.  Define F(t1, t2, t3, t4, t5) = 16t1 - 12t2 - 8t3 + 4t4 + t5 - 1. Then F. 

(i)   F(u, v, v, u, 1) = 20(u - v)  0  u  v. 

(ii)   F(u, 1, 1, u, 1) =  20(u - 1)  0  u  1 or 

F(u, 1, u, 1, u) = 9(u - 1)  0  u  1 

or  F(u, u, 1, 1, u) = 5(u - 1)  0  u  1. 

3.   Main Result 
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Theorem 3.1. Let A, B, S, T, P and Q be self mappings of a complete fuzzy metric space 

(X, M, *) with t-norm defined by a * b = min{a, b}, satisfying : 

(3.1) P(X)   ST(X),    Q(X)    AB(X);  

(3.2) Q is ST-absorbing; 

(3.3) for some F there exists q (0,1) such that for all x, y X and  t > 0 

F{M(Px, Qy, qt), M(ABx, STy, t), M(Px, ABx, t), M(Qy, STy, qt),  

M(Px, STy, t)} ≥ 0. 

(3.4) AB = BA, ST = TS, PB = BP, QT = TQ. 

 If the pair of maps  (P, AB) is sub-sequential continuous and sub-compatible then 

P, Q, S, T, A and B have a unique common fixed point in X. 

Proof.   Let x0 X be any arbitrary point.  From (3.1), there exist x1, x2  X such that 

                         Px0 = STx1                and                  Qx1 = ABx2 . 

Inductively, we can construct sequences {xn} and {yn} in X such that 

Px2n-2 = STx2n-1 = y2n-1   and 

Qx2n-1 = ABx2n = y2n   for  n = 1, 2, 3, … . 

Step 1.   Putting x = x2n  and  y = x2n+1  for  t > 0 in (3.3), we get 

F{M (Px2n, Qx2n+1, qt), M (ABx2n, STx2n+1, t), M (Px2n, ABx2n, t),  

                                          M (Qx2n+1, STx2n+1, qt), M (Px2n, STx2n+1, t)} ≥ 0, 

i.e., F{M(y2n+1, y2n+2, qt), M(y2n, y2n+1, t), M(y2n+1, y2n, t), M(y2n+2, y2n+1, qt),                                      

                                                                                     M(y2n+1, y2n+1, t)} ≥ 0. 

Using lemmas 2.1 and 2.2, we have  

M (y2n+1, y2n+2, qt) ≥ M (y2n, y2n+1, t). 

Again substituting  x = x2n+2 and y = x2n+3 in (3.3), we get  
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M(y2n+2, y2n+3, qt) ≥ M (y2n+1, y2n+2, t). 

Hence by lemma 2.3, {yn} is a Cauchy sequence in X. Since X is complete, therefore,  
{yn} →z in X and also its subsequences converges to the same point i.e. z  X, 

i.e.  {Qx2n+1} →z    and {STx2n+1} →z                                         (1) 

     {Px2n}→z                {ABx2n} →z                                             (2) 

Step 2. (P, AB) is sub-compatible and sub-sequentially continuous then there exists a 
sequence  {xn} in X such that  

n
lim


Pxn =  
n
lim


ABxn =  z,  z  X     and  satisfy   

n
lim


M(P(AB)xn,  (AB)Pxn,  t)  =  M(Pz, ABz, t) = 1.     

Therefore ,   Pz = ABz.                                                                                    (3) 

Step 3.  Putting  x = Px2n and y = x2n+1 in condition (3.3), we have 

F{M (PPx2n, Qx2n+1, qt), M (ABPx2n, STx2n+1, t), M (PPx2n, ABx2n, t),  

                                         M (Qx2n+1, STx2n+1, qt), M (PPx2n, STx2n+1, t)} ≥ 0 

Taking  n→∞ and using (1), (2), (3),  we get 

F{M (Pz, z, qt), M (Pz, z, t), M (Pz, Pz, t), M (z, z, qt), M (Pz, z, t)} ≥ 0 

       F{M(Pz, z, qt), M (Pz, z, t)} ≥ 0 

i.e.     M(Pz, z, qt) ≥ M (Pz, z, t)                            

Therefore by using lemma 2.2, we have 

z = Pz = ABz 

Step 4.   Putting x = Bz and y = x2n+1 in condition (3.3), we get, 

          F{M (PBz, Qx2n+1, qt), M (ABBz, STx2n+1, t), M (PBz, ABBz, t),  

                                          M (Qx2n+1, STx2n+1, qt), M (PBz, STx2n+1, t)} ≥ 0  

As  BP = PB,  AB = BA,  so we have 
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P(Bz) = B(Pz) = Bz    and    (AB)(Bz) = (BA)(Bz) = B(ABz) = Bz. 

Taking  n→∞ and using (1),  we get 

F{M (Bz, z, qt), M (Bz, z, t), M(Bz, Bz, t), M(z, z, qt), M(Bz, z, t)} ≥ 0 

       F{M (Bz, z, qt), M (Bz, z, t)} ≥ 0 

i.e.,      M(Bz, z, qt) ≥ M (Bz, z, t).                            

Therefore by using lemma 2.2, we have 

Bz = z  and also we have   ABz = Z 

This implies Az = z  

Therefore Az = Bz = Pz = z.                                              (4) 

Step 5.  As P(X) ST(X),  there exist u  X such that 

 z = Pz = STu.                                                                 (5) 

Putting x = x2n   and  y = u in condition (3.3), we get 

F{M (Px2n, Qu, qt), M(ABx2n, STu, t), M(Px2n, ABx2n, t),  

                                          M(Qu, STu, qt), M (Px2n, STu, t)} ≥ 0. 

Letting  n→∞ and using (2) and  (5), we get 

F{M (z, Qu, qt), M (z, z, t), M (z, Pz, t), M (Qu, z, qt), M (z, z, t)} ≥ 0 

As F is non-decreasing in the first argument, we have  

F{M (z, Qu, qt), 1, 1, M (Qu, z, qt), 1} ≥ 0 

i.e.,   M(z, Qu, qt) ≥ 1. 

Therefore,  z = Qu = STu.   

Since Q is ST absorbing,  we have 

M(STu, STQu, t) ≥ M (STu, Qu, t/R) ≥ 1 

i.e.,  STu = STQu    which implies z = STz. 
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Putting x = z and y = z in (3.3) , we get 

     F{M(Pz, Qz, qt), M(ABz, STz, t), M (Pz, ABz, t), M(Qz, STz, qt), M(Pz, STz, t)} ≥ 0 

or, F{M(z, Qz, qt), M(z, z, t), M (z, z, t), M(Qz, z, qt), M (z, z, t)} ≥ 0. 

As F is non-decreasing in the first argument, we have  

      F{M(z, Qz, qt), 1, 1, M (Qz, z, qt), 1} ≥ 0, 

i.e., M (z, Qz, qt) ≥ 1.  

Therefore,  z = Qz  

Hence, z = Qz = STz. 

Step 6.   Putting x = x2n and y = Tz in condition (3.3), we get 

F{M (Px2n, QTz, qt), M (ABx2n, STTz, t), M (Px2n, ABx2n, t),  

                                         M (QTz, STTz, qt), M (Px2n, STTz, t)} ≥ 0 

As QT = TQ and ST = TS, we have 

QTz = TQz = Tz    and     ST(Tz) = T(STz) = TQz  = Tz. 

Letting  n→∞ and using (2) we get 

F{M (z, Tz, qt), M (z, Tz, t), M (z, z, t), M (Tz, Tz, qt), M (z, Tz, t)} ≥ 0 

F{M (z, Tz, qt), M (z, Tz, t)} ≥ 0 

i.e.,  M(z, Tz, qt) ≥ M (z, Tz, t).  

Therefore, by lemma 2.2, we get 

Tz  = z 

Now, STz = Tz = z implies Sz = z. 

Hence,  Sz = Tz = Qz = z.                                          (7) 

Hence, z is the common fixed point of A, B, S, T, P and Q.                           
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Uniqueness: Let w be another fixed point of A, B, P, Q, S and T. Then putting  x = z and 
y = u in (3.3), we get  

 F{M (Pz, Qu, qt), M (ABz, STu, t), M (Pz, ABz, t),  

                                          M (Qu, STu, qt), M (Pz, STu, t)} ≥ 0 

As F is non-decreasing in the first argument, we have 

  F{M(z, u, qt), M(z, u, t), M(z, z, t), M(u, u, qt), M(z, u, t)} ≥ 0 

or, F{M(z, u, qt), M(z, u, t), 1, 1, M(z, u, t)} ≥ 0 

i.e.  z = u.    

Hence z is unique fixed point in X. 

Remark 3.1. If we take B = T = I (the identity map) in theorem 3.1, we get the following 

corollary. 

Corollary 3.1. Let A, B, S, T, P and Q be self mappings of a complete fuzzy metric space 

(X, M, *) with t-norm defined by a * b = min{a, b}, satisfying : 

(3.1) P(X)   S(X),    Q(X)    A(X);  

(3.2) Q is S-absorbing; 

(3.3) for some F there exists k (0,1) such that for all x, y X and  t > 0 

F{M(Px, Qy, kt), M(Ax, Sy, t), M (Px, Ax, t), M(Qy, Sy, kt), M(Px, Sy, t)} ≥ 0. 

If the pair of maps (P, A) is sub-sequential continuous and sub-compatible then P, 

Q, S and A have a unique common fixed point in X. 

Remark 3.2. In view of Remark 3.1, Corollary 3.1 is a generalization of the result of 

Ranadive and Chouhan [13] in the sense that condition of  reciprocal continuous and 

semi-compatible maps has been replaced by sub-sequential continuous and sub-

compatible maps.  
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