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Abstract

We are interested to the coefficientof the non-linear convection term estimation
of the Hamilton-Jacobi equation, in two-dimensional, with the Cauchy-Dirichlet
conditions. We validate numerically some properties of the KPZ equation with the
same conditions mention above while making a correlation with the surface-growth
phenomenon.
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Introduction
We use the compact adjoint technique to estimate the parameter "a" , which is the coef-
ficient of the convection term of the Hamilton-Jacobi problem defined by:

∂u

∂t
−∆u = a | ∇u |p in Ω×]0,+∞[
u = 0 on ∂Ω×]0,+∞[

u(., 0) = u0 in Ω
(1)

where a ∈ R, a 6= 0 and Ω is a bounded open subset of R2.
The technique we used belong to the family of the variational methods based on the
optimal control theory [2],[3],[10],[11],[16],[18], [20],[22], [27]. We manually generate the
compact adjoint codes by using the spectral method based on the Chebyshev points [24],
[26]. Such an approach is proved to be very efficient in the inverse problems resolu-
tion, governed by partial differential equations (PDE) [12].We carried out the various
simulations in MatLab. There are automatic differentiation packages that generate the
associated codes. However, those developed in MatLab require refinement [23], [25].
Several works have been done in the setting of the existence and uniqueness of solution
of the Hamilton-Jacobi problem [4],[5],[8],[9],[13],[19],[21].
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We also conduct the numerical study of the problem (1) when a = 1 and p = 2, correspond-
ing to the KPZ problem which translate the surface-growth phenomenon [8],[9],[14],[15],[28].
This work is organized as follows: In the first section we present the inverse problem for-
mulation that permits to estimate the parameter "a" of (1). In the second section, we
conduct the numerical scheme validation and verify numerically some theoretical results
as the solution extinction, in finite time, of the Cauchy-Dirichlet problem of the KPZ
equation. In the last section, we present numerical simulations of the parameter estima-
tion.

1 Inverse problem formulation
Let’s consider the functional

Jλ(a) = 1
2

∫ T

0
‖ Λ.S(a; t)− U obs ‖2

O dt+ λ

2 ‖ a− a
b ‖2 . (2)

where O is the observation space, Λ is the observation operator, U obs is the observation,
and ab is the first guess.
The problem is to minimize the functional (2) under constraint (1). We use the variational
data assimilation techniques based on the compact adjoint method [1].
By using a paryial discretization in space, the problem (1) drives us to an ordinary
differential equation of the shape

dU

dt
= F (U, a), t ∈]0, T [

U(0) = u

(3)

where U(t) is the state belonging to the Hilbert space H ≡ RN .
We get the complete numerical scheme by using the explicit Euler method:{

Uk+1 = Uk + ∆tF (Uk, a), k = 0 : M − 1
U0 = u

(4)

where Uk is the approximation vector of U(t), solution of the problem (3), in RN at the
time tk = k∆t. Let’s denote by P the admissible space of the estimate parameter and
a ∈ P . Let’s make the following hypothesis:

Hypothesis 1.1. Given a ∈ P and T > 0, we assume that there exists a unique function
U ∈ H, solution of the problem (3), which depends continuously on the parameter "a".
Otherwise, the application

S : P −→ H
a 7−→ S(a) = U(a; t)

is continuous for all t ∈ [0, T ].

Hypothesis 1.2. We assume that the application S is Fréchet differentiable for all t ∈
[0, T ]. In particular, for all δa ∈ P and for all t ∈ [0, T ]:

U(a+ δa; t) = U(a; t) +DU(a; t).δa+ o(‖ δa ‖P)

where DU(a; t) is the derivative of the state U(t) at the point a.
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For the purposes of numerical processing it should be assumed that O is a finite
dimensional vector space or a subset of a finite dimensional vector space.
Under the hypothesis 1.1, the solution of the Cauchy problem (3)

U(a; t) = S(a)

leads us to
Uk = Sk(a) (5)

solution of the discrete system (4), where (Sk) is a sequence of operators which for the
parameter a associates the discrete solution at the instant tk with

S0(a) = u. (6)

2 Numerical schemes validation
In this section, we conduct an analysis of the stability of our numerical schemes. This
analysis is useful in particular for a variational assimilation problem which we will ex-
pose further in this work. We also perform numerical simulations of the KPZ problem
which translate the water surface-growth phenomenon , as well as some related theoretical
results.

Numerical scheme of the direct problem: To validate the numerical scheme of
the problem (1), we use a "synthetic" exact solution. This aspect imposes us a source
function f(x, y, t). Therefore, we consider the problem

∂u

∂t
−∆u = a | ∇u |p +f(x, y, t) in Ω×]0,+∞[
u = 0 on ∂Ω×]0,+∞[

u(., 0) = u0 in Ω
(7)

We choose p = 2, a = −1 and Ω = [−1, 1]× [−1, 1].
f is defined by:

f(x, y, t) = π
(
sin(πx) sin(πy)− cos2(πx) sin2(πy)− sin2(πx) cos2(πy)

)
exp(−π2t).

Thus, the problem (7) admits

u(x, y, t) = 1
π

sin(πx) sin(πy) exp(−π2t) (8)

as analytic solution, where the initial condition is

u0(x, y) = 1
π

sin(πx) sin(πy).

For the discretization, we used, for the variable space (x, y), the Chebyshev spectral
method and the explicit Euler method in time. Then (7) implies

Sk+1(a) = Sk(a) + ∆t(Dxx +Dyy)Sk(a)
+a∆tdiag(DxSk(a))DxSk(a)
+a∆tdiag(DySk(a))DySk(a) + f, k = 0, ...,M − 1

S0(a) = u.

(9)
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Before conducting the data assimilation, we first analyse and validate the numerical
schemes stability. To analyze the numerical stability of the scheme (9), we perform nu-
merical simulations of the exact solution (8) and the approximate solution from (9). The
results of these simulations are presented in Figure 1 and the estimation of error in the
table 1.

Figure 1: Evolution of the exact solution (first line) and the approximate solution (second
line).

iteration 1 1000 3000 4000 4500 5000
Error L∞ 6.1972e-07 4.5185e-05 2.3161e-06 8.2056e-07 4.9795e-07 3.0255e-07

Table 1: Estimation of error between exact and approximate solutions.

The different simulations ( Figure 1) show that the numerical scheme (9) gives a good
approximation of the exact solution (8), the error between the two solutions converges
toward 0 with an optimal order in L∞. In fact, in general, the maximum error (infinite
norm) according to the different simulations is of the order 10−7 (table 1). We can draw
the following conclusions:

1. The choice of the pseudo-spectral discretization scheme allowed us to directly es-
tablish a numerical scheme of the problem (7) in matrix form. This method makes
it possible to reduce the use of the loop "for" in our algorithm.Thus, we gain in
computing time and storage.

2. The explicit Euler scheme with time, with a judicious choice of discretization steps
∆t = 0, 0002, guarantees a numerical stability of the scheme (9).

Application to the KPZ equation
Assuming a = 1 and p = 2, the problem (1) corresponds to

∂u

∂t
−∆u = | ∇u |2 in Ω×]0,+∞[
u = 0 on ∂Ω×]0,+∞[

u(., 0) = u0 in Ω
(10)
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known as the Cauchy-Dirichlet problem of the KPZ equation. In practice, the problem
(10) can reflect the phenomenon of the surface growth ( shallow water for example).u(x, y, t)
represents the surface height’s, at time t and at the point (x, y) ∈ Ω ⊂ R2.
We numerically validate the extinction of the solution in finite time whatever the initial
condition randomly chosen. This translates, in practice, whatever the disturbance carried
out at the level of the water surface, at the initial time t0, the surface stabilizes horizon-
tally at the absence of a permanent source of disturbance.
Consider a unit cubic vase filled with water at a height h0 which representing the obser-
vation origin of the surface u in Ω = [−1, 1]2. At rest, this surface u is in the horizontal
plane passing through the origin h0 = 0. By making the following assumptions:

1. the water quantity is invariant;

2. the non-existence of a permanent source of disturbance of this water;

3. the initial condition u0 of the problem (10) represents the water surface behavior
following a sudden disturbance at the initial time t0.

Then this surface u(x, y, t) is between the two horizontal planes passing through the global
extrema of u0. It covers its state u = 0 in finite time. We find explicitly (Figure 2) this
phenomenon through different simulations of the numerical scheme of the problem (10).
This gives the mathematical result as follows. Assuming a = 1 and p = 2 for all initial
condition u0, the problem (10) admits a unique classical solution u ∈ C2,1(Ω × (0, T )
([5],[19]) satisfying

min
Ω
u0 ≤ u(x, y, t) ≤ max

Ω
u0, (x, y, t) ∈ [−1, 1]2 × [0,∞[.

It’s possible to prove that this solution converges towards a stable state, the null func-
tion.In the practical case, relating to the water surface growth, this stable state is reached
and we have u ≡ 0 in [−1, 1]2× [0,∞[ in the absence of a permanent perturbation source.
u ≡ 0 represents the water surface state at rest.

Remark 2.1. Even if the boundary conditions are not Dirichlet type, the behavior of the
solution remains valid [7].

We give an extinction property in finite time of the solution of the problem (10).

Theorem 2.1. Assume that a = −1, p = 2 and the initial condition u0 depend on
a bounded Random measure in Ω = [−1, 1]2.Denoting by u the corresponding classical
solution of (10),

1.
min

Ω
u0 ≤ u(x, y, t) ≤ max

Ω
u0, (x, y, t) ∈ Ω× [0,∞[.

2. there exists T ∗ > 0 such that

u(x, y, t) = 0 for each (x, y, t) ∈ Ω× (T ∗,+∞). (11)

For proof, it suffices to realize, in practice, whatever the initial condition u0, at a
certain time t∗, u(x, y, t∗) belongs to C0(Ω). Thus, one can have a frame of the solution.
When p = 2, global solutions converge to zero in L∞(Ω) as time goes to infinity and this
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Figure 2: Behavior of the water surface after a sudden disturbance at the initial time.

property remains true for all global solutions which are bounded in C1(Ω) when p ∈ (1, 2].
For more detail, we can refer to [5], [6], [7],[8],[17].
After this result, we proceed to present the numerical scheme of the inverse problem.
Numerical scheme of the inverse problem
We have developed a compact adjoint technique for the numerical resolution of inverse
problems in [1]. such an approach is proved to be very efficient in the approximation of so-
lution of inverse problems governed by the partial differential equations (PDE), especially
for the schemes which combine the pseudo-spectral methods and the compact approach
of adjoint codes determination .
The discrete analog of the functional (2) can be written as follows:

J(a) = 1
2∆t

M−1∑
k=0
‖ ΛN .Sk+1(a)− U obs

k+1 ‖2 +λ2 ‖ a− a
b ‖2 (12)

where ΛN is the discrete observation operator, ab is a background estimate of parameter
a, U obs

k is the observation vector at the time tk of the state variable U . Let ã denote a
perturbation on a, then the calculation of the directional derivatives at (4) gives us the
discrete tangent linear model{

Ûk+1 = Ûk + ∆tF̂U .Ûk + ∆tF̂a.ã, k = 0 : M − 1
Û0 = 0 (13)

where F̂U = ∂F
∂U

(Uk) and F̂a = ∂F
∂a

(Uk), the directional derivative of the cost function J
can be expressed as follows:

Ĵ(a).ã = ∆t
M−1∑
k=0
〈ΛT

N .(ΛN .Sk+1(a)− U obs
k+1), Ûk+1〉+ λ〈a− ab, ã〉. (14)

We can determine the gradient of the functional if we succeed to express the linearity of
Ĵ(a).ã. To achieve this, we calculate a scalar product of each member of (13) by qk (
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adjoint state) and we make the summation of the terms. Which gives us:
M−1∑
k=0
〈Ûk+1, qk〉 =

M−1∑
k=0
〈Ûk, qk〉+ ∆t

M−1∑
k=0
〈F̂U .Ûk, qk〉+ ∆t

M−1∑
k=0
〈F̂a.ã, qk〉

which is written again after reduction
M−1∑
k=0
〈Ûk+1, qk − qk+1 −∆tF̂ ∗U .qk+1〉 = −〈ÛM , qM〉 − 〈ÛM , F̂ ∗U .qM〉+ ∆t

M−1∑
k=0
〈ã, F̂ ∗a .qk〉.

(15)
If one defines the adjoint qk of Ûk as solution of the following system

qk − qk+1

∆t − F̂ ∗U .qk+1 = ΛT
N .(ΛN .Sk+1(a)− U obs

k+1), k = 0 : M − 1
qM = 0,

(16)

then equation (15) becomes
M−1∑
k=0
〈Ûk+1,ΛT

N .(ΛN .Sk+1(a)− U obs
k+1)〉 = ∆t

M−1∑
k=0
〈F̂ ∗a .qk, ã〉 (17)

and the directional derivative of the cost function can be written:

Ĵ(a).ã = 〈∇aJ, ã〉

= λ〈a− ab, ã〉+ ∆t
M−1∑
k=0
〈F̂ ∗a .qk, ã〉

(18)

We deduce the gradient:

∇aJ = λ(a− ab) + ∆t
M−1∑
k=0

F̂ ∗a .qk (19)

Remark 2.2. The discrete scheme chosen in this part is the explicit Euler method. An-
other choice (implicit Euler, leap-frog, ...) would have resulted in a solution expressed
differently.

In this approach, to determine the gradient of the functional with respect to the control
variable, it is sufficient to solve the direct model (4), then solve the adjoint model (16)
and finally apply the formula (19) to have the gradient. This procedure is performed by
solving the following optimality system:

U0 = u
Uk+1 = Uk + ∆tF (Uk, a)

qk − qk+1

∆t − F̂ ∗U .qk+1 = ΛT
N .(ΛN .Sk+1(a)− U obs

k+1)
qM = 0
∇aJ = λ(a− ab) + ∆t

M−1∑
k=0

F̂ ∗a .qk

(20)

Remark 2.3. It is possible to transform a sub-constrained optimization problem into an
unrestrained optimization problem that can be solved with relatively conventional and high-
performance algorithms (such as the descent algorithm). The method consists of adding
the state equation as a constraint of the cost function to be minimized. The function J
and its augmented Lagrangian will have the same extrema. We can show that we achieve
the same result by using the Lagrangian.
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2.1 Gradient test
In the optimization mechanism, it is necessary to correctly evaluate the gradient of the
cost function with respect to the control variable in order to obtain the correct descent
direction. The accuracy of the gradient calculation acts on the speed of the minimization
convergence and the exact value of the optimal control parameter. For this, we check the
accuracy of the calculation of the gradient obtained before starting the optimization step.

The first order of the Taylor’s expansion allows, in an efficient way, to validate experi-
mentally the accuracy of the gradient. In fact, for a perturbation v ∈ RN in the direction
w̃, chosen so that ‖ w̃ ‖= 1, the Taylor development at the point w is given by:

J(w + v) = J(w) + 〈∇J(w), v〉+ o(‖ v ‖). (21)

Therefore, if for any direction w̃ ∈ RN , we have

lim
ξ→0

ρ(ξ) = lim
ξ→0

J(w + ξw̃)− J(w)
ξ〈∇J(w), w̃〉 = 1, (22)

the gradient test is checked, linearization of the direct code is correct.

The gradient test algorithm:: Let us note by D the direct code and AD the adjoint
code. Let U be an input vector of D and V = D(U) an output vector.LetM be an integer.
Validation can be achieved through the following algorithm:

1. execute the direct code V0 = D(U);

2. calculate J0 = J(V0);

3. calculate the cost function gradient ∇J0 by executing AD;

4. for i=1:M

• ξ = 2−i;
• calculate Vξ = D(U + ξδv) by executing the direct code;
• calculate Jξ = J(Vξ);
• evaluate the quantity

ρ(ξ) = Jξ − J0

ξ〈∇J0, δv〉
. (23)

The gradient test is satisfied in the direction δv if ρ(ξ) converge towards 1 when i becomes
large. In practice, after increasing convergence towards 1, there is a perturbation around
1. One of the results of this test is presented in Table 2. When ξ varies from 2−2 to 2−40,
the function ρ(ξ) tends to 1.
Table 2 guarantees a convergence of the quotient (23) to the real number 1. After the
gradient test, we proceed to the estimation process of the coefficient a by using the descent
optimization algorithm.
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ξ ρ(ξ) ξ ρ(ξ) ξ ρ(ξ)
2−2 0.373700210353322 2−15 1.001014920052647 2−28 1.001087251476291
2−3 0.697737981268313 2−16 1.001050737137807 2−29 1.001087219853407
2−4 0.851921740138193 2−17 1.001068645442983 2−30 1.001088389900115
2−5 0.927122123615446 2−18 1.001077599115940 2−31 1.001087915556855
2−6 0.964257670860460 2−19 1.001082077938499 2−32 1.001083235370023
2−7 0.982710300924212 2−20 1.001084316230316 2−33 1.001100817693525
2−8 0.991907956573396 2−21 1.001085430936977 2−34 1.001070712707960
2−9 0.996499635322196 2−22 1.001085991872587 2−35 1.001115743694772
2−10 0.998793689397904 2−23 1.001086286484221 2−36 1.000918416898628
2−11 0.999940270354718 2−24 1.001086409022897 2−37 1.000894130523718
2−12 1.000513449343803 2−25 1.001086485609569 2−38 1.000979132835903
2−13 1.000800010971361 2−26 1.001086518220668 2−39 1.000938655544386
2−14 1.000943284765760 2−27 1.001086508338517 2−40 1.000728173628499

Table 2: Gradient test with ξ → 0.

3 Parameter estimation
The stop criterion considered in our optimization algorithm is based on an increase of
the gradient norm. We consider the first guess value ab = −1, 01 and the reference value
aref = −1. We generated the observations U obs

k , following the twin experiments method,
using aref and disturbing the condition U0.
The principle is to find an excellent estimate of the parameter a whose ideal would be
aref .

Starting from the initialization value

1. a0 = −1.5 we find an estimate a = −1.000069027494187 after 131 iterations;

2. a0 = −0.7 we find an estimate a = −0.995544157558389 after 119 iterations.

Figure 3: Convergence of the coefficient a towards -1.
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The figures (Figure 3), according to the iterations, show that the curve of the parameter a
is asymptotic to the horizontal line passing through −1, independently of the initialization
value a0 position. By making a comparison of the absolute errors between the reference
value aref and the estimate of a, and between the first guess ab and the estimate of a. We
get the results in table 3 This table shows that a converges towards the reference value

Initialization value: a0 Estimate: a r1 =| aref − a | r2 =| ab − a |
-1,5 -1,0001 0,0001 0,0099
-0,7 -0,9955 0,0045 0,0145

Table 3: Errors comparaison.

aref but not towards the first guess ab.
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