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Abstract This paper develops a framework of algebra whereby every
Diophantine equation is made quickly accessible by a study of the corre-
sponding row entries in an array of numbers which we call the Newtonian
triangles. We then apply the framework to the discussion of some no-
table results in the theory of numbers. Among other results, we prove a
new and complete generation of all Pythagorean triples (without neces-
sarily resorting to their production by examples), convert the collection
of Newtonian triangles to a Noetherian ring (whose (multiplicative) iden-
tity element is found to be the well-known Pascal triangle) and develop
an easy understanding of the original Fermat’s Last Theorem (FLT ).
The application includes the computation of the Galois groups of those
polynomials coming from our outlook on FLT and an approach to the
explicit realization of arithmetic groups of curves by a treatment of some
Diophantine curves.
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§1. Introduction. Let x, y, n ∈ N ∪ {0}, then the coefficients in the expan-
sion of (x + y)n, when considered as a polynomial in descending powers of x, are
1, nC1y,

nC2y
2, · · · , yn. For y = 1 these coefficients form the nth row of the Pascal

triangle, while, for other values of y, the coefficients form the nth row of an array
of numbers which we call the Newtonian triangles. Numbers formed from these
coefficients, by the application of the digital-correspondence map, are n−powers of
natural numbers and may be extended to generate all n−powers of rational numbers
only. This outlook simplifies every Diophantine equation and gives proof of results
that are consistent with the expectations of their originators and true to the spirit
of classical number theory, as we shall show in the case of rational solutions of the
equation un + vn = wn, for n = 2 and its impossibility for non-zero rationals u, v
and w, when integers n > 2, in §3. and §4., respectively. The approach to the present
study is that instead of splitting the power n above, thus leading to its primality or
otherwise (as it has always been done by many number theorists), we decide to split
u, v and w and study the consequences.

The ideas of this paper emanated from a very elementary transformation of the
finite Binomial theorem. After the introduction of the digital-correspondence map
and the Newtonian triangles in §2, we state and establish a purely algebraic reason
for the existence and explicit form of all rational Pythagorean triples, leading to the
partitioning of the integral ones in §3. Aside other mentioned approaches that may
be taken to the study of Pythagorean triples, the ring of Newtonian triangles is intro-
duced and proved to be Noetherian. §4 contains an elementary proof of the original
Fermat’s Last Theorem which is seen to be greatly simplified by the introduction and
investigation of some built-in polynomials of the Newtonian triangles. Open prob-
lems on the ideal theory of the Noetherian ring of Newtonian triangles, distribution



and density of solutions of Diophantine equations, non-rational Pythagorean triples
in other fields and the link with the Wiles-Taylor proof of FLT are all brought up in
the remark at the end of each section. §5. contains two Lemmas and a Theorem, on
the nature of these built-in polynomials we call Fermat polynomials, while we offer
a novel approach to the yet-to-be-solved problem of computing the Mordell-Weil
groups of algebraic curves in §6. Some open problems are also contained in §7.

A preliminary version of Theorem 3.1 is contained in the announcement [9.].

§2. Digital-correspondence and Newtonian triangles. A typical row in
the Pascal triangle is (1, nC1,

nC2, · · · , 1). Among its properties we have that
1 +n C1 +

n C2 + · · ·+ 1 = 2n, for all n ∈ N∪ {0}. For n < 5, each of the coefficients
1, nC1,

nC2, · · · , 1, is a digit, so that any row may be viewed as a number having
these coefficients as its digits. These numbers are 1, 11, 121, 1331, and 14641, each
of which is the respective nth power of 11, for n = 0, 1, 2, 3, 4. ([10.], p. 10) It may
then be asked:

Is it a mere coincidence that for n ∈ N ∪ {0}, n < 5, the number (1 + 1)n

(where 1 is the repeated digit of the number 11 = (10 + 1)) is exactly 2n (the sum
1 +n C1 +

n C2 + · · ·+ 1)? Indeed, what can we say of each of the remaining rows in
the Pascal triangle with respect to (11)n?

We answer the second question above as follows. Since the 5th row in the tri-
angle is (1, 5, 10, 10, 5, 1) an appropriate transfer of tens, at the middle terms, gives
the number 161051. This is 115. We have taken the top digit 1 in the Pascal tri-
angle as the 0th row. The 6th row is (1, 6, 15, 20, 15, 6, 1), which corresponds, after
appropriate transfer of tens, to the number 1771561. This is 116. A first conclusion
is therefore that these equalities are not mere coincidences and that there is a map
taking 1 +n C1 +

n C2 + · · · + 1 = 2n = (1 + 1)n to (1110)
n. This map is expected

to combine the coefficients, (1, nC1,
nC2, · · · , 1), of the Pascal triangle to form

a whole number having the coefficients as the digits of the number (for n < 5) or
form the number after appropriate transfer of tens (for n ≥ 5). In order to define
this map in its generality we shall first generalize the Pascal triangle.

We consider n, y ∈ N ∪ {0} and the coefficients (1, nC1y,
nC2y

2, · · · , yn) of the
finite binomial expansion of (x + y)n. For different choices of n, the corresponding
triangle is

1
1 y

1 2y y2

1 3y 3y2 y3

1 4y 6y2 4y3 y4

1 5y 10y2 10y3 5y4 y5

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

1 nC1y
nC2y

2 nC3y
3 · · ·nCry

r · · · yn
· · · · · · · · · · · · · · ·

We shall refer to this as the Newtonian triangle and denote it as T (y). Its build-
up formula may be seen as y(n−1Cr−1y

r−1) +n−1 Cry
r =n Cry

r, ∀ r ∈ N, which
becomes familiar when y = 1. In order to get a handle on our extension of the
Pascal triangle we consider the Newtonian triangle for y = 2. In this case the
2nd row is (1, 4, 4), which corresponds to the number 144 = 122, the 3rd row is
(1, 6, 12, 8) corresponding to the number 1728 = 123, the 4th row is (1, 8, 24, 32, 16)
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corresponding to the number 20736 = 124, etc. We shall therefore say that the
number 20736 digitally corresponds to the row (1, 8, 24, 32, 16), and vice-versa. We
shall denote the digital-correspondence map by δ : Nn+1 → N whose restriction to
the subset {(1, nC1y,

nC2y
2, · · · , yn) : n, y ∈ N ∪ {0}} of Nn+1 is given as

δ(1, nC1y,
nC2y

2, · · · , yn) = 1 nC1y
nC2y

2 · · · yn,

where the right hand side is viewed as a whole number, whether tens are transferred
(when n ≥ 5 or y ̸= 1) or not (when n < 5 and y = 1).

The truth behind our observations that the whole number δ(1, nC1y,
nC2y

2, · · · , yn)
is always a power of nmay be formalized for any rowN(y, n) := (1, nC1y,

nC2y
2, · · · , yn)

in the Newtonian triangles. Here a natural number having an nth root in N, for
some n = 2, 3, 4, · · · , shall be called exact. In this sense −4 is an exact integer of
power 1 only (since −4 = (−4)1), while 4 is an exact integer of powers 1 (since
4 = 41) and 2 (since 4 = (2)2).

Lemma 2.1. Let y, n ∈ N∪ {0} and define fn(y) = δ(N(y, n)). Each fn(y) ∈ N
and is exact of power n. Every exact number in N is of the form fn(y).

Proof. We know that (x+ y)n = xn + (nC1y)x
n−1 + (nC2y

2)xn−2 + · · ·+ yn, so
that, considering x as the base of numeration on both sides, we have

(1yx)
n = (1 nC1y

nC2y
2 · · · yn)x.

That is,
(1yx)

n = δ(N(y, n))x · · · · · · · · · (∗)
as two equal numbers in base x. �

The above lemma shall be employed in Theorems 3.1, 4.2 and 4.3 in the follow-
ing form. Our point of departure in the consideration of powers of integers (resp.,
rationals) is to view the set of all exact integers (resp., rationals) of power n in
terms of the polynomials, fn, as assured by the following lemma.

Corollary 2.2. Let E be the collection of all exact integers, explicitly given as

E = {ξn : ξ ∈ Z+ and n ∈ 2N} ∪ {ξn : ξ ∈ Z and n ∈ N \ 2N}.

Then the set E is in a one-to-one correspondence with the set {fn(y) : y ∈ Z, n ∈ N}.
Proof. Define ρ : {fn(y) : y ∈ Z} → E as ρ(fn(y)) := ξn, with ξ = 10+y, y ∈ Z.

ρ is a one-to-one correspondence. �
Remarks 2.3.
(1.) On all exact rationals: It may be seen, from the left side of (∗), that

fn(y) = (10 + y)n, as earlier envisaged in the case of y = 1. This polynomial form
for fn allows us to extend its domain to all y ∈ Q, giving only all exact rationals.
The constant 10 in fn may clearly be replaced with any other constant in Z, while
the definition of E is designed to take adequate care of the unnecessary repetition
of values brought about by the equality of (−m)2n and m2n, m ∈ Z, n ∈ N, when
computing natural powers of integers.

(2.) On general Diophantine equations: Our focus is to discuss the contri-
bution of fn(y) to Diophantine equations, which we may generally write as

A1α
n1
1 + A2α

n2
2 + A3α

n3
3 + · · ·+ Apα

np
p = Bβm,

for some constants Ai, B ∈ Q, ni,m ∈ N and unknowns αi, β ∈ Q, i = 1, 2, · · · , p.
This translates, in our context, to studying

A1fn1(y1) + A2fn2(y2) + A3fn3(y3) + · · ·+ Apfnp(yp) = Bfm(y),
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for some y, yi ∈ Q, i = 1, 2, · · · , p. A particular example is when Ai = 1 and
ni = m = n with p = 2, which is the defining equation of FLT. That is,

fn(y1) + fn(y2) = fn(y3),

for y1 ̸= y2 ̸= y3. It is necessary to illustrate the depth of insight of this formulation
of Diophantine equations by tackling a formidable problem.

We shall therefore illustrate our method with the problems of Pythagorean triples
and FLT. In our context, these two problems are simultaneously captured by study-
ing the possible values of y ∈ Q for which

Qn−1,a(y) := fn(y + a)− fn(y),

y ∈ Q, a ∈ Q \ {0}, n ∈ N, is the digital-correspondence of some N(y0, n), y0 ∈ Q.
We have set y1 = y0, y2 = y and y3 = y + a, in fn(y1) + fn(y2) = fn(y3) above to
arrive at the equation Qn−1,a(y) := fn(y + a)− fn(y).

Our approach would then be to investigate, among other things, the reason for
the existence of (rational) Pythagorean triples (in §3.), which we then employ to
seek Fermat’s triples, if they exist (in §4.).
§3. Pythagorean triples in the context of Newtonian triangles. Lemma
2.1 clearly says that f2(y),∀ y ∈ N ∪ {0}, (indeed ∀ y ∈ Q) is a perfect-square in
Q and that every perfect-square in Q is some f2(y). Hence the study of f2(y) in
Pythagoras’ theorem translates to studying the digital-correspondence of the sec-
ond rows, N(y, 2), of the Newtonian triangles, T (y), for different values of y. In
this case Q1,a(y) = (2a)y + a(20 + a). The following result may be seen as a purely
algebraic and rational proof of the existence of Pythagorean triples and of the truth
of Pythagoras’ theorem for rationals. It establishes, in our context, that some of the
values of Q1,a(y) appear in the list of the digital-correspondences of N(y0, 2).

Theorem 3.1. Let a ∈ Q\{0}. Then there exist y ∈ Q for which Q1,a(y) is a
perfect-square. That is, Q1,a(y) = δ(N(y + b, 2)), for some y ∈ Q, b ∈ Q \ {0, a}.

Proof. Since Q1,a(y) is a linear polynomial in y we substitute y = α2x
2 +α1x+

α0, x ∈ Q, where the values of α2, α1, α0 ∈ Q are yet to be known, into Q1,a(y) in
order to consider Q1,a(y) for a candidate in the list of values of δ(N(y+ b, 2)). That
is,

Q1,a(y) = Q1,a(x) = (2aα2)x
2 + (2aα1)x+ a(2α0 + 20 + a)

and, for it to be a complete square of a non-zero rational, we must have Q1,a(x) ≡
(px+ q)2 for all p, q, x ∈ Q. The choice of y and the above identity are informed by
the one-to-one correspondence in Corollary 2.2, with n = 2.

This identity gives α2 = 1
2a
p2, α1 = 1

a
pq and α0 = q2−a(20+a)

2a
, each of which

belongs to Q uniquely, for every p, q ∈ Q. Hence

y =

(
p2

2a

)
x2 +

(pq
a

)
x+

[
q2 − a(20 + a)

2a

]
is the required y in Q. Indeed, the discriminant of Q1,a(x) vanishes exactly when

α2 =
1
2a
p2, α1 =

1
a
pq and α0 =

q2−a(20+a)
2a

. �
The conclusion of Theorem 3.1 is that, for every x, p, q ∈ Q and a ∈ Q \ {0}, the

rational solutions, y, to the equation Q1,a(y) = δ(N(y + b, 2)) exist and are given

as y =
(

p2

2a

)
x2 +

(
pq
a

)
x+

[
q2−a(20+a)

2a

]
. The converse question to this result is that:
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if this y is a given rational solution of Q1,a(y) = δ(N(y + b, 2)), does it imply that
x ∈ Q? This question is addressed in the following theorem.

Theorem 3.2. Let p, q and a be as in the proof of Theorem 3.1, with p ̸= 0.

Every rational solution y =
(

p2

2a

)
x2+

(
pq
a

)
x+

[
q2−a(20+a)

2a

]
of Q1,a(y) = δ(N(y+b, 2))

corresponds to a rational value of x.
Proof. It is clear, from Theorem 3.1, that, if x, p, q ∈ Q and a ∈ Q\{0}, then the

given y is a solution of Q1,a(y) = δ(N(y+ b, 2)) and y ∈ Q. Conversely, let the given
y be a rational solution of Q1,a(y) = δ(N(y + b, 2)) and let (α, β, γ) be a rational

Pythagorean triple with α < β < γ. (That is, (Q1,a(y))
1
2 < (fn(y))

1
2 < (fn(y+a))

1
2 ).

Then Q1,a(y) = α2. This gives, 2ay+a(20+a) = α2. That is, y = 1
2a
[α2−a(20+a)].

Hence, 1
2a
[α2 − a(20 + a)] = y =

(
p2

2a

)
x2 +

(
pq
a

)
x+

[
q2−a(20+a)

2a

]
which reduces to a

quadratic equation in x given as p2x2 + 2pqx + (q2 − α2) = 0, with p ̸= 0, which is
necessary in order to find x. The solution of this quadratic is x = −q±α

p
∈ Q. �

Remarks 3.3.
(1.) On the coefficients of y: Observe that it is necessary and sufficient for all

αi, i = 0, 1, 2, to be rational in order to always have y ∈ Q. The polynomial Q1,a(x)
is always a perfect-square of members of Q \ {0}, whatever the value of x in Q. A
closer look at Theorem 3.1 therefore reveals a very important conclusion that: in
order to justify the identity used, between Q1,a(x) (which is always a perfect-square
in Q \ {0}) and (px + q)2, p and q must necessarily assume all values in Q, and
not just ′some′ values in Q. This observation, which is the core of the method of
Theorem 3.1, shall be needed when considering rational Pythagorean triples and
the non-zero rational solutions (if any) of un + vn = wn, for n > 2. See also (1.) of
Remarks 4.4.

(2.) On the constant b: Now that we have a general expression for y ∈ Q
that explains the existence of Pythagorean triples, we may compute the constant
b ∈ Q \ {0, a} in Q1,a(y) = δ(N(y + b, 2)) as follows: Q1,a(y) = δ(N(y + b, 2)), for
rational y, ⇐⇒ y2 + (20+ 2b− 2a)y+ (b2 +10b+100− a2 − 20a) = 0 has a perfect-
square discriminant ⇐⇒ the quadratic 2a2 − 2ba+ 10b, in a, has zero discriminant
⇐⇒ b = 20.

A complete list of all rational Pythagorean triples is therefore possible without
necessarily having to generate them from the basic example of the triple (3, 4, 5)
(See [5.]). This list is contained in the following result.

Corollary 3.4. Let a, p, q, x ∈ Q with a ̸= 0. The general expression for any
rational Pythagorean triple is then (α, β, γ) = ((px+ q) ,

(
p2

2a

)
x2 +

(
pq
a

)
x+

(
q2−a2

2a

)
,
(

p2

2a

)
x2 +

(
pq
a

)
x+

(
q2+a2

2a

)
), if α < β < γ,

(
(

p2

2a

)
x2 +

(
pq
a

)
x+

(
q2−a2

2a

)
, (px+ q) ,

(
p2

2a

)
x2 +

(
pq
a

)
x+

(
q2+a2

2a

)
), if β < α < γ.

Proof. We already know, from Theorem 3.1, that every Pythagorean triple in
Q is

(α, β, γ) =

{
(
√

Q1,a(y),
√
f2(y),

√
f2(y + a)), if α < β < γ,

(
√

f2(y),
√

Q1,a(y),
√
f2(y + a)), if β < α < γ,

where y is as found in the Theorem. Computing each of these triples with the said
y gives the result. �
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We arrive at the classical Diophantus’s solution to the problem of primitive so-
lutions to α2 + β2 = γ2, if we set x = 0 in Corollary 3.4 and clear the fractions.

Corollary 3.5. Let α ∈ Q. Then there are β, γ ∈ Q such that (α, β, γ) is a
rational Pythagorean triple. That is, every rational number is a first element of
some rational Pythagorean triple.

Proof. Every α ∈ Q may be written as α = px+q for a choice of p, q, x ∈ Q. The
values of β and γ may then be computed from Corollary 3.4 for any a ∈ Q \ {0}. �

The particular cases of non-trivial, primitive and integral Pythagorean triples
may be deduced from these Corollaries, which may themselves be extended to include
the study of Pythagorean n−tuples. See [1.], p. 76. The generality inherent in the
use of Newtonian triangles is evident from the ease with which general Pythagorean
triples are handled. We now partition all integral Pythagorean triples into disjoint
classes.

Let P denote the set of all rational Pythagorean triples and denote the subset
consisting of integral ones by PZ. Let Pm = {(α, β, γ) ∈ PZ : gcd(α, β, γ) = m},
where m ∈ Z. Clearly PZ =

∪
m∈Z Pm. It may not be clear whether or not this is a

disjoint union. This may be addressed by using an appropriate equivalence relation.

Theorem 3.6. The equality PZ =
∪

m∈Z Pm is a disjoint union.
Proof. Define a relation ∼ on members of PZ as (α1, β1, γ1) ∼ (α2, β2, γ2) iff

gcd(α1, β1, γ1) = gcd(α2, β2, γ2). It is immediate that ∼ is an equivalence relation on
PZ. It is also clear that each Pm is a typical equivalence class in PZ/ ∼ . �

It therefore follows that the set {Pm : m ∈ Z} is a partition of PZ.

Remarks 3.7.
(1.) On parametrization of rational Pythagorean triples: We may as well

use f2(λy) in the manner in which f2(y + a) has been considered. The first result
here is that, for every λ ∈ Q \ {0, 1}, we always have that

f2(λy) = λ2f2(y) +R1,λ(y),

where R1,λ(y) = 20λ(1 − λ) + 100(1 − λ2). It can readily be shown that R1,λ(y) =
δ(N(ξy, 2)), ξ ∈ Q \ {0, λ}, iff

y =

[
p2

20λ(1− λ)

]
x2 +

[
pq

10λ(1− λ)

]
x+

[
q2 − 100(1− λ2)

20λ(1− λ)

]
for all p, q, x ∈ Q. This gives another outlook to Corollary 3.4.

(2.) On equivalence classes of Pythagorean triples: The function

h : PZ → Z

given as h(α, β, γ) = gcd(α, β, γ), ∀ (α, β, γ) ∈ PZ, is well-defined and constant-
valued on each Pm. It will be interesting to get the dependence of m on the param-
eters of the triples in Corollary 3.4. That is, to derive a function

ϑ : Z3 × (Z \ {0}) → Z

given as m = ϑ(p, q, x, a) = gcd((px+ q) ,
(

p2

2a

)
x2 +

(
pq
a

)
x +

(
q2−a2

2a

)
,
(

p2

2a

)
x2 +(

pq
a

)
x +

(
q2+a2

2a

)
), where ((px+ q) ,

(
p2

2a

)
x2 +

(
pq
a

)
x +

(
q2−a2

2a

)
,
(

p2

2a

)
x2 +

(
pq
a

)
x+(

q2+a2

2a

)
) ∈ PZ, as this will put results on h and Pm in proper perspectives. It
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may therefore be useful to note, from Corollary 3.4, that every (α, β, γ) ∈ P, with
α < β < γ, (respectively, β < α < γ) may be reduced to the (Diophantine) form

(α, α
2−a2

2a
, α

2+a2

2a
), (respectively, (α

2−a2

2a
, α, α

2+a2

2a
)), (where α := px + q of Corollary

3.4) for any a ∈ Q\{0}. The well-known case of ϑ ≡ 1 follows from here. The above
Diophantine form of the Pythagorean triples gives a compact expression for the
result of Corollary 3.4 and may be further discussed in the light of Hall’s matrices,
[5.]. A step towards the derivation of an explicit expression for the function,

ϑ : Z3 × (Z \ {0}) → Z,

is to note, from the remark following Corollary 3.4, that ϑ(p, q, x, a) = 1 at x = 0.
We may then write ϑ(p, q, x, a) = 1 + xτ(p, q, x, a), where τ : Z3 × (Z \ {0}) → Z,
whose explicit expression would enrich the study of Pm.

A direct consequence of this outlook, which follows from the above Diophantine
form of the Pythagorean triples, is seen in the following.

Corollary 3.7.1 (Diophantus) The solutions of α2+β2 = γ2, with α, β, γ ∈ Z,
are all generated from α = m2 − n2, β = 2mn and γ = m2 + n2, where m,n ∈ N
and gcd(m,n) = 1.

Proof. As computed above. �
The above Corollary puts the age-long result of Diophantus in its proper per-

spective; as a Corollary in the scheme of things and not as a starting point to the
study of Pythagorean triples. This may explain the difficulty encountered in the fu-
tile attempts at using the technique of proof given by Diophantus for Corollary 3.7.1
to understand Fermat’s Last Theorem.

(3.) On rings and modules of Newtonian triangles: Let n ∈ N be fixed
and consider the set N(n) := {N(y, n) : y ∈ Z}. The operations + and ·, defined
on members of N(n), as

N(y1, n) +N(y2, n) := N(y1 + y2, n) and N(y1, n) ·N(y2, n) := N(y1y2, n),

respectively, convertN(n) into a commutative ring with identity, N(1, n), whose field
of fractions is {N(y, n) : y ∈ Q}. The map y 7→ T (y) is a one-to-one correspondence
between Z and N(n), implying that N(n) is indeed a Noetherian ring whose ideal
structure is exactly as in Z. If, in addition to these operations above, we define
αN(y, n) := N(αy, n) α, y ∈ Z, then N(n) becomes a Z−module. These properties
on N(n) are inherited by the set TZ, of all Newtonian triangles, T (y), y ∈ Z, leading
to the requirements that, for y1, y2, y, α ∈ Z,

T (y1) + T (y2) := T (y1 + y2), T (y1) · T (y2) := T (y1y2), and αT (y) := T (αy).

In this formulation the Pascal triangle, T (1), is the (multiplicative) identity of the
Noetherian ring TZ while the linear functor, T, may be seen to be both covariant
and contravariant on Z. The ring and module structures of TZ are yet to be studied.

In the light of our success on Pythagorean triples above, we are encouraged to
consider the original FLT.

§4. Fermat’s Last Theorem in the context of Newtonian triangles. The
consideration of each fn(y), n > 2, is essentially the study of the other rows, af-
ter the 2nd, in each of the Newtonian triangles. Following in the direction of our
method in §3., we compute the corresponding polynomial, Qn−1,a(y), n > 2, which
is then sought in the list of digital-correspondences to N(y, n).
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Lemma 4.1. Let a ∈ Q\{0}. Then Qn−1,a(y) = nayn−1+ n(n−1)
2!

(a2+20a)yn−2+
n(n−1)(n−2)

3!
(a3 + 30a2 + 300a)yn−3 + · · · + (an + 10nan−1 + · · · + 10n−1na), for all

n ∈ N, y ∈ Q.
Proof. Compute fn(y + a)− fn(y). �
In seeking a position for everyQn−1,a(y), n > 2, in the list of digital-correspondence

to N(y, n) we make the following eye-opening observation on Q2,a(y).

Theorem 4.2. (cf. Euler’s proof in [3.], p. 39.) There does not exist any y ∈ Q
for which Q2,a(y) is a perfect cube. That is,

Q2,a(y) ̸= δ(N(y + b, 3)),

∀ y ∈ Q, b ∈ Q \ {0, a}.
Proof. We assume the contrary and proceed as in Theorem 3.1. If the polynomial

Q2,a(y) = 3ay2 + (3a2 + 60a)y + (a3 + 30a2 + 300a) is to be a perfect-cube in Q,
there must exist y = α3x

3 + α2x
2 + α1x + α0 ∈ Q with α3, α2, α1, α0, x ∈ Q, such

that, after substituting y into Q2,a(y), the resulting polynomial, Q2,a(x), in x and of
degree six, would be identical to (px2 + qx+ r)3, for all p, q, r ∈ Q. The choice of y
and the above identity are informed by the one-to-one correspondence in Corollary
2.2, with n = 3.

By making this substitution and comparing the coefficients we arrive at seven
relations, namely: 3aα2

3 = p3, 2aα2α3 = p2q, a(2α1α3 + α2
2) = p2r + pq2,

6a(α0α3+α1α2)+60aα3+3a2α3 = 6pqr+q3, a(2α0α2+α2
1)+20aα2+a2α2 = pr2+q2r,

2α0α1 + 60aα1 + 3a2α1 = 3qr2 and α2
0 + (3a2 + 60a)α0 + (a3 + 30a2 + 300a) = r3,

from which we are expected to find the rational constants α3, α2, α1 and α0 in terms
of p, q and r. A consideration of the first three and last relations give, if p ̸= 0

is assumed: α3 =

√
1

3a
p3, α2 =

p2q
√
3a

2a
√

p3
, α1 =

(4p2r + pq2)

8a

(√
3a

p3

)
and

α0 =
−3a2 − 60a±

√
9a4 + 356a3 + 3480a2 − 1200a+ 4r3

2
.

These relations imply that y /∈ Q, if we use (1.) of Remarks (3.3). �
We may as well consider the use of (px + q)6 instead of (px2 + qx + r)3 in the

proof of Theorem 4.2. However the use of (px2 + qx+ r)3 accommodates more gen-
erality than (px+ q)6, since not all quadratics are completely factorisable over Q. In
any of these options the deduced expressions for αi, i = 0, 1, 2, 3 do not satisfy the
remaining three of the seven relations. A closer look at the proof reveals that this
disorder in the identity, Q2,a(x) ≡ (px2 + qx+ r)3, is primarily due to the disparity
in the number of terms in Q2,a(x) (which is seven) and the number of unknowns in
the coefficients of y (which is four). There is no way to match these two numbers
when n > 2, like what we have in the case of n = 2 in Theorem 3.1, where there are
three terms in Q1,a(x) and exactly three unknowns in y = α2x

2+α1x+α0. We shall
consider, in §7(B) below, the remedy to this Fermat pathology.

The method of proof of Theorem 4.2 may be formalized in the following version
of the original FLT.

Theorem 4.3. Let a ∈ Q \ {0}, n > 2. Then there does not exist any y ∈ Q for
which Qn−1,a(y) is an exact rational of power n. That is,

Qn−1,a(y) ̸= δ(N(y + b, n)),

∀ y ∈ Q, b ∈ Q \ {0, a}.
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Proof. We substitute y = αnx
n + αn−1x

n−1 + · · · + α1x + α0 into Qn−1,a(y)
in Lemma 4.1 and observe that the only choices to be made of each αk, k =
0, 1, 2, · · · , n > 2, for Qn−1,a(x) to be a digital-corresponding of some N(y0, n),
would involve extraction of roots, since powers of y must have been computed in
the process of substitution. This leads, via (1.) of Remarks (3.3), to the conclusion
that y /∈ Q. �

The above method of proof shows that a structural reason for the non-existence
of Fermat’s triples is because, in seeking a position for Qn−1,a(y) among the values of
δ(N(y, n)) every substituted y into Qn−1,a(y) must be raised to some powers, thereby
introducing extraction of roots when coefficients of y are later sought. The excep-
tion to this is in the cases of n = 1, 2, where Qn−1,a(y) are the constant and linear
polynomials, respectively. This explains the existence of rational triples, (u, v, w),
satisfying the Diophantine equations u+ v = w (when n = 1 in un + vn = wn) and
u2 + v2 = w2 (when n = 2 in un + vn = wn).

A Galois equivalence of this reason has also been exploited in the next section. It
is noted that no extra condition on n, other than the original requirement of n ∈ Z
and n > 2, was used to prove FLT.

Remarks 4.4.
(1.) On the significance of the constant a ∈ Q \ {0}: Corollary 3.5 reveals

that every a ∈ Q \ {0} leads to a rational Pythagorean triple, while only some
a ∈ Q \ {0} gives the integral Pythagorean triples. The same may be deduced from
the consideration of the non-zero rational and integral solutions of other Diophantine
equations, say, u3 − v3 = w2. Indeed, substituting y = α1x+α0 into Q2,a(y), which,

when identical with (px + q)2,∀ p, q, x ∈ Q, gives α1 = p√
3a
, α0 = 2pq−(3a2+60a)α1

6aα1
,

we see that the non-zero rational solutions of u3 − v3 = w2 exist only when a =
k2

3
, ∀ k ∈ Z \ {0}, p, q, x ∈ Q, p ̸= 0, while the non-zero integral solutions exist only

when a = 1
3
, for some p, q, x ∈ Z, p ̸= 0. It therefore follows that the non-zero

rational constant a, in Qn−1,a(y), measures the distribution and density of solutions
of Diophantine equations, when they exist. This may be further explored.

(2.) On unique factorization: The method of this paper is to fix n−power of
two arbitrary non-zero rationals, say αn and βn, and then seek for the possibility of
a third one, γn, such that αn + βn = γn, with αβγ ̸= 0. In this approach any two of
αn, βn and γn may be fixed. However, our choice of fn(y+a) = fn(y)+Qn−1,a(y) over
and above the other possibility of fn(y+a)+fn(y) = Pn,a(y), which leads to the study
of the polynomial, Pn,a, of degree n, is informed by the non-zero rational solutions
of α2+β2 = γ2 which, if considered in the light of Pn,a, will lead us outside the base
field of Q. Indeed, considering any example of the Pythagorean triples, say (3, 4, 5),
it is advisable, based on our approach, to use 5 and 3 to seek for 4 by factorising the
difference of two squares 52−32 as 52−32 = (5−3)(5+3) = (2)(8) = (2)(2)(4) = 42

or to use 5 and 4 to seek for 3 by factorising the difference of two squares 52 − 42 as
52−42 = (5−4)(5+4) = (1)(9) = 32 than to use 3 and 4 to seek for 5 by factorising
the sum of two squares 32+42 as 32+42 = 32−(4i)2 = (3−4i)(3+4i) =| 3+4i |2= 52,
which, in the process leads to Q(i) := {a+ bi ∈ C : a, b ∈ Q}, outside the base field
of Q.

Thus, since factorisation in a fixed base field is the first step at extracting indices
out of a number (and now, out of a polynomial), we have settled for the consider-
ations of Qn−1,a(y) (which is the difference fn(y + a) − fn(y)), while we hope that
the polynomials Pn,a will be of immense use in aspects of number theory allowing
the employment of the field Q(i) of gaussian numbers. With the above approach we
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bypass the intricate manipulations involving unique factorization in quadratic fields.
Other properties of the polynomials fn and Qn−1,a, beyond their present use in the
proof of FLT, may also be studied.

(3.) On non-rational Pythagorean triples: Our present approach in §3 sug-
gests the study of non-rational Pythagorean triples in quadratic fields, Q( n

√
σ),

(where σ is an nth root-free rational number), in fields, Fp, of prime characteristics
and in fields, Qp, of p-adic numbers. The significance of the constant b = 20 in the
present field of Q, as derived in Theorem 3.1, or as may be derived in any other
number field, is still unknown.

§5. Galois groups of Fermat Polynomials. The original Fermat’s Last The-
orem does not translate to the investigation of solvability of the Galois group,
Gal(Qn−1,a), of the polynomials Qn−1,a, as it is always expected in the applica-
tion of Galois theory to polynomials, but to the investigation of the values assumed
by the order, | Gal(Qn−1,a) |, of Gal(Qn−1,a), as we shall show shortly. This ap-
proach around the Fermat polynomials, Qn−1,a, when combined with Theorem 4.3,
gives the Galois group version of the original claim of Pierre de Fermat ([3.], p. 3).
The results of this section may also be used to deduce the nature of the roots of
Qn−1,a(y) = 0, when n > 2.

Let L/K be a field extension. We know that the degree, [L : K], of the extension
satisfies [L : K] = 1 iff L = K. If the extension is, in addition, normal and separable
we conclude that the Galois group, Gal(L/K), of the extension is the trivial group.
Now if Gal(L/K) is the Galois group of a polynomial f ∈ K[y], also written as
Gal(f) where L is a splitting field of f over K, then | Gal(L/K) |= 1 iff f has all
its roots in K. That is, | Gal(L/K) |= 1 iff f is completely reducible over K. This
observation may now be formalised.

Lemma 5.1. f ∈ K[y] is completely reducible over K iff | Gal(f) |= 1.
Proof. Let L be a splitting field of f over K. Then L is a normal finite extension

of K and | Gal(f) |= 1 iff [L : K] = 1 iff L = K. This means that f is completely
reducible over K. �

Let L be a splitting field of f over K. We shall call a polynomial f ∈ K[y]
incomplete with respect to L/K whenever it has a linear factor in L[y] which is not
in K[y]. An opposite to the above Lemma is therefore possible.

Lemma 5.2. Let L/K be a field extension. f ∈ K[y] is incomplete with respect
to L/K iff | Gal(f) |̸= 1.

Proof. (y − α) | f(y) (for some α ∈ L \ K) iff K[α] is a splitting field of f
over K iff [K[α] : K] = 2 iff [N : K] ≥ [K[α] : K] = 2 ̸= 1(where N is the normal
closure of K[α]) iff | Gal(f) |= [N : K] ̸= 1. �

We may now study the Fermat polynomials, Qn−1,a, in the light of these Lemmas.

Theorem 5.3. Each Qn−1,a, with n > 2, a ∈ Q \ {0}, is an incomplete member
of Q[y] with respect to any field extension of Q.

Proof. We show that | Gal(Qn−1,a) |≠ 1, for all n > 2, a ∈ Q \ {0}. Let
α1, α2, · · · , αn−1 ∈ C be the roots of the monic polynomial qn−1,a :=

1
na
Qn−1,a, then,

by the fundamental theorem of algebra,

qn−1,a(y) = (y−α1)(y−α2) · · · (y−αn−1) = yn−1−s1y
n−2+s2y

n−3+· · ·+(−1)n−1sn−1,

where s1 = α1+α2+ · · ·+αn−1 =
−(n−1)

2!
(a+20), s2 = α1α2+α1α3 · · ·+αn−2αn−1 =

(n−1)(n−2)
3!

(a2+30a+300), · · · , sn−1 = α1α2 · · ·αn−1 =
(−1)n−1

n
(an−1+10nan−2+ · · ·+
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10n−1n) are non-vanishing elementary symmetric polynomials.
Now let L be a splitting field for qn−1,a over Q(s1, s2, · · · , sn−1). Since the char-

acteristics of Q is zero we conclude, from Theorem 10.10 of [7.], p. 178, that
Gal(qn−1,a) = Sn−1. Hence Gal(Qn−1,a) = Sn−1, because α1, α2, · · · , αn−1 are also
the roots of Qn−1,a. Thus | Gal(Qn−1,a) |= (n−1)!. Since it is known that (n−1)! = 1
iff n = 1 or n = 2, we therefore have that | Gal(Qn−1,a) |≠ 1, for all n > 2, a ∈
Q \ {0}.�

It is convenient to set Sn−1 as the trivial group when n = 1, so that the popular
choice of 0! as 1 is justified.

Remark 5.4.
(1.) It follows therefore that, for n > 2, the normal closure of any splitting field

of Qn−1,a over Q cannot be Q itself. This is in contrast to the situation for n = 1, 2.

(2.) Since the proof of Theorem 5.3 computes the group Gal(Qn−1,a), for all
n ∈ N, as Sn−1, whose order is (n− 1)!, we may therefore conclude that an underly-
ing reason the equation xn = yn + zn has solutions in non-zero rationals only when
n = 1 (which follows from the field structure of Q) and n = 2 (as established in
Theorem 3.1), is because only 0! (=| Gal(Q0,a) |, when n = 1 in | Gal(Qn−1,a) |)
and 1! (=| Gal(Q1,a) |, when n = 2 in | Gal(Qn−1,a) |) give the value 1 among all
(n − 1)!, n ∈ N. See the paragraph before Remarks 4.4 for an equivalence of this
reason.

(3.) On Wiles-Taylor’s proof of FLT : It is expected that a profound theory
would emerge out of the reconciliation of the modern theory of numbers, as has been
put to use in [13.], with the properties of the polynomials, Qn−1,a, of the present
paper. Indeed it would be interesting to link the analysis of Newtonian triangles to
the Shimura-Taniyama-Weil conjecture and the results of Diophantine geometry.

§6. Arithmetic groups of Diophantine curves. It is clear from above that
Q1,a(x) = (2a)x + a(20 + a) and that the non-zero rational points, (x, y), on the
Pythagorean curve

Pa : y2 = Q1,a(x) = (2a)x+ a(20 + a)

are given as (x, y) = (p2 z2

2a
+ pq z

a
+ [ q

2−a(20+a)
2a

], pz+ q), with p, q, a ∈ Q \ {0}, z ∈ Q.
Define the non-empty set G(Pa) ⊂ Q×Q as G(Pa) :=

{(x, y) ∈ Q2 : x = p2
z2

2a
+pq

z

a
+[

q2 − a(20 + a)

2a
], y = pz+q, ∀ p, q, a ∈ Q\{0}, z ∈ Q}

on which we define a binary operation as follows:

Set (x1, y1), (x2, y2) ∈ G(Pa) as (x1, y1) = (p21
z2

2a
+ p1q1

z
a
+ [

q21−a(20+a)

2a
], p1z + q1)

and (x2, y2) = (p22
z2

2a
+ p2q2

z
a
+ [

q22−a(20+a)

2a
], p2z + q2), where pi, qi, a ∈ Q \ {0}, z ∈

Q, i = 1, 2. We set (x1, y1) · (x2, y2) := (x, y), where

x = (p1p2)
2 z

2

2a
+ (p1p2)(q1q2)

z

a
+ [

(q1q2)
2 − a(20 + a)

2a
]

and
y = (p1p2)z + (q1q2).

The following result then becomes immediate.
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Theorem 6.1. (G(Pa), ·) is an abelian group whose identity element is given

as 1 = ( z
2

2a
+ z

a
+ [1−a(20+a)

2a
], z + 1), with the inverse, (x, y)−1, of every element,

(x, y) ∈ G(Pa), as (x, y)
−1 = ((p−1)2 z2

2a
+ (pq)−1 z

a
+ [ (q

−1)2−a(20+a)
2a

], p−1z + q−1).
Proof. We verify the well-known axioms of an abelian group. �
It is known that, for each a ∈ Q\{0}, if P1(Q) is the set of rational points of the

projective 1−space, then G(Pa) ≃ P1(Q) (cf. [6.], Theorem A.4.3.1), so that each
of the groups, G(Pa), may be seen as a concrete realization of P1(Q).

The method outlined above for the Pythagorean curve may be employed to
compute the arithmetic group of any Diophantine curve. According to Theorem 4.3,
the set G(Fa) := {(x, y) ∈ Q2 : yn = Qn−1(x), n > 2}, a ∈ Q \ {0}, consisting of
non-zero rational solutions of the Fermat curve, yn = Qn−1(x), n > 2, is empty. For
another example, the Diophantine curve attached to the non-zero rational solutions
of α3 − β3 = γ2 is y2 = Q2,a(x). That is, the curve is

Ea : y2 = (3a)x2 + (3a2 + 60a)x+ (a3 + 30a2 + 300a),

a ∈ Q \ {0}. The non-zero rational points on Ea are then

(x, y) = (
p√
3a

z +
2pq

√
3a− (3a2 + 60a)p

6ap
, pz + q),

where p, q, z ∈ Q, p, q ̸= 0 and a = k2

3
,∀k ∈ Z\{0}, from which the group operation

may now be defined. The group G(Ea) is infinite, and since the genus of the curve
Ea is 0, it is also another concrete realization of P1(Q). However, finite subgroup of
G(Ea) may be constructed from restrictions on its members. See [1.], p. 255, for an
example of this restriction.

This approach may be seen to have the capability of treating all the finiteness
theorems of Diophantine geometry by explicitly computing the arithmetic group of
any Diophantine curve. See [6.], p. viii for a list of these theorems.

Remark 6.2 : On attitude to a proof of FLT.
It is somewhat sad that no one expects any longer that an elementary proof

of the Fermat’s Last Theorem will ever emerge. This is the conclusion of Michael
Rosen ([11.]), some few years after the long, indirect and very difficult proof of An-
drew Wiles and Richard Taylor was given in [12.] and [13.]. This is borne out of the
fact that many mathematicians were glad that the simple-looking statement of the
Theorem could at least be said to have been finally proved in 1994, after about 358
years of sustained attacks by the most brilliant of each generation. What is really
more grieving is the fact that the Wiles-Taylor proof buried the totality of both
the Theorem and the expectations of the rich theory that has been anticipated to
emerge from its eventual proof, thus lending credence to the thought that FLT is
an isolated result of the theory of numbers.

This is exactly what is meant when Rosen said: To the degree that they (i.e., the
partial results which appeared over the course of the centuries and which attempted
to shed light on FLT ) deal strictly with FLT and not with any broader class of prob-
lems, it is an unfortunate fact that they are now obsolete. Our approach in this paper
therefore brings out the missed opportunities of the last three centuries that would
have led straight to an easy understanding of the entire landscape of Diophantine
Analysis of Equations, had it not been overlooked repeatedly. Indeed, if the FLT
is the non-existence result of rational solutions of un + vn = wn, n = 3, 4, 5, · · · ,
the polynomials, Qn−1,a, and Pn,a, deduced from it in §4 (and others that may be
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deduced from other Diophantine equations) are worthy of an independent study, as
done in §5., and of potential application to a wide range of subjects, as shown in
the present section.

Our present approach has the added advantage in that it does not deal strictly
with FLT, but, as may be seen in the last two sections, it is applicable to a wide
range of subjects in algebraic number theory.

§7. Direct consequences of the Fermat’s Last Theorem. Contrary to what
some experts in the modern theory of numbers would want us to believe, that the
truth of the Fermat’s Last Theorem (FLT) has no single application (even within
number theory!) ([4.] and [8.]), we consider some direct consequences of the The-
orem in the form of open problems in the fields of topology, number theory, ring
theory and Galois theory, all of which are deduced from the outlook of the proof
of the Theorem given above. Hints on how these problems could be resolved are
also included. It is our modest conclusion that the absence of these problems in the
aftermath of the 1994 Wiles-Taylor’s proof of FLT is due mainly to the approach of
study, which wrongly presupposes that FLT is an isolated result, and not that the
truth of FLT has no single consequence.

A. On non-rational Fermat triples. It is well-known that there are several
quadratic fields between the fields Q and R, or between Q and C. One way of gen-
erating these subfields of R or of C is by the computation of the splitting fields of
polynomials in, say, Q[X] or Q[X1, · · · , Xm]. The following problems are proposed:

(a.) Which of these splitting fields over Q will uphold the truth of the FLT?
That is, on which subfields, F, of R or C is Qn−1,a(y) ̸= αn for any y, α ∈ F. The
cases of F = Q( n

√
σ), Fp, Qp have earlier been posited in Remark 4.4(3).

(b.) Which of the splitting fields of the fermat polynomials, Qn−1,a (as may be
deuced from Theorem 5.3, would admit the truth of FLT and why?

(c.) What is the numerical value and significance of the constant b ∈ F in the
equation Qn−1,a(y) = δ(N(y + b, n)), n ∈ N, in those fields F that do not admit the
truth of the FLT? For the case of n = 2 and F = Q we already know, from Remark
3.3(2), that b := b2,Q = 20.

B. Correct generalization of α2 + β2 = γ2. The question has always been
asked whether FLT was the right question to the generalization of the Babylonian
results on the sum of two (integral or rational) squares being written as a (integral
or rational) square. It has been posited ([2.]) that the correct analogue to the gen-
eralization of α2 + β2 = γ2 to cubes is not to consider α3 + β3 = γ3, but to seek
non-zero rational solutions to α3+β3+γ3 = δ3, while the situation for fourth powers
is α4 + β4 + γ4 + δ4 = ζ4, · · · .

In short, the conclusion of K. Choi [2.] is that if rational solutions of

xn
1 + · · ·+ xn

k = zn

are sought, it is necessary to first have that k ≥ n, though no specific way of at-
tacking this observation was suggested by him or by Davis Wilson (See Diophantine
Equations on the website of WolframMathWorld) other than to state some con-
jectures and list the following suggestive examples: 32 +42 = 52 (where k = 2 = n),
32 + 42 + 122 = 132 (where k = 3 > 2 = n), 32 + 42 + 122 + 842 = 852 (where
k = 4 > 2 = n), 33 + 43 + 53 = 63 (where k = 3 = n), 44 + 64 + 84 + 94 + 144 = 154

(where k = 5 > 4 = n), 45+55+65+75+95+115 = 125 (where k = 6 > 5 = n), · · · .
It is clear that there may be other examples that would escape the above scheme.
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We believe that the prospect of the case k ≥ n above should not preclude the in-
vestigation of the existence, or otherwise, of rational solutions of xn

1 + · · ·+ xn
k = zn

for k < n, though it may require more than 100 pages if we are to expect a proof of
the Wiles-Taylor’s magnitude (which was the case k = 2 < n) to address each(!) of
the cases 2 ̸= k < n and the new cases of k ≥ n.

We now propose an approach to this study (of both k ≥ n and k < n) based on
an observation already contained in the proofs of Theorems 4.2 and 4.3.

With k = 2 < n = 3, we already have the non-existence of rational solutions of
x3
1 + x3

2 = z3 as Theorem 4.2 above. A second look at the proof of this Theorem (as
explained in the paragraph following it) shows that the conclusion of the Theorem
stems from “the disparity in the number of terms in Qn−1,a(x) (which is seven) and
the number of unknowns in the coefficients of y (which is four).” It was also reported
that there was no way to match these two numbers in the case k = 2 < n = 3, unless
we increase the number of cubes being added. That is, unless we increase k beyond
2. Indeed if k = 3 = n, then x3

1+x3
2+x3

3 = z3 may be recast as z3−x3
1−x3

2 = x3
3, which

translate (in the context of Newtonian triangles) to studying a cubic polynomial
R3,a,b, given as

R3,a,b(y) := f3(y + a)− f3(y + b)− f3(y),

for y, a, b ∈ Q, a ̸= 0, b ̸= 0.We then seek y ∈ Q for which R3,a,b(y) = δ(N(y+c, 3)),
c ∈ Q \ {0, a, b}, where the lacuna noted in the proof of Theorem 4.2 would have
been filled due to the inclusion of the new term, f3(y + b), in R3,a,b(y).

It is clear, form this paper, how the above outlined approach for k = 3 = n may
be achieved for all k = 3 ≥ n and indeed for any k ≥ n, whenever n is fixed in N. We
need only refer to Lemma 4.1 for orientation on the general situation of k = 2 < n,
which may itself be extended to the most general case of k < n.

The present problem, as outlined above, is a strong argument in favour of our
methods of handling the FLT and in the complete understanding of the study of Dio-
phantine equations.

C. On Fermat metric. We consider here a direct consequence of FLT and
fix the positive intger n ≥ 3. It is already shown that the polynomial, Qn−1,a(y),
of Lemma 4.1 is ̸= δ(N(y + b, n)) as long as y ∈ Q \ {0, a}, but that Qn−1,a(y) =
δ(N(y + b, n)), whenever y ∈ R \ {0, a}, for any choice of b ∈ R. A serious ques-
tion along this line of thought is how the topologies on the two fields of Q and R
contribute to the above conclusions about Qn−1,a(y) and δ(N(y + b, n)), since we

know that, in the Euclidean metric, Q = R. However, there are other topologies on
Q in whose metric the completion, Q, would not be R. We mention the well-known
p−adic completion, Q = Qp. It is still an open problem, included in §A. above, to find
a ∈ Qp\{0}, for which Qn−1,a(y) = δ(N(y+b, n)), for any y ∈ Qp\{0, a}. These and
many other examples of topologies and metrics on the subsets, N, Z, Q, Qp, · · · ,
of R (or of C) lead to the consideration of the following definition:

Definition 7(C).1. Let (X, ρ) be the completion of a metric space, (X, ρ). The
metric, ρ, is called a fermat metric if whenever FLT holds in (X, ρ) it also holds in
(X, ρ). We then refer to the pair (X, ρ) as a fermat metric space.

In other words a fermat metric is a metric ρ : X × X → [0,∞) for which
Qn−1,a(y) ̸= αn, for all y, α ∈ (X, ρ). If X = N, Z and x, y ∈ X, we set ρ as
ρ(x, y) =| x− y |, then (X, ρ) is a fermat metric space while (Q, ρ) is not.

In the general situation of the above definition one would like to know if every
metric on a fermat metric space is a fermat metric and which of the topologies on
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X may be deduced from a fermat metric. Also, for which example of the set, X,
(whether finite, discrete, Baire, · · · ) is every metric a fermat metric? A description
of the open sets, closed sets, accumulation of a set, interior of a set, base of the
topology, · · · , in terms of the fermat polynomials, Qn−1,a(y), y ∈ X, will contribute
richly to our understanding of polynomial-induced metrics. An open problem in §A.
is to know whether or not the p−adic metric is a fermat metric on Q.

D. Galois theory of Fermat fields. This section may be seen as an analytic
continuation of the exploration in §7(A) above. Let Fi, 1 ≤ i ≤ r be a collection
of subfields of R (or C). We shall call any member of this collection a fermat field
whenever FLT holds on it.

Definition 7(D).1. Let Q ⊆ F1 ⊆ · · · ⊆ Fr ⊂ R (or C) be an increasing collec-
tion of fields. We refer to the collection, Fi, 1 ≤ i ≤ m, m ≤ r, as a collection of
nested fermat fields of length m whenever (a.) Q ⊆ F1 ⊆ · · · ⊆ Fm ⊂ R (or C) and
(b.) each Fi, 1 ≤ i ≤ m, is a fermat field.

Some of the important questions on this definition are:

(a.) How many collection of nested fermat fields are there for each exponent
n ≥ 3?

(b.) Is there a relationship between the length of a nested fermat fields and each
n?

(c.) In the general case of Q ⊆ F1 ⊆ · · · ⊆ Fr ⊂ R (or C), at what field,
Fk, 1 ≤ k ≤ r, does FLT holds for which it fails at Fk+1 and what is the relation-
ship of k to n?

(d.) What are the properties of Fk and Fk+1 in (c.) above and how does the Galois
groups, Gal(Ft+1/Ft), t = 1, 2, 3, · · · , of the field extensions, Ft+1/Ft, contribute to
these conclusions above?

(e.) Is Gal(Ft+1/Ft) in any relationship with Gal(Qn−1,a) (which has been com-
puted above to be Sn−1) or with Gal(Pn,a) (with Pn,a as in Remarks 4.4(2))?

(f.) How does an arithmetic group (if non-empty) of any Diophantine curve con-
tributes to all these open problems?

We are hoping to attack some of these open problems in collaboration with oth-
ers.
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