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Abstract. In this paper, we give an equivalent definition of the induced
topological pressure [8]. We also set up a relation for two induced topo-
logical pressures with a factor map by using a method which is different

from that of [9].
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1 Introduction and statement of main result

Throughout this paper, a topological dynamical system (for short TDS) means a
pair (X, f), where f is a continuous map from a compact metric space (X, d) to itself.
For n € N, the n-th Bowen metric d,, on X is defined by

dy(w,y) = max{d(f'(z), f'(y)) i =0,1,...,n —1}.
Recall that C'(X,R) is the Banach algebra of real-valued continuous functions of X

n—1
equipped with the supremum norm. For ¢ € C'(X,R), let (S,¢)(z) := > o(f'z).
=0

The notion of the topological entropy plays an important role in tgpological dy-
namics and dimension theory [1, 2, 6]. In 1971, Bowen [4] considered a factor map
m: (X, f) — (Y, g), and showed that

h(f) < h(g) +suph(f, 77 (y)), (1.1)

yey

where h(f, K) denotes the entropy of a compact subset K C X with respect to f.
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Topological pressure is a generalization to topological entropy for dynamical sys-
tems. It was first introduced by Ruelle [5] for expansive dynamical systems, and later
by Walters [3, 6] for the general case. Recently, the theory for dynamical systems
with different time-scalings has been developed. Jaerisch, Kessebohmer, and Lamei [7]
studied the induced topological pressure of a countable state Markov shift. In [8], the
authors defined the induced topological pressure for a topological dynamical system,
and established a variational principle for it. In this paper, we give an equivalent def-
inition of the induced topological pressure. We also set up a relation for two induced
topological pressures with a factor map by using a method which is different from that
of [9].

Let (X, f) be a TDS and ¢ € C(X,R) with ¢ > 0. For z € X,T > 0,¢e > 0, define

n(z,T) =inf{n € N: S,¢(z) > T}
and

BT(I',E, f) = {y € X: dn(:p,T)(Ivy) < 6};§T(xa €, f) = {y € X: dn(x,T)(xay) < E}'

Let K be a compact set of X. A subset Fp C X is called a (1, T, €)-spanning set of
K with respect to f, if for any y € K, there exists v € Fp with dpen(2,y) < e
Let rp(f, K,€) denotes the smallest cardinality of any (i, T, €)-spanning set of K.
Obviously r7(f, K, €) < co. Define

1
r(f, K, e) = limsup?long(f, K.e).

T—o0

Clearly if 0 < €1 < €3, then ro(f, K,€1) > rr(f, K, €).

Definition 1.1. We define the 1p-induced topological entropy of K (with respect to f )
by
1
hy(f, K) :limlimsupflong(f, K. e) (1.2)

T—o0

Remarks.
hi(f, X) = h(f), where h(f) denotes the topological entropy of f [3, 6].

Definition 1.2. Let (X, f) be a TDS, and let K be a compact set of X, ¢, € C(X,R)
with ¢ > 0. For T > 0,e > 0, put

Qur(f, K, ¢, €) =inf{ Z exp(Sn,m ) (x) : Fris a (¢, T, €)-spanning set of K}.

zeF

We define the v-induced topological pressure of ¢ (with respect to f and K ) by

1
Py(f, K, p) zlir%limsupflode,,T(f, K, p,€) (1.3)

T—o0



Remarks.
(1) If 0 < € < €, then Qur(f, K, p,€1) > Qur(f, K, ¢, €3), which implies the existence
of the Py(f, K, ¢) in (1.3).
(i1) Pi(f, X, ) = P(p), where P(p) denotes the topological pressure of ¢ [3, 6].
(179) It is easy to see Py(f, X, ¢) = Py(p), where Py(y) denotes the 1-induced topo-
logical pressure of ¢ [8].

By using a method which is different from that of [9], we obtain the result of this
paper, as follows.

Theorem 1.1. Let (X,d), (Y, p) be compact metric spaces, and let f : X — X,g :
Y — Y be continuous maps, m : X — Y a factor map, i.e., a continuous surjective
map with mo f =gom, ¢, € C(Y,R) with ¢ > 0. Then

Pyor(pom) < Py(p) + Sup hyor (f, 7 (1)) (1.4)

2 Some lemmas

In this section, we give some lemmas, which will be needed for the proof of Theorem
1.1.

Lemma 2.1. Let (Y, g) be a TDS, and let p be a compatible metric on' Y, ¢ € C(Y,R)
with 1 > 0,m = min{y(z) : € Y}. For each y € Br(x,6,g), we have

T
n(e.T) ~ n(y. )| < T var(w,5) + 120,

where var(ip,8) == sup{[(z) — (y)] - ple, ) < 5.
Proof. Clearly n(z,T) < % + 1 for any z € Y. Notice for each y € By(x,6,g),
min(z,T) —n(y, T)| — n(z, T)var(¥, ) < |[Sn@ ¥ (x) = Sun )] < 4.
Then
n(z,T) [ _ T+m I
T) — " <—-= <l — LRy
n(e. 1)~ n(y, 7)) < " var(, ) 4 10 < T2y 5) 4 12

Lemma 2.2. Let (Y, g) be a TDS, and let p be a compatible metric on'Y, p,¢ € C(Y,R)
with 1 > 0,m = min{y(z) : € Y}. For each y € Br(x,6,g), we have

G+ 1)var(9,0)+ 13 plfvar (,6)+ 1 1]

exp Suyme(y) < e m m eXP Sy(a,1)P(T),

where var (1, 0) := sup{|1(z) = Y (y)| : p(z,y) < 0}.



Proof. For each y € Br(x,6,g), it follows from Lemma 2.1 that

€xXp Sn(y,T)QD(y) = eXp(’Sn(y,T)Qp(y) - Sn(z,T)90<x) + Sn(z,T)(zD(x )

)
< exp [Sn(y,1)0(Y) — Sn(ar) ()] €XP Sn(ar)e(2)
S en(x7T)va7‘(50,5)+‘n(IyT)*n(va)‘H@H exp Sn(.’[’ T)(,D(f]:)

m L llel
< e G Dvar(p.0)+ 52 lpllvar (v,6)+H5E exp Sy (1) ().

3 The proof of Theorem 1.1

Now we give the proof of Theorem 1.1. Let m = min{t¢(z) : x € Y'}. To show the
inequality, for any € > 0, we choose d; > 0 small enough so that

d(u,v) < 46, = d2+[u¢u](u,v) <, (3.5)

where [”7] denotes the integer part of ” Clealrly7 we may assume

a = sup hyor(f, ﬂ_l(y)) < 0.
yey

Fix 6, > 0 and 7 > 0. For any y € Y, we choose T, > 0 such that there exist a
(¢ o w,T,, 61)-spanning set E, of 7~'(y) with minimal cardinality such that |E,| =
rr,(f, 77 (y), 01) and

10g rTy (fa W_l(y)a 51) S (hdJow(fa W_l(y)) + T>Ty S (a + T)Ty'
Denote U, = {u € X : 3z € B, s.t dy.1,)(u, 2) < 201}, then U, is an open neighbor-

hood of 771(y) and
(X\Uy) ﬂ T =0,

7>0
where B, (y) = {z € Y : p(y,2) < v}. By the finite intersection property of compact
sets, there is a W, = B, (y), (v, > 0) for which 7='(W,) C U,. Since Y is compact,
there exists W,,, W, ... W, cover Y. Let d, > 0 be a Lebesgue number for Y for this
open cover. For T' > 0, we choose 0 < 6 < 305 so that THvar (v, §) + % <2+ [‘qul—”]
Let Fr be a (¢,T,d)-spanning set of Y. For each y E Fr,0 < j < n(y,T), pick
Ay(5) € {y1,y2 - .. yr} such that Bs(g7(y)) C Wa, (). Define recursively

to(y) = 0;
t1(y: 20) = n(20, Ta,0)), 20 € Ea,(0);
t2(y; 20, 21) = t1(y; 20) + 1(21, Tay (11 (1:20)) ) 21 € By (t1(w320));

tor1 (U5 200 215 -+ 2s) = ts(Y3 20, 21, - - Zom1) + 126, T, (Es (5 20, 215 - - - 25-1))),
Zs € EAy(tS(y;zo,zl,...,z3_1)) (36)



until one gets a t,11(y; 20, 21 - - - 24) > n(y,T). Clearly the number of ¢ depends on the
choice of zg, 21 . .. 24—1. Set q(y; 20, 21 - - - 2g-1) = ¢, we yet denote q(y; 20, 21 - . . 24—1) by ¢
for convenience. Fory € Frand 2o € En,(0); 21 € En,(ti(g:20))s - - -+ 2q € Eny(ty(izo,21,020-1))
define

V(y; 20,21, -5 2g) = {u € X = d(fiHtsmomzan) () f1(2)) < 26,

for all 0 <t < n(zs, Ta, (ts(y; 20, 21, - - - 25-1))), 0 < 5 < g}

It is not hard to see that

U V(y;:/:OaZla"'vZQ) DW_I(ET(%&Q»‘
ZOGEAy(O)vzlGEAy(tl(y;zo)) ~~~~~ quEAy(tq(y;zo,zl,...,zqil))
(3.7)

In fact, for any u € 7~ 1(Br(y, 6, g)), we have

p(g’ (y), ¢’ (mu)) < 6, VO <j<n(yT).
Then

m(f/(u)) = ¢’ (mu) € Bs(¢?(y)) C Wa, ), Y0 <j<n(y,T).

This implies that

f(u) € m7H(Wa, ;) C Un,gy, Y0 <5 <n(y,T), (3.8)

and hence, there exists zy € En, ) with dn(%TAy(O))(z},u) < 26y If n(20, Thr ) =
n(y,T), let t1(y; 20) = n(20, Ta,(0)), we have u € V(y; Z) and finish the proof. Other-
wise, it follows from (3.8) that there exists 21 € Ea,(y;5)) Such that

o 21, T2y ) () < 24;.

517TAy<t1<y;z“o>>)( L

By this means, we get the minimal q(y; 2o, 21 - - . 24—1) With ¢,41(y; 20, 21 - .. 2¢) > n(y, T).
This implies that u € V(y; 20, 21, - . . , Z4). Since w is arbitrary, this shows (3.7).
Notice for each x € X,

n(x,T) =inf{n: (Syvpom)(z) > T}

= inf{n : izﬁ om(fi(zx) > T}

—infn: Y lgn(e) = T)
— n(n(2),T). (3.9)

IV (y; 20, 21, - - -, 2) 7 Y (Br(y, 8, 9)) # 0, pick any v(y; 20, 21, - - -, 24) € V(Y3 20, 215 - - -, )0
7Y (Br(y,d,9)) # 0, we have

Br(v(y; 20,215 - -, 2¢), 6, ) D V(Y5 20, 215 - - -, 24)- (3.10)
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In fact, for any v € V' (y; 20, 21, . . ., 24), we have for all 0 < ¢ < n(z,, Ta, (ts(y; 20, 21, - - -, Zs-1)))
and 0 < 5 < g,

(e (), f(2,)) < 20,

Since v(y; 20, 21, - - -» 2¢) € V(Y; 20, 21, - - -, 24), We get

d(f”ts(y;ZO’Zl""’Zs*)(v(y; 20,215+ -5 %)), fi(zs)) < 26;.

Hence

d(f (v(y; 20, 21, - - - ,zq)),fj(v)) <40y, 0< 7 <te(y;20,21,---,%).

By Lemma 2.1, we have

n(v(y; 20, 21, - - -, 2¢), T) = n(m(v(y; 20, 21, - - ., 24), T')

T+

n(y,T) + mvar(qﬁ, J) + H;/;—“

n(. 1)+ 2+ (1)
Now that n(y,T) < te+1(y; 20, 21, - - -, 24), it follows from (3.5) that

dn(y, )+2+[H }( (yv 20y 215 - - - 7Zq>7v) <e.
Therefore
A (o(y20,21,0020),7) (VY5 205 21, - -+, 24),0) < €
That is, we show (3.10). Combing (3.7) and (3.10), we obtain
U ET(U(ya Z0>Zla--'7zq)7€7f) D ’/Til(ET<y757g))'

20€E AL (0)21€E Ay (11 (y:120)) 20 S By (ta (yiz0,21 5 7g 1))
Let
Er = {v(y; 205 21y e e 72q> Yy € Froz € EAy(O)’ z1 € Eﬁy(tl(y;zo))v ceesZq € EAy(tq(?J;Zo,th,qul))}'

Clearly Er is a (¢ o7, T, €)-spanning set of X. For y € Fr, there exists a permissible
(29) 215+ - - q) such that the number of permissible (29, 21, ..., z4) is at most

N HTTA tsyzo,zl ,,,,, Zs D) (f T ( ( (%ZO?ZD"'» Rs— 1))) 51) (3'11)

where to(y; 2_,) = 0.
To show (3.11), we give some notions which will be needed in next proof. Following
(3.6), we suppose q(y; zo, 21 - . . 24-1) > 1. For each 1 < s < q(y; 20, 21 ... 24-1), if 25_1 €

Byt 170,71 ,026—2))» WE €Al 251 directs En (1, (y;20,21,.26-1)) A0 By (1,1 (5320,21,0-026-2))
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is a corresponding set  of Ea (t,(yz0,21,...25-1))- We say a permissible (zo,zl,...,zq)
is a g + 1-string, and z, is a terminal point of the permissible (2,21, ...,2,). For
each z € Ea, (t,(y:z0,21,.24-1))» if Z 18 @ terminal point of a ¢ + 1-string, we also say
EAy(tq(y;ZO,Zl7_,_7zq71)) is a terminal set of q + 1-step.

Now we show (3.11). Let

p = max{q(y; 20, 21, - - - , qul) 120 € EAy(O)a z1 € EAy(m(y;zo))a 52 € Eﬁy(tq(y;zmﬂ,~~~,Zq71))}7

and
g _{ Y1» y27""Eyr}'

If p=0, it is clear that (3.11) holds.

If p = 1, there exists terminal sets of 2-step. We assume Eyy, ..., Egy, € &,(1 <
p1 < |Ea,(0)]) are all terminal sets of 2-step and |Eo| = max{|Eo| : 1 < i < pi}.
Then the sum of the number of all 1-strings and the number of all 2-strings is at most
|En,0)]|Eo1|- Let z € En, ) directs Ep;. Then the permissible (z,) such that (3.11)
holds.

If p = 2, there exists terminal sets of 3-step. We assume

Eoty - Eotsis Eoisty - - - s Eotgsy -+ -5 Eot - - - Eous,s (1 <t < py)

are all terminal sets of 3-step and satisfy the following:

(i) For each 1 <i <t,1 <j <s;, Ey, is a corresponding set of Ey,;, where 1 <'s; <
| Eo, |-

(ii) For each 1 < i <, |Ey,1| = max{|Ey,;| : 1 <j < s;}.

There exists 1 < k < ¢ with

1 <i<t}.

Considering that the possibility of the existent terminal set of 2-step, if |Eq, || Eoy1| >
| Eo1|, we obtain that the number of permissible (2o, 21, ..., z,) is at most

| En, )| Eot || Eor |-

Choose zé € Ep, ) with zé directs Ey,, z’l € FEy, with z; directs Eyy, ;. Then the
permissible (z,, z;) such that (3.11) holds. If |Eg;| > |Eoy, ||Exi|, we have the number
of permissible (2, 21, . . . , ) is at most |Ex, (o) || Eo1| and permissible (z,) with z, directs
Ep; such that (3.11) holds.

Proceeding in this way, if p > 2, for each 1 < ¢ < ¢, we assume there exists a permissible

(zfl), . ,zéi)) such that the number of permissible (21, ..., z,) with z; € Ey, is at most

q
L1t 0,y (Bl 287, 20 2200 80)



where 2\ € Ey, and 2" directs Eq,, q := q(z{", 2, ..., éz)l)

There exists 1 < k <t with
k k
H Py (s (28R 2 2 ))(f, Ay (s (y; Z(() )>Z§ )a e >Z§—)1)))7(51)

= max{[ [y, 00 (Fa (A tlys2) 7, 200)).6) s 1< i < ).

If
LA (t(y: 20 R (k) 5) > |E
| | TAy (ts (w3220 20 ))(faﬂ- ( y( sWizo 20 s Zm1))),01) = |Eonl,

then the number of permissible (zo, 21, ..., z,) is at most

q

L7 e a0y (F (O sy 2 217, 200)), 60).

s=0

This implies (z(() ), §’“), . (k)) such that (3.11) holds.
If

k k k
H TAy (ts (y; Z(k) (k) 77777 (k) (f T ( ( (y7 Z(() ),ZE )7 s 7Z§21)))751) < ’E01|7

we have the number of permissible (2o, 21, ..., 24) is at most |Ex (0)||Eo1| and permis-
sible (z,) with z, directs Ep; such that (3.11)holds and finish the proof of (3.11).
Let v € V(y; 29, 2, - - .,z;),N =max{n(z,1,,):z€ E,,i=1,2...r}. Then

q
logNy:ZlongA( (yzoz1 z (fﬂ' ( ( (yVZO?Zl?"" Zs— 1))) 61)

s=0

<(a+7)(Ta,w© + Th sy T T (tq(y;z(')%ﬂw-»zé)))
S (a + T)(SN(Z(IJ7TAy(O))w o 7T(ZO) T S Zq TAy(tq(y 20 zl q>)w ° W(ZQ))

<(a+7)[(n(y, T)+ N)Var(y om,201) + Snr)+n 0 m(v)]. (3.12)

It follows from (3.9) and Lemma 2.1 that

n(y, T) <n(v,T)+2+ [”wH]
and
(3.12) < (a-+ D(n(y.T) + N)Var(wo 7,26) + S o7(0) + 2+ L 4 )
< (a+ DIE + 14 MVar(om.20) + 7+ 0] + 2+ (L] 4 )

(3.13)



where Var(y om, d) = sup{|¢ o w(x) — Y omw(y)| : d(x,y) < d,z,y € X}. Let v :=

v(y; 20, 21, - - -, 24). Combining (3.13) and Lemma 2.2, we have
Z exp(Sn(w,m)p 0 m(v))
UEET

<y > exP(Sh(o,r) © T(V))

YELT veV (y;20,21,0,2¢)Nm 1 (B(y,T'9))

<>y > exp(|Sn(ur) @ © T(V) = Suyry W) + Sure(y))

YEFT veV (y;20,21,...,2¢) L (B(y,T,0))
<) exp Supme(y) 3 exp[n(y, T)var(p,8) + [n(v,T) — n(y, T)||¢l]

yeFT VEV (Y320,21,5---,2¢)N L (B(y,T.6))

T
<expllat (L 41+ NVartpom.20) + T+ ] + 2+ L 4wy
T
expl( 2+ Dvar(p. )] expl(2-+ (L) gl] 3 exp Suyimyo(w) (3.14)

yEFr

Now that 6 — 0 as T' — o0, it is easy to see

1
timsup 108 Quer,r(f, 901, €) < 0+ 7)(--Var(y om, 26) +1) + Py(ip),

T—o00

where

Quorn(f, pom, €) = inf{ Z exp(Sn(w,@)(v) : Er is a (Yo, T, e)-spanning set of X}.

veEET

Notice Var(y o m, 261) — 0 as 6; — 0. Since §; — 0 as € — 0, we have
Pyor(pom) < Py(p) +a+T.

As 7 — 0, we obtain

Pyor(pom) < Pylyp) + sup hyor (f, 7 (y))-
ye
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