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1 Introduction and statement of main result

Throughout this paper, a topological dynamical system (for short TDS) means a

pair (X, f), where f is a continuous map from a compact metric space (X, d) to itself.

For n ∈ N, the n-th Bowen metric dn on X is defined by

dn(x, y) = max{d(f i(x), f i(y)) : i = 0, 1, . . . , n− 1}.

Recall that C(X,R) is the Banach algebra of real-valued continuous functions of X

equipped with the supremum norm. For ϕ ∈ C(X,R), let (Snϕ)(x) :=
n−1∑
i=0

ϕ(f ix).

The notion of the topological entropy plays an important role in topological dy-

namics and dimension theory [1, 2, 6]. In 1971, Bowen [4] considered a factor map

π : (X, f) → (Y, g), and showed that

h(f) ≤ h(g) + sup
y∈Y

h(f, π−1(y)), (1.1)

where h(f, K) denotes the entropy of a compact subset K ⊆ X with respect to f .
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Topological pressure is a generalization to topological entropy for dynamical sys-

tems. It was first introduced by Ruelle [5] for expansive dynamical systems, and later

by Walters [3, 6] for the general case. Recently, the theory for dynamical systems

with different time-scalings has been developed. Jaerisch, Kesseböhmer, and Lamei [7]

studied the induced topological pressure of a countable state Markov shift. In [8], the

authors defined the induced topological pressure for a topological dynamical system,

and established a variational principle for it. In this paper, we give an equivalent def-

inition of the induced topological pressure. We also set up a relation for two induced

topological pressures with a factor map by using a method which is different from that

of [9].

Let (X, f) be a TDS and ψ ∈ C(X,R) with ψ > 0. For x ∈ X,T > 0, ε > 0, define

n(x, T ) = inf{n ∈ N : Snψ(x) ≥ T}

and

BT (x, ε, f) = {y ∈ X : dn(x,T )(x, y) < ε}; BT (x, ε, f) = {y ∈ X : dn(x,T )(x, y) ≤ ε}.

Let K be a compact set of X. A subset FT ⊂ X is called a (ψ, T, ε)-spanning set of

K with respect to f, if for any y ∈ K, there exists x ∈ FT with dn(x,T )(x, y) ≤ ε.

Let rT (f, K, ε) denotes the smallest cardinality of any (ψ, T, ε)-spanning set of K.

Obviously rT (f, K, ε) < ∞. Define

r(f, K, ε) = lim sup
T→∞

1

T
log rT (f, K, ε).

Clearly if 0 < ε1 < ε2, then rT (f, K, ε1) ≥ rT (f, K, ε2).

Definition 1.1. We define the ψ-induced topological entropy of K (with respect to f )

by

hψ(f, K) = lim
ε→0

lim sup
T→∞

1

T
log rT (f, K, ε) (1.2)

Remarks.

h1(f, X) = h(f), where h(f) denotes the topological entropy of f [3, 6].

Definition 1.2. Let (X, f) be a TDS, and let K be a compact set of X, ϕ, ψ ∈ C(X,R)

with ψ > 0. For T > 0, ε > 0, put

Qψ,T (f, K, ϕ, ε) = inf{
∑
x∈FT

exp(Sn(x,T )ϕ)(x) : FT is a (ψ, T, ε)-spanning set of K}.

We define the ψ-induced topological pressure of ϕ (with respect to f and K ) by

Pψ(f, K, ϕ) = lim
ε→0

lim sup
T→∞

1

T
log Qψ,T (f, K, ϕ, ε) (1.3)
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Remarks.

(i) If 0 < ε1 < ε2, then Qψ,T (f, K, ϕ, ε1) ≥ Qψ,T (f, K, ϕ, ε2), which implies the existence

of the Pψ(f, K, ϕ) in (1.3).

(ii) P1(f, X, ϕ) = P (ϕ), where P (ϕ) denotes the topological pressure of ϕ [3, 6].

(iii) It is easy to see Pψ(f, X, ϕ) = Pψ(ϕ), where Pψ(ϕ) denotes the ψ-induced topo-

logical pressure of ϕ [8].

By using a method which is different from that of [9], we obtain the result of this

paper, as follows.

Theorem 1.1. Let (X, d), (Y, ρ) be compact metric spaces, and let f : X → X, g :

Y → Y be continuous maps, π : X → Y a factor map, i.e., a continuous surjective

map with π ◦ f = g ◦ π, ϕ, ψ ∈ C(Y,R) with ψ > 0. Then

Pψ◦π(ϕ ◦ π) ≤ Pψ(ϕ) + sup
y∈Y

hψ◦π(f, π−1(y)). (1.4)

2 Some lemmas

In this section, we give some lemmas, which will be needed for the proof of Theorem

1.1.

Lemma 2.1. Let (Y, g) be a TDS, and let ρ be a compatible metric on Y , ψ ∈ C(Y,R)

with ψ > 0,m = min{ψ(x) : x ∈ Y }. For each y ∈ BT (x, δ, g), we have

|n(x, T )− n(y, T )| ≤ T + m

m2
var(ψ, δ) +

‖ψ‖
m

.

where var(ψ, δ) := sup{|ψ(x)− ψ(y)| : ρ(x, y) ≤ δ}.

Proof. Clearly n(x, T ) ≤ T
m

+ 1 for any x ∈ Y. Notice for each y ∈ BT (x, δ, g),

m|n(x, T )− n(y, T )| − n(x, T )var(ψ, δ) ≤ |Sn(x,T )ψ(x)− Sn(y,T )ψ(y)| ≤ ‖ψ‖.

Then

|n(x, T )− n(y, T )| ≤ n(x, T )

m
var(ψ, δ) +

‖ψ‖
m

≤ T + m

m2
var(ψ, δ) +

‖ψ‖
m

.

Lemma 2.2. Let (Y, g) be a TDS, and let ρ be a compatible metric on Y, ϕ, ψ ∈ C(Y,R)

with ψ > 0,m = min{ψ(x) : x ∈ Y }. For each y ∈ BT (x, δ, g), we have

exp Sn(y,T )ϕ(y) ≤ e( T
m

+1)var(ϕ,δ)+T+m

m2 ‖ϕ‖var(ψ,δ)+
‖ψ‖‖ϕ‖

m exp Sn(x,T )ϕ(x),

where var(ψ, δ) := sup{|ψ(x)− ψ(y)| : ρ(x, y) ≤ δ}.
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Proof. For each y ∈ BT (x, δ, g), it follows from Lemma 2.1 that

exp Sn(y,T )ϕ(y) = exp(Sn(y,T )ϕ(y)− Sn(x,T )ϕ(x) + Sn(x,T )ϕ(x))

≤ exp |Sn(y,T )ϕ(y)− Sn(x,T )ϕ(x)| exp Sn(x,T )ϕ(x)

≤ en(x,T )var(ϕ,δ)+|n(x,T )−n(y,T )|‖ϕ‖ exp Sn(x,T )ϕ(x)

≤ e( T
m

+1)var(ϕ,δ)+T+m

m2 ‖ϕ‖var(ψ,δ)+
‖ψ‖‖ϕ‖

m exp Sn(x,T )ϕ(x).

3 The proof of Theorem 1.1

Now we give the proof of Theorem 1.1. Let m = min{ψ(x) : x ∈ Y }. To show the

inequality, for any ε > 0, we choose δ1 > 0 small enough so that

d(u, v) < 4δ1 ⇒ d
2+[

‖ψ‖
m

]
(u, v) ≤ ε, (3.5)

where [‖ψ‖
m

] denotes the integer part of ‖ψ‖
m

. Clearly, we may assume

a := sup
y∈Y

hψ◦π(f, π−1(y)) < ∞.

Fix δ1 > 0 and τ > 0. For any y ∈ Y, we choose Ty > 0 such that there exist a

(ψ ◦ π, Ty, δ1)-spanning set Ey of π−1(y) with minimal cardinality such that |Ey| =

rTy(f, π−1(y), δ1) and

log rTy(f, π−1(y), δ1) ≤ (hψ◦π(f, π−1(y)) + τ)Ty ≤ (a + τ)Ty.

Denote Uy = {u ∈ X : ∃z ∈ Ey s.t dn(z,Ty)(u, z) < 2δ1}, then Uy is an open neighbor-

hood of π−1(y) and

(X \ Uy) ∩
⋂
γ>0

π−1(Bγ(y)) = ∅,

where Bγ(y) = {z ∈ Y : ρ(y, z) < γ}. By the finite intersection property of compact

sets, there is a Wy = Bγy(y), (γy > 0) for which π−1(Wy) ⊂ Uy. Since Y is compact,

there exists Wy1 ,Wy2 . . . Wyr cover Y. Let δ2 > 0 be a Lebesgue number for Y for this

open cover. For T > 0, we choose 0 < δ < 1
2
δ2 so that T+m

m2 var(ψ, δ) + ‖ψ‖
m
≤ 2 + [‖ψ‖

m
].

Let FT be a (ψ, T, δ)-spanning set of Y. For each y ∈ FT , 0 ≤ j < n(y, T ), pick

4y(j) ∈ {y1, y2 . . . yr} such that Bδ(gj(y)) ⊂ W4y(j). Define recursively

t0(y) = 0;

t1(y; z0) = n(z0, T4y(0)), z0 ∈ E4y(0);

t2(y; z0, z1) = t1(y; z0) + n(z1, T4y(t1(y;z0))), z1 ∈ E4y(t1(y;z0));

. . .

ts+1(y; z0, z1, . . . , zs) = ts(y; z0, z1, . . . , zs−1) + n(zs, T4y(ts(y; z0, z1, . . . , zs−1))),

zs ∈ E4y(ts(y;z0,z1,...,zs−1)) (3.6)
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until one gets a tq+1(y; z0, z1 . . . zq) ≥ n(y, T ). Clearly the number of q depends on the

choice of z0, z1 . . . zq−1. Set q(y; z0, z1 . . . zq−1) = q, we yet denote q(y; z0, z1 . . . zq−1) by q

for convenience. For y ∈ FT and z0 ∈ E4y(0), z1 ∈ E4y(t1(y;z0)), . . . , zq ∈ E4y(tq(y;z0,z1,...,zq−1)),

define

V (y; z0, z1, . . . , zq) = {u ∈ X : d(f t+ts(y;z0,z1,...,zs−1)(u), f t(zs)) < 2δ1

for all 0 ≤ t < n(zs, T4y(ts(y; z0, z1, . . . , zs−1))), 0 ≤ s ≤ q}.
It is not hard to see that

⋃
z0∈E4y(0),z1∈E4y(t1(y;z0)),...,zq∈E4y(tq(y;z0,z1,...,zq−1))

V (y; z0, z1, . . . , zq) ⊃ π−1(BT (y, δ, g)).

(3.7)

In fact, for any u ∈ π−1(BT (y, δ, g)), we have

ρ(gj(y), gj(πu)) ≤ δ, ∀0 ≤ j < n(y, T ).

Then

π(f j(u)) = gj(πu) ∈ Bδ(gj(y)) ⊂ W4y(j), ∀0 ≤ j < n(y, T ).

This implies that

f j(u) ∈ π−1(W4y(j)) ⊂ U4y(j), ∀0 ≤ j < n(y, T ), (3.8)

and hence, there exists z̃0 ∈ E4y(0) with dn(z̃0,T4y(0))(z̃0, u) < 2δ1. If n(z̃0, T4y(0)) ≥
n(y, T ), let t1(y; z̃0) = n(z̃0, T4y(0)), we have u ∈ V (y; z̃0) and finish the proof. Other-

wise, it follows from (3.8) that there exists z̃1 ∈ E4y(t1(y;z̃0)) such that

dn(z̃1,T4y(t1(y;z̃0)))(z̃1, f
n(z̃0,T4y(0))(u)) < 2δ1.

By this means, we get the minimal q(y; z̃0, z̃1 . . . z̃q−1) with tq+1(y; z̃0, z̃1 . . . z̃q) ≥ n(y, T ).

This implies that u ∈ V (y; z̃0, z̃1, . . . , z̃q). Since u is arbitrary, this shows (3.7).

Notice for each x ∈ X,

n(x, T ) = inf{n : (Snψ ◦ π)(x) ≥ T}

= inf{n :
n−1∑
i=0

ψ ◦ π(f i(x) ≥ T}

= inf{n :
n−1∑
i=0

ψ(giπ(x)) ≥ T}

= n(π(x), T ). (3.9)

If V (y; z0, z1, . . . , zq)∩π−1(BT (y, δ, g)) 6= ∅, pick any v(y; z0, z1, . . . , zq) ∈ V (y; z0, z1, . . . , zq)∩
π−1(BT (y, δ, g)) 6= ∅, we have

BT (v(y; z0, z1, . . . , zq), ε, f) ⊃ V (y; z0, z1, . . . , zq). (3.10)

5



In fact, for any v ∈ V (y; z0, z1, . . . , zq), we have for all 0 ≤ t < n(zs, T4y(ts(y; z0, z1, . . . , zs−1)))

and 0 ≤ s ≤ q,

d(f t+ts(y;z0,z1,...,zs−1)(v), f t(zs)) < 2δ1.

Since v(y; z0, z1, . . . , zq) ∈ V (y; z0, z1, . . . , zq), we get

d(f t+ts(y;z0,z1,...,zs−1)(v(y; z0, z1, . . . , zq)), f
t(zs)) < 2δ1.

Hence

d(f j(v(y; z0, z1, . . . , zq)), f
j(v)) < 4δ1, 0 ≤ j ≤ tq+1(y; z0, z1, . . . , zq).

By Lemma 2.1, we have

n(v(y; z0, z1, . . . , zq), T ) = n(π(v(y; z0, z1, . . . , zq), T )

≤ n(y, T ) +
T + m

m2
var(ψ, δ) +

‖ψ‖
m

≤ n(y, T ) + 2 + [
‖ψ‖
m

].

Now that n(y, T ) ≤ tq+1(y; z0, z1, . . . , zq), it follows from (3.5) that

d
n(y,T )+2+[

‖ψ‖
m

]
(v(y; z0, z1, . . . , zq), v) ≤ ε.

Therefore

dn(v(y;z0,z1,...,zq),T )(v(y; z0, z1, . . . , zq), v) ≤ ε.

That is, we show (3.10). Combing (3.7) and (3.10), we obtain

⋃
z0∈E4y(0),z1∈E4y(t1(y;z0)),...,zq∈E4y(tq(y;z0,z1,...,zq−1))

BT (v(y; z0, z1, . . . , zq), ε, f) ⊃ π−1(BT (y, δ, g)).

Let

ET = {v(y; z0, z1, . . . , zq) : y ∈ FT , z0 ∈ E4y(0), z1 ∈ E4y(t1(y;z0)), . . . , zq ∈ E4y(tq(y;z0,z1,...,zq−1))}.

Clearly ET is a (ψ ◦ π, T, ε)-spanning set of X. For y ∈ FT , there exists a permissible

(z
′
0, z

′
1, . . . , z

′
q) such that the number of permissible (z0, z1, . . . , zq) is at most

Ny =

q∏
s=0

rT4y (ts(y;z
′
0,z

′
1,...,z

′
s−1))(f, π−1(4y(ts(y; z

′
0, z

′
1, . . . , z

′
s−1))), δ1), (3.11)

where t0(y; z
′
−1) = 0.

To show (3.11), we give some notions which will be needed in next proof. Following

(3.6), we suppose q(y; z0, z1 . . . zq−1) ≥ 1. For each 1 ≤ s ≤ q(y; z0, z1 . . . zq−1), if zs−1 ∈
E4y(ts−1(y;z0,z1,...,zs−2)), we call zs−1 directs E4y(ts(y;z0,z1,...,zs−1)) and E4y(ts−1(y;z0,z1,...,zs−2))
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is a corresponding set of E4y(ts(y;z0,z1,...,zs−1)). We say a permissible (z0, z1, . . . , zq)

is a q + 1-string, and zq is a terminal point of the permissible (z0, z1, . . . , zq). For

each z ∈ E4y(tq(y;z0,z1,...,zq−1)), if z is a terminal point of a q + 1-string, we also say

E4y(tq(y;z0,z1,...,zq−1)) is a terminal set of q + 1-step.

Now we show (3.11). Let

p = max{q(y; z0, z1, . . . , zq−1) : z0 ∈ E4y(0), z1 ∈ E4y(t1(y;z0)), . . . , zq ∈ E4y(tq(y;z0,z1,...,zq−1))},

and

E := {Ey1 , Ey2 , . . . , Eyr}.
If p = 0, it is clear that (3.11) holds.

If p = 1, there exists terminal sets of 2-step. We assume E01, . . . , E0p1 ∈ E , (1 ≤
p1 ≤ |E4y(0)|) are all terminal sets of 2-step and |E01| = max{|E0i| : 1 ≤ i ≤ p1}.
Then the sum of the number of all 1-strings and the number of all 2-strings is at most

|E4y(0)||E01|. Let z
′
0 ∈ E4y(0) directs E01. Then the permissible (z

′
0) such that (3.11)

holds.

If p = 2, there exists terminal sets of 3-step. We assume

E0l11, . . . , E0l1s1 ; E0l21, . . . , E0l2s2 ; . . . ; E0lt1 . . . E0ltst , (1 ≤ t ≤ p1)

are all terminal sets of 3-step and satisfy the following:

(i) For each 1 ≤ i ≤ t, 1 ≤ j ≤ si, E0li is a corresponding set of E0lij, where 1 ≤ si ≤
|E0li|.
(ii) For each 1 ≤ i ≤ t, |E0li1| = max{|E0lij| : 1 ≤ j ≤ si}.
There exists 1 ≤ k ≤ t with

|E0lk ||E0lk1| = max{|E0li||E0li1| : 1 ≤ i ≤ t}.

Considering that the possibility of the existent terminal set of 2-step, if |E0lk ||E0lk1| ≥
|E01|, we obtain that the number of permissible (z0, z1, . . . , zq) is at most

|E4y(0)||E0lk ||E0lk1|.

Choose z
′
0 ∈ E4y(0) with z

′
0 directs E0lk , z

′
1 ∈ E0lk with z

′
1 directs E0lk1. Then the

permissible (z
′
0, z

′
1) such that (3.11) holds. If |E01| ≥ |E0lk ||Ek1|, we have the number

of permissible (z0, z1, . . . , zq) is at most |E4y(0)||E01| and permissible (z
′
0) with z

′
0 directs

E01 such that (3.11) holds.

Proceeding in this way, if p > 2, for each 1 ≤ i ≤ t, we assume there exists a permissible

(z
(i)
1 , . . . , z

(i)
q ) such that the number of permissible (z1, . . . , zq) with z1 ∈ E0li is at most

q∏
s=1

r
T4y (ts(y;z

(i)
0 ,z

(i)
1 ,...,z

(i)
s−1))

(f, π−1(4y(ts(y; z
(i)
0 , z

(i)
1 , . . . , z

(i)
s−1))), δ1),
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where z
(i)
1 ∈ E0li and z

(i)
0 directs E0li , q := q(z

(i)
0 , z

(i)
1 , . . . , z

(i)
q−1).

There exists 1 ≤ k ≤ t with

q∏
s=1

r
T4y (ts(y;z

(k)
0 ,z

(k)
1 ,...,z

(k)
s−1))

(f, π−1(4y(ts(y; z
(k)
0 , z

(k)
1 , . . . , z

(k)
s−1))), δ1)

= max{
q∏

s=1

r
T4y (ts(y;z

(i)
0 ,z

(i)
1 ,...,z

(i)
s−1))

(f, π−1(4y(ts(y; z
(i)
0 , z

(i)
1 , . . . , z

(i)
s−1))), δ1) : 1 ≤ i ≤ t}.

If
q∏

s=1

r
T4y (ts(y;z

(k)
0 ,z

(k)
1 ,...,z

(k)
s−1))

(f, π−1(4y(ts(y; z
(k)
0 , z

(k)
1 , . . . , z

(k)
s−1))), δ1) ≥ |E01|,

then the number of permissible (z0, z1, . . . , zq) is at most

q∏
s=0

r
T4y (ts(y;z

(i)
0 ,z

(i)
1 ,...,z

(i)
s−1))

(f, π−1(4y(ts(y; z
(i)
0 , z

(i)
1 , . . . , z

(i)
s−1))), δ1).

This implies (z
(k)
0 , z

(k)
1 , . . . , z

(k)
q ) such that (3.11) holds.

If
q∏

s=1

r
T4y (ts(y;z

(k)
0 ,z

(k)
1 ,...,z

(k)
s−1))

(f, π−1(4y(ts(y; z
(k)
0 , z

(k)
1 , . . . , z

(k)
s−1))), δ1) ≤ |E01|,

we have the number of permissible (z0, z1, . . . , zq) is at most |E4y(0)||E01| and permis-

sible (z
′
0) with z

′
0 directs E01 such that (3.11)holds and finish the proof of (3.11).

Let v ∈ V (y; z
′
0, z

′
1, . . . , z

′
q), N = max{n(z, Tyi

) : z ∈ Eyi
, i = 1, 2 . . . r}. Then

log Ny =

q∑
s=0

log rT4y (ts(y;z
′
0,z

′
1,...,z

′
s−1))(f, π−1(4y(ts(y; z

′
0, z

′
1, . . . , z

′
s−1))), δ1)

≤ (a + τ)(T4y(0) + T4y(t1(y;z
′
0)) + . . . + T4y(tq(y;z

′
0,z

′
1,...,z′q)))

≤ (a + τ)(Sn(z
′
0,T4y(0))

ψ ◦ π(z
′
0) + . . . + Sn(z′q ,T4y(tq(y;z

′
0,z
′
1,...,z

′
q)

)ψ ◦ π(z
′
q))

≤ (a + τ)[(n(y, T ) + N)V ar(ψ ◦ π, 2δ1) + Sn(y,T )+Nψ ◦ π(v)]. (3.12)

It follows from (3.9) and Lemma 2.1 that

n(y, T ) ≤ n(v, T ) + 2 + [
‖ψ‖
m

]

and

(3.12) ≤ (a + τ)[(n(y, T ) + N)V ar(ψ ◦ π, 2δ1) + Sn(v,T )ψ ◦ π(v) + (2 + [
‖ψ‖
m

] + N)‖ψ‖]

≤ (a + τ)[(
T

m
+ 1 + N)V ar(ψ ◦ π, 2δ1) + T + ‖ψ‖+ (2 + [

‖ψ‖
m

] + N)‖ψ‖],
(3.13)
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where V ar(ψ ◦ π, δ) = sup{|ψ ◦ π(x) − ψ ◦ π(y)| : d(x, y) < δ, x, y ∈ X}. Let v :=

v(y; z0, z1, . . . , zq). Combining (3.13) and Lemma 2.2, we have

∑
v∈ET

exp(Sn(v,T )ϕ ◦ π(v))

≤
∑
y∈FT

∑

v∈V (y;z0,z1,...,zq)∩π−1(B(y,T,δ))

exp(Sn(v,T )ϕ ◦ π(v))

≤
∑
y∈FT

∑

v∈V (y;z0,z1,...,zq)∩π−1(B(y,T,δ))

exp(|Sn(v,T )ϕ ◦ π(v)− Sn(y,T )ϕ(y)|+ Sn(y,T )ϕ(y))

≤
∑
y∈FT

exp Sn(y,T )ϕ(y)
∑

v∈V (y;z0,z1,...,zq)∩π−1(B(y,T,δ))

exp[n(y, T )var(ϕ, δ) + |n(v, T )− n(y, T )|‖ϕ‖]

≤ exp{(a + τ)[(
T

m
+ 1 + N)V ar(ψ ◦ π, 2δ1) + T + ‖ψ‖+ (2 + [

‖ψ‖
m

] + N)‖ψ‖]}

exp[(
T

m
+ 1)var(ϕ, δ)] exp[(2 + [

‖ψ‖
m

)]‖ϕ‖]
∑
y∈FT

exp Sn(y,T )ϕ(y) (3.14)

Now that δ → 0 as T →∞, it is easy to see

lim sup
T→∞

1

T
log Qψ◦π,T (f, ϕ ◦ π, ε) ≤ (a + τ)(

1

m
V ar(ψ ◦ π, 2δ1) + 1) + Pψ(ϕ),

where

Qψ◦π,T (f, ϕ◦π, ε) = inf{
∑
v∈ET

exp(Sn(v,T )ϕ)(v) : ET is a (ψ◦π, T, ε)-spanning set of X}.

Notice V ar(ψ ◦ π, 2δ1) → 0 as δ1 → 0. Since δ1 → 0 as ε → 0, we have

Pψ◦π(ϕ ◦ π) ≤ Pψ(ϕ) + a + τ.

As τ → 0, we obtain

Pψ◦π(ϕ ◦ π) ≤ Pψ(ϕ) + sup
y∈Y

hψ◦π(f, π−1(y)).
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