A note of the induced topological pressure for topological systems

Zhitao Xing ${ }^{1}$
1 School of Mathematics and Statistics, Zhaoqing University, e-mail: xzt-303@163.com Zhaoqing 526061, Guangdong, P.R.China

Abstract

In this paper, we give an equivalent definition of the induced topological pressure [8]. We also set up a relation for two induced topological pressures with a factor map by using a method which is different from that of [9].

Keywords and phrases: Induced topological pressure, dynamical system, factor map.

1 Introduction and statement of main result

Throughout this paper, a topological dynamical system (for short TDS) means a pair (X, f), where f is a continuous map from a compact metric space (X, d) to itself. For $n \in \mathbb{N}$, the n-th Bowen metric d_{n} on X is defined by

$$
d_{n}(x, y)=\max \left\{d\left(f^{i}(x), f^{i}(y)\right): i=0,1, \ldots, n-1\right\}
$$

Recall that $C(X, \mathbb{R})$ is the Banach algebra of real-valued continuous functions of X equipped with the supremum norm. For $\varphi \in C(X, \mathbb{R})$, let $\left(S_{n} \varphi\right)(x):=\sum_{i=0}^{n-1} \varphi\left(f^{i} x\right)$.

The notion of the topological entropy plays an important role in topological dynamics and dimension theory [1, 2, 6]. In 1971, Bowen [4] considered a factor map $\pi:(X, f) \rightarrow(Y, g)$, and showed that

$$
\begin{equation*}
h(f) \leq h(g)+\sup _{y \in Y} h\left(f, \pi^{-1}(y)\right), \tag{1.1}
\end{equation*}
$$

where $h(f, K)$ denotes the entropy of a compact subset $K \subseteq X$ with respect to f.

Topological pressure is a generalization to topological entropy for dynamical systems. It was first introduced by Ruelle [5] for expansive dynamical systems, and later by Walters [3, 6] for the general case. Recently, the theory for dynamical systems with different time-scalings has been developed. Jaerisch, Kesseböhmer, and Lamei [7] studied the induced topological pressure of a countable state Markov shift. In [8], the authors defined the induced topological pressure for a topological dynamical system, and established a variational principle for it. In this paper, we give an equivalent definition of the induced topological pressure. We also set up a relation for two induced topological pressures with a factor map by using a method which is different from that of [9].

Let (X, f) be a TDS and $\psi \in C(X, \mathbb{R})$ with $\psi>0$. For $x \in X, T>0, \epsilon>0$, define

$$
n(x, T)=\inf \left\{n \in \mathbb{N}: S_{n} \psi(x) \geq T\right\}
$$

and

$$
B_{T}(x, \epsilon, f)=\left\{y \in X: d_{n(x, T)}(x, y)<\epsilon\right\} ; \bar{B}_{T}(x, \epsilon, f)=\left\{y \in X: d_{n(x, T)}(x, y) \leq \epsilon\right\}
$$

Let K be a compact set of X. A subset $F_{T} \subset X$ is called a (ψ, T, ϵ)-spanning set of K with respect to f, if for any $y \in K$, there exists $x \in F_{T}$ with $d_{n(x, T)}(x, y) \leq \epsilon$. Let $r_{T}(f, K, \epsilon)$ denotes the smallest cardinality of any (ψ, T, ϵ)-spanning set of K. Obviously $r_{T}(f, K, \epsilon)<\infty$. Define

$$
r(f, K, \epsilon)=\limsup _{T \rightarrow \infty} \frac{1}{T} \log r_{T}(f, K, \epsilon)
$$

Clearly if $0<\epsilon_{1}<\epsilon_{2}$, then $r_{T}\left(f, K, \epsilon_{1}\right) \geq r_{T}\left(f, K, \epsilon_{2}\right)$.
Definition 1.1. We define the ψ-induced topological entropy of K (with respect to f) by

$$
\begin{equation*}
h_{\psi}(f, K)=\lim _{\epsilon \rightarrow 0} \limsup _{T \rightarrow \infty} \frac{1}{T} \log r_{T}(f, K, \epsilon) \tag{1.2}
\end{equation*}
$$

Remarks.

$h_{1}(f, X)=h(f)$, where $h(f)$ denotes the topological entropy of $f[3,6]$.
Definition 1.2. Let (X, f) be a TDS, and let K be a compact set of $X, \varphi, \psi \in C(X, \mathbb{R})$ with $\psi>0$. For $T>0, \epsilon>0$, put

$$
Q_{\psi, T}(f, K, \varphi, \epsilon)=\inf \left\{\sum_{x \in F_{T}} \exp \left(S_{n(x, T)} \varphi\right)(x): F_{T} \text { is a }(\psi, T, \epsilon) \text {-spanning set of } K\right\} .
$$

We define the ψ-induced topological pressure of φ (with respect to f and K) by

$$
\begin{equation*}
P_{\psi}(f, K, \varphi)=\lim _{\epsilon \rightarrow 0} \limsup _{T \rightarrow \infty} \frac{1}{T} \log Q_{\psi, T}(f, K, \varphi, \epsilon) \tag{1.3}
\end{equation*}
$$

Remarks.

(i) If $0<\epsilon_{1}<\epsilon_{2}$, then $Q_{\psi, T}\left(f, K, \varphi, \epsilon_{1}\right) \geq Q_{\psi, T}\left(f, K, \varphi, \epsilon_{2}\right)$, which implies the existence of the $P_{\psi}(f, K, \varphi)$ in (1.3).
(ii) $P_{1}(f, X, \varphi)=P(\varphi)$, where $P(\varphi)$ denotes the topological pressure of $\varphi[3,6]$.
(iii) It is easy to see $P_{\psi}(f, X, \varphi)=P_{\psi}(\varphi)$, where $P_{\psi}(\varphi)$ denotes the ψ-induced topological pressure of φ [8].

By using a method which is different from that of [9], we obtain the result of this paper, as follows.

Theorem 1.1. Let $(X, d),(Y, \rho)$ be compact metric spaces, and let $f: X \rightarrow X, g$: $Y \rightarrow Y$ be continuous maps, $\pi: X \rightarrow Y$ a factor map, i.e., a continuous surjective map with $\pi \circ f=g \circ \pi, \varphi, \psi \in C(Y, \mathbb{R})$ with $\psi>0$. Then

$$
\begin{equation*}
P_{\psi \circ \pi}(\varphi \circ \pi) \leq P_{\psi}(\varphi)+\sup _{y \in Y} h_{\psi \circ \pi}\left(f, \pi^{-1}(y)\right) . \tag{1.4}
\end{equation*}
$$

2 Some lemmas

In this section, we give some lemmas, which will be needed for the proof of Theorem 1.1.

Lemma 2.1. Let (Y, g) be a TDS, and let ρ be a compatible metric on $Y, \psi \in C(Y, \mathbb{R})$ with $\psi>0, m=\min \{\psi(x): x \in Y\}$. For each $y \in \bar{B}_{T}(x, \delta, g)$, we have

$$
|n(x, T)-n(y, T)| \leq \frac{T+m}{m^{2}} \operatorname{var}(\psi, \delta)+\frac{\|\psi\|}{m} .
$$

where $\operatorname{var}(\psi, \delta):=\sup \{|\psi(x)-\psi(y)|: \rho(x, y) \leq \delta\}$.
Proof. Clearly $n(x, T) \leq \frac{T}{m}+1$ for any $x \in Y$. Notice for each $y \in \bar{B}_{T}(x, \delta, g)$,

$$
m|n(x, T)-n(y, T)|-n(x, T) \operatorname{var}(\psi, \delta) \leq\left|S_{n(x, T)} \psi(x)-S_{n(y, T)} \psi(y)\right| \leq\|\psi\|
$$

Then

$$
|n(x, T)-n(y, T)| \leq \frac{n(x, T)}{m} \operatorname{var}(\psi, \delta)+\frac{\|\psi\|}{m} \leq \frac{T+m}{m^{2}} \operatorname{var}(\psi, \delta)+\frac{\|\psi\|}{m}
$$

Lemma 2.2. Let (Y, g) be a TDS, and let ρ be a compatible metric on $Y, \varphi, \psi \in C(Y, \mathbb{R})$ with $\psi>0, m=\min \{\psi(x): x \in Y\}$. For each $y \in \bar{B}_{T}(x, \delta, g)$, we have

$$
\exp S_{n(y, T)} \varphi(y) \leq e^{\left(\frac{T}{m}+1\right) \operatorname{var}(\varphi, \delta)+\frac{T+m}{m^{2}}\|\varphi\| \operatorname{var}(\psi, \delta)+\frac{\|\varphi\|\|\varphi\|}{m}} \exp S_{n(x, T)} \varphi(x)
$$

where $\operatorname{var}(\psi, \delta):=\sup \{|\psi(x)-\psi(y)|: \rho(x, y) \leq \delta\}$.

Proof. For each $y \in \bar{B}_{T}(x, \delta, g)$, it follows from Lemma 2.1 that

$$
\begin{aligned}
\exp S_{n(y, T)} \varphi(y) & =\exp \left(S_{n(y, T)} \varphi(y)-S_{n(x, T)} \varphi(x)+S_{n(x, T)} \varphi(x)\right) \\
& \leq \exp \left|S_{n(y, T)} \varphi(y)-S_{n(x, T)} \varphi(x)\right| \exp S_{n(x, T)} \varphi(x) \\
& \leq e^{n(x, T) \operatorname{var}(\varphi, \delta)+\mid n(x, T)-n(y, T)\|\varphi\|} \exp S_{n(x, T)} \varphi(x) \\
& \leq e^{\left(\frac{T}{m}+1\right) \operatorname{var}(\varphi, \delta)+\frac{T+m}{m^{2}}\|\varphi\| \operatorname{var}(\psi, \delta)+\frac{\|\varphi\|\|\varphi\|}{m}} \exp S_{n(x, T)} \varphi(x) .
\end{aligned}
$$

3 The proof of Theorem 1.1

Now we give the proof of Theorem 1.1. Let $m=\min \{\psi(x): x \in Y\}$. To show the inequality, for any $\epsilon>0$, we choose $\delta_{1}>0$ small enough so that

$$
\begin{equation*}
d(u, v)<4 \delta_{1} \Rightarrow d_{2+\left[\frac{\|u\| \|]}{m}\right]}(u, v) \leq \epsilon \tag{3.5}
\end{equation*}
$$

where $\left[\frac{\|\psi\|}{m}\right]$ denotes the integer part of $\frac{\|\psi\| \|}{m}$. Clearly, we may assume

$$
a:=\sup _{y \in Y} h_{\psi \circ \pi}\left(f, \pi^{-1}(y)\right)<\infty .
$$

Fix $\delta_{1}>0$ and $\tau>0$. For any $y \in Y$, we choose $T_{y}>0$ such that there exist a $\left(\psi \circ \pi, T_{y}, \delta_{1}\right)$-spanning set E_{y} of $\pi^{-1}(y)$ with minimal cardinality such that $\left|E_{y}\right|=$ $r_{T_{y}}\left(f, \pi^{-1}(y), \delta_{1}\right)$ and

$$
\log r_{T_{y}}\left(f, \pi^{-1}(y), \delta_{1}\right) \leq\left(h_{\psi \circ \pi}\left(f, \pi^{-1}(y)\right)+\tau\right) T_{y} \leq(a+\tau) T_{y}
$$

Denote $U_{y}=\left\{u \in X: \exists z \in E_{y}\right.$ s.t $\left.d_{n\left(z, T_{y}\right)}(u, z)<2 \delta_{1}\right\}$, then U_{y} is an open neighborhood of $\pi^{-1}(y)$ and

$$
\left(X \backslash U_{y}\right) \cap \bigcap_{\gamma>0} \pi^{-1}\left(\overline{B_{\gamma}(y)}\right)=\emptyset
$$

where $B_{\gamma}(y)=\{z \in Y: \rho(y, z)<\gamma\}$. By the finite intersection property of compact sets, there is a $W_{y}=B_{\gamma_{y}}(y),\left(\gamma_{y}>0\right)$ for which $\pi^{-1}\left(W_{y}\right) \subset U_{y}$. Since Y is compact, there exists $W_{y_{1}}, W_{y_{2}} \ldots W_{y_{r}}$ cover Y. Let $\delta_{2}>0$ be a Lebesgue number for Y for this open cover. For $T>0$, we choose $0<\delta<\frac{1}{2} \delta_{2}$ so that $\frac{T+m}{m^{2}} \operatorname{var}(\psi, \delta)+\frac{\|\psi\|}{m} \leq 2+\left[\frac{\|\psi\|}{m}\right]$. Let F_{T} be a (ψ, T, δ)-spanning set of Y. For each $y \in F_{T}, 0 \leq j<n(y, T)$, pick $\triangle_{y}(j) \in\left\{y_{1}, y_{2} \ldots y_{r}\right\}$ such that $\overline{B_{\delta}\left(g^{j}(y)\right)} \subset W_{\triangle_{y}(j)}$. Define recursively

$$
\begin{align*}
t_{0}(y) & =0 \\
t_{1}\left(y ; z_{0}\right) & =n\left(z_{0}, T_{\triangle_{y}(0)}\right), z_{0} \in E_{\triangle_{y}(0)} ; \\
t_{2}\left(y ; z_{0}, z_{1}\right) & =t_{1}\left(y ; z_{0}\right)+n\left(z_{1}, T_{\triangle_{y}\left(t_{1}\left(y ; z_{0}\right)\right)}\right), z_{1} \in E_{\triangle_{y}\left(t_{1}\left(y ; z_{0}\right)\right)} ; \\
\ldots & \\
t_{s+1}\left(y ; z_{0}, z_{1}, \ldots, z_{s}\right) & =t_{s}\left(y ; z_{0}, z_{1}, \ldots, z_{s-1}\right)+n\left(z_{s}, T_{\triangle_{y}}\left(t_{s}\left(y ; z_{0}, z_{1}, \ldots, z_{s-1}\right)\right)\right), \tag{3.6}\\
z_{s} \in E_{\triangle_{y}\left(t_{s}\left(y ; z_{0}, z_{1}, \ldots, z_{s-1}\right)\right)} &
\end{align*}
$$

until one gets a $t_{q+1}\left(y ; z_{0}, z_{1} \ldots z_{q}\right) \geq n(y, T)$. Clearly the number of q depends on the choice of $z_{0}, z_{1} \ldots z_{q-1}$. Set $q\left(y ; z_{0}, z_{1} \ldots z_{q-1}\right)=q$, we yet denote $q\left(y ; z_{0}, z_{1} \ldots z_{q-1}\right)$ by q for convenience. For $y \in F_{T}$ and $z_{0} \in E_{\Delta_{y}(0)}, z_{1} \in E_{\Delta_{y}\left(t_{1}\left(y ; z_{0}\right)\right)}, \ldots, z_{q} \in E_{\Delta_{y}\left(t_{q}\left(y ; z_{0}, z_{1}, \ldots, z_{q-1}\right)\right)}$, define

$$
\begin{aligned}
& V\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right)=\left\{u \in X: d\left(f^{t+t_{s}\left(y ; z_{0}, z_{1}, \ldots, z_{s-1}\right)}(u), f^{t}\left(z_{s}\right)\right)<2 \delta_{1}\right. \\
& \left.\quad \text { for all } 0 \leq t<n\left(z_{s}, T_{\triangle_{y}}\left(t_{s}\left(y ; z_{0}, z_{1}, \ldots, z_{s-1}\right)\right)\right), 0 \leq s \leq q\right\} .
\end{aligned}
$$

It is not hard to see that

$$
\begin{align*}
& V\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right) \supset \pi^{-1}\left(\bar{B}_{T}(y, \delta, g)\right) . \\
& z_{0} \in E_{\Delta_{y}(0)}, z_{1} \in E_{\Delta_{y}\left(t_{1}\left(y ; z_{0}\right)\right), \ldots, z_{q} \in E_{\Delta_{y}\left(t q\left(y ; z_{0}, z_{1}, \ldots, z_{q-1}\right)\right)}} \tag{3.7}
\end{align*}
$$

In fact, for any $u \in \pi^{-1}\left(\bar{B}_{T}(y, \delta, g)\right)$, we have

$$
\rho\left(g^{j}(y), g^{j}(\pi u)\right) \leq \delta, \quad \forall 0 \leq j<n(y, T) .
$$

Then

$$
\pi\left(f^{j}(u)\right)=g^{j}(\pi u) \in \overline{B_{\delta}\left(g^{j}(y)\right)} \subset W_{\triangle_{y}(j)}, \quad \forall 0 \leq j<n(y, T)
$$

This implies that

$$
\begin{equation*}
f^{j}(u) \in \pi^{-1}\left(W_{\triangle_{y}(j)}\right) \subset U_{\Delta_{y}(j)}, \quad \forall 0 \leq j<n(y, T) \tag{3.8}
\end{equation*}
$$

and hence, there exists $\widetilde{z_{0}} \in E_{\Delta_{y}(0)}$ with $d_{n\left(\widetilde{z_{0}}, T_{\Delta_{y}(0)}\right)}\left(\widetilde{z_{0}}, u\right)<2 \delta_{1}$. If $n\left(\widetilde{z_{0}}, T_{\triangle_{y}(0)}\right) \geq$ $n(y, T)$, let $t_{1}\left(y ; \widetilde{z_{0}}\right)=n\left(\widetilde{z_{0}}, T_{\triangle_{y}(0)}\right)$, we have $u \in V\left(y ; \widetilde{z_{0}}\right)$ and finish the proof. Otherwise, it follows from (3.8) that there exists $\widetilde{z_{1}} \in E_{\Delta_{y}\left(t_{1}\left(y ; \tilde{z}_{0}\right)\right)}$ such that

$$
d_{n\left(\widetilde{z}_{1}, T_{\Delta y}\left(t_{1}\left(y ; \tilde{z}_{0}\right)\right)\right)}\left(\widetilde{z_{1}}, f^{n\left(\widetilde{z_{0}}, T_{\Delta y}(0)\right.}(u)\right)<2 \delta_{1} .
$$

By this means, we get the minimal $q\left(y ; \widetilde{z_{0}}, \widetilde{z_{1}} \ldots \widetilde{z_{q-1}}\right)$ with $t_{q+1}\left(y ; \widetilde{z_{0}}, \widetilde{z_{1}} \ldots \widetilde{z_{q}}\right) \geq n(y, T)$. This implies that $u \in V\left(y ; \widetilde{z_{0}}, \widetilde{z_{1}}, \ldots, \widetilde{z_{q}}\right)$. Since u is arbitrary, this shows (3.7).

Notice for each $x \in X$,

$$
\begin{align*}
n(x, T) & =\inf \left\{n:\left(S_{n} \psi \circ \pi\right)(x) \geq T\right\} \\
& =\inf \left\{n: \sum_{i=0}^{n-1} \psi \circ \pi\left(f^{i}(x) \geq T\right\}\right. \\
& =\inf \left\{n: \sum_{i=0}^{n-1} \psi\left(g^{i} \pi(x)\right) \geq T\right\} \\
& =n(\pi(x), T) . \tag{3.9}
\end{align*}
$$

If $V\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right) \cap \pi^{-1}\left(\bar{B}_{T}(y, \delta, g)\right) \neq \emptyset$, pick any $v\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right) \in V\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right) \cap$ $\pi^{-1}\left(\bar{B}_{T}(y, \delta, g)\right) \neq \emptyset$, we have

$$
\begin{equation*}
\bar{B}_{T}\left(v\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right), \epsilon, f\right) \supset V\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right) . \tag{3.10}
\end{equation*}
$$

In fact, for any $v \in V\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right)$, we have for all $0 \leq t<n\left(z_{s}, T_{\Delta_{y}}\left(t_{s}\left(y ; z_{0}, z_{1}, \ldots, z_{s-1}\right)\right)\right)$ and $0 \leq s \leq q$,

$$
d\left(f^{t+t_{s}\left(y ; z_{0}, z_{1}, \ldots, z_{s-1}\right)}(v), f^{t}\left(z_{s}\right)\right)<2 \delta_{1}
$$

Since $v\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right) \in V\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right)$, we get

$$
d\left(f^{t+t_{s}\left(y ; z_{0}, z_{1}, \ldots, z_{s-1}\right)}\left(v\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right)\right), f^{t}\left(z_{s}\right)\right)<2 \delta_{1} .
$$

Hence

$$
d\left(f^{j}\left(v\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right)\right), f^{j}(v)\right)<4 \delta_{1}, \quad 0 \leq j \leq t_{q+1}\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right) .
$$

By Lemma 2.1, we have

$$
\begin{aligned}
n\left(v\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right), T\right) & =n\left(\pi\left(v\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right), T\right)\right. \\
& \leq n(y, T)+\frac{T+m}{m^{2}} \operatorname{var}(\psi, \delta)+\frac{\|\psi\|}{m} \\
& \leq n(y, T)+2+\left[\frac{\|\psi\|}{m}\right] .
\end{aligned}
$$

Now that $n(y, T) \leq t_{q+1}\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right)$, it follows from (3.5) that

$$
d_{n(y, T)+2+\left[\frac{\|\varphi\| \|]}{m}\right]}\left(v\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right), v\right) \leq \epsilon .
$$

Therefore

$$
d_{n\left(v\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right), T\right)}\left(v\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right), v\right) \leq \epsilon .
$$

That is, we show (3.10). Combing (3.7) and (3.10), we obtain

Let
$E_{T}=\left\{v\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right): y \in F_{T}, z_{0} \in E_{\Delta_{y}(0)}, z_{1} \in E_{\Delta_{y}\left(t_{1}\left(y ; z_{0}\right)\right)}, \ldots, z_{q} \in E_{\triangle_{y}\left(t_{q}\left(y ; z_{0}, z_{1}, \ldots, z_{q-1}\right)\right)}\right\}$.
Clearly E_{T} is a $(\psi \circ \pi, T, \epsilon)$-spanning set of X. For $y \in F_{T}$, there exists a permissible $\left(z_{0}^{\prime}, z_{1}^{\prime}, \ldots, z_{q}^{\prime}\right)$ such that the number of permissible $\left(z_{0}, z_{1}, \ldots, z_{q}\right)$ is at most

$$
\begin{equation*}
N_{y}=\prod_{s=0}^{q} r_{T_{\Delta_{y}}\left(t_{s}\left(y ; z_{0}^{\prime}, z_{1}^{\prime}, \ldots, z_{s-1}^{\prime}\right)\right)}\left(f, \pi^{-1}\left(\triangle_{y}\left(t_{s}\left(y ; z_{0}^{\prime}, z_{1}^{\prime}, \ldots, z_{s-1}^{\prime}\right)\right)\right), \delta_{1}\right), \tag{3.11}
\end{equation*}
$$

where $t_{0}\left(y ; z_{-1}^{\prime}\right)=0$.
To show (3.11), we give some notions which will be needed in next proof. Following (3.6), we suppose $q\left(y ; z_{0}, z_{1} \ldots z_{q-1}\right) \geq 1$. For each $1 \leq s \leq q\left(y ; z_{0}, z_{1} \ldots z_{q-1}\right)$, if $z_{s-1} \in$ $E_{\Delta_{y}\left(t_{s-1}\left(y ; z_{0}, z_{1}, \ldots, z_{s-2}\right)\right)}$, we call z_{s-1} directs $E_{\Delta_{y}\left(t_{s}\left(y ; z_{0}, z_{1}, \ldots, z_{s-1}\right)\right)}$ and $E_{\Delta_{y}\left(t_{s-1}\left(y ; z_{0}, z_{1}, \ldots, z_{s-2}\right)\right)}$
is a corresponding set of $E_{\Delta_{y}\left(t_{s}\left(y ; z_{0}, z_{1}, \ldots, z_{s-1}\right)\right)}$. We say a permissible $\left(z_{0}, z_{1}, \ldots, z_{q}\right)$ is a $q+1$-string, and z_{q} is a terminal point of the permissible $\left(z_{0}, z_{1}, \ldots, z_{q}\right)$. For each $z \in E_{\Delta_{y}\left(t_{q}\left(y ; z_{0}, z_{1}, \ldots, z_{q-1}\right)\right)}$, if z is a terminal point of a $q+1$-string, we also say $E_{\Delta_{y}\left(t_{q}\left(y ; z_{0}, z_{1}, \ldots, z_{q-1}\right)\right)}$ is a terminal set of $q+1$-step.

Now we show (3.11). Let
$p=\max \left\{q\left(y ; z_{0}, z_{1}, \ldots, z_{q-1}\right): z_{0} \in E_{\triangle_{y}(0)}, z_{1} \in E_{\Delta_{y}\left(t_{1}\left(y ; z_{0}\right)\right)}, \ldots, z_{q} \in E_{\triangle_{y}\left(t_{q}\left(y ; z_{0}, z_{1}, \ldots, z_{q-1}\right)\right)}\right\}$, and

$$
\mathcal{E}:=\left\{E_{y_{1}}, E_{y_{2}}, \ldots, E_{y_{r}}\right\} .
$$

If $p=0$, it is clear that (3.11) holds.
If $p=1$, there exists terminal sets of 2 -step. We assume $E_{01}, \ldots, E_{0 p_{1}} \in \mathcal{E},(1 \leq$ $\left.p_{1} \leq\left|E_{\Delta_{y}(0)}\right|\right)$ are all terminal sets of 2-step and $\left|E_{01}\right|=\max \left\{\left|E_{0 i}\right|: 1 \leq i \leq p_{1}\right\}$. Then the sum of the number of all 1-strings and the number of all 2-strings is at most $\left|E_{\Delta_{y}(0)}\right|\left|E_{01}\right|$. Let $z_{0}^{\prime} \in E_{\Delta_{y}(0)}$ directs E_{01}. Then the permissible $\left(z_{0}^{\prime}\right)$ such that (3.11) holds.
If $p=2$, there exists terminal sets of 3 -step. We assume

$$
E_{0 l_{1} 1}, \ldots, E_{0 l_{1} s_{1}} ; E_{0 l_{2} 1}, \ldots, E_{0 l_{2} s_{2}} ; \ldots ; E_{0 l_{t} 1} \ldots E_{0 l_{t} s_{t}},\left(1 \leq t \leq p_{1}\right)
$$

are all terminal sets of 3-step and satisfy the following:
(i) For each $1 \leq i \leq t, 1 \leq j \leq s_{i}, E_{0 l_{i}}$ is a corresponding set of $E_{0 l_{i} j}$, where $1 \leq s_{i} \leq$ $\left|E_{0 l_{i}}\right|$.
(ii) For each $1 \leq i \leq t,\left|E_{0 l_{i} 1}\right|=\max \left\{\left|E_{0 l_{i} j}\right|: 1 \leq j \leq s_{i}\right\}$.

There exists $1 \leq k \leq t$ with

$$
\left|E_{0 l_{k}}\right|\left|E_{0 l_{k} 1}\right|=\max \left\{\left|E_{0 l_{i}}\right|\left|E_{0 l_{i} 1}\right|: 1 \leq i \leq t\right\}
$$

Considering that the possibility of the existent terminal set of 2-step, if $\left|E_{0 l_{k}}\right|\left|E_{0 l_{k} 1}\right| \geq$ $\left|E_{01}\right|$, we obtain that the number of permissible $\left(z_{0}, z_{1}, \ldots, z_{q}\right)$ is at most

$$
\left|E_{\triangle_{y}(0)}\right|\left|E_{0 l_{k}}\right|\left|E_{0 l_{k} 1}\right| .
$$

Choose $z_{0}^{\prime} \in E_{\Delta_{y}(0)}$ with z_{0}^{\prime} directs $E_{0 l_{k}}, z_{1}^{\prime} \in E_{0 l_{k}}$ with z_{1}^{\prime} directs $E_{0 l_{k} 1}$. Then the permissible $\left(z_{0}^{\prime}, z_{1}^{\prime}\right)$ such that (3.11) holds. If $\left|E_{01}\right| \geq\left|E_{0 l_{k}}\right|\left|E_{k 1}\right|$, we have the number of permissible $\left(z_{0}, z_{1}, \ldots, z_{q}\right)$ is at most $\left|E_{\Delta_{y}(0)}\right|\left|E_{01}\right|$ and permissible $\left(z_{0}^{\prime}\right)$ with z_{0}^{\prime} directs E_{01} such that (3.11) holds.
Proceeding in this way, if $p>2$, for each $1 \leq i \leq t$, we assume there exists a permissible $\left(z_{1}^{(i)}, \ldots, z_{q}^{(i)}\right)$ such that the number of permissible $\left(z_{1}, \ldots, z_{q}\right)$ with $z_{1} \in E_{0 l_{i}}$ is at most

$$
\prod_{s=1}^{q} r_{T_{\triangle_{y}}\left(t_{s}\left(y ; z_{0}^{(i)}, z_{1}^{(i)}, \ldots, z_{s-1}^{(i)}\right)\right)}\left(f, \pi^{-1}\left(\triangle_{y}\left(t_{s}\left(y ; z_{0}^{(i)}, z_{1}^{(i)}, \ldots, z_{s-1}^{(i)}\right)\right)\right), \delta_{1}\right)
$$

where $z_{1}^{(i)} \in E_{0 l_{i}}$ and $z_{0}^{(i)}$ directs $E_{0 l_{i}}, q:=q\left(z_{0}^{(i)}, z_{1}^{(i)}, \ldots, z_{q-1}^{(i)}\right)$.
There exists $1 \leq k \leq t$ with

$$
\begin{aligned}
& \prod_{s=1}^{q} r_{T_{\Delta_{y}}\left(t_{s}\left(y ; z_{0}^{(k)}, z_{1}^{(k)}, \ldots, z_{s-1}^{(k)}\right)\right)}\left(f, \pi^{-1}\left(\triangle_{y}\left(t_{s}\left(y ; z_{0}^{(k)}, z_{1}^{(k)}, \ldots, z_{s-1}^{(k)}\right)\right)\right), \delta_{1}\right) \\
= & \max \left\{\prod_{s=1}^{q} r_{T_{\Delta_{y}}\left(t_{s}\left(y ; z_{0}^{(i)}, z_{1}^{(i)}, \ldots, z_{s-1}^{(i)}\right)\right)}\left(f, \pi^{-1}\left(\triangle_{y}\left(t_{s}\left(y ; z_{0}^{(i)}, z_{1}^{(i)}, \ldots, z_{s-1}^{(i)}\right)\right)\right), \delta_{1}\right): 1 \leq i \leq t\right\} .
\end{aligned}
$$

If

$$
\prod_{s=1}^{q} r_{T_{\triangle_{y}}\left(t_{s}\left(y ; z_{0}^{(k)}, z_{1}^{(k)}, \ldots, z_{s-1}^{(k)}\right)\right)}\left(f, \pi^{-1}\left(\triangle_{y}\left(t_{s}\left(y ; z_{0}^{(k)}, z_{1}^{(k)}, \ldots, z_{s-1}^{(k)}\right)\right)\right), \delta_{1}\right) \geq\left|E_{01}\right|
$$

then the number of permissible $\left(z_{0}, z_{1}, \ldots, z_{q}\right)$ is at most

$$
\prod_{s=0}^{q} r_{T_{\triangle y}\left(t_{s}\left(y ; z_{0}^{(i)}, z_{1}^{(i)}, \ldots, z_{s-1}^{(i)}\right)\right)}\left(f, \pi^{-1}\left(\triangle_{y}\left(t_{s}\left(y ; z_{0}^{(i)}, z_{1}^{(i)}, \ldots, z_{s-1}^{(i)}\right)\right)\right), \delta_{1}\right) .
$$

This implies $\left(z_{0}^{(k)}, z_{1}^{(k)}, \ldots, z_{q}^{(k)}\right)$ such that (3.11) holds.
If

$$
\prod_{s=1}^{q} r_{T_{\triangle y}\left(t_{s}\left(y ; z_{0}^{(k)}, z_{1}^{(k)}, \ldots, z_{s-1}^{(k)}\right)\right)}\left(f, \pi^{-1}\left(\triangle_{y}\left(t_{s}\left(y ; z_{0}^{(k)}, z_{1}^{(k)}, \ldots, z_{s-1}^{(k)}\right)\right)\right), \delta_{1}\right) \leq\left|E_{01}\right|
$$

we have the number of permissible $\left(z_{0}, z_{1}, \ldots, z_{q}\right)$ is at most $\left|E_{\Delta_{y}(0)}\right|\left|E_{01}\right|$ and permissible $\left(z_{0}^{\prime}\right)$ with z_{0}^{\prime} directs E_{01} such that (3.11)holds and finish the proof of (3.11).

Let $v \in V\left(y ; z_{0}^{\prime}, z_{1}^{\prime}, \ldots, z_{q}^{\prime}\right), N=\max \left\{n\left(z, T_{y_{i}}\right): z \in E_{y_{i}}, i=1,2 \ldots r\right\}$. Then

$$
\begin{align*}
\log N_{y} & =\sum_{s=0}^{q} \log r_{T_{\triangle_{y}}\left(t_{s}\left(y ; z_{0}^{\prime}, z_{1}^{\prime}, \ldots, z_{s-1}^{\prime}\right)\right)}\left(f, \pi^{-1}\left(\triangle_{y}\left(t_{s}\left(y ; z_{0}^{\prime}, z_{1}^{\prime}, \ldots, z_{s-1}^{\prime}\right)\right)\right), \delta_{1}\right) \\
& \leq(a+\tau)\left(T_{\triangle_{y}(0)}+T_{\triangle_{y}\left(t_{1}\left(y ; z_{0}^{\prime}\right)\right)}+\ldots+T_{\triangle_{y}\left(t_{q}\left(y ; z_{0}^{\prime}, z_{1}^{\prime}, \ldots, z_{q}^{\prime}\right)\right)}\right) \\
& \leq(a+\tau)\left(S_{n\left(z_{0}^{\prime}, T_{\left.\Delta_{y}(0)\right)}\right.} \psi \circ \pi\left(z_{0}^{\prime}\right)+\ldots+S_{n\left(z_{q}^{\prime}, T_{\triangle y}\left(t q\left(y, z_{0}^{\prime}, z_{1}^{\prime}, \ldots, z_{q}^{\prime}\right)\right.\right.} \psi \circ \pi\left(z_{q}^{\prime}\right)\right) \\
& \leq(a+\tau)\left[(n(y, T)+N) \operatorname{Var}\left(\psi \circ \pi, 2 \delta_{1}\right)+S_{n(y, T)+N} \psi \circ \pi(v)\right] . \tag{3.12}
\end{align*}
$$

It follows from (3.9) and Lemma 2.1 that

$$
n(y, T) \leq n(v, T)+2+\left[\frac{\|\psi\|}{m}\right]
$$

and
$(3.12) \leq(a+\tau)\left[(n(y, T)+N) \operatorname{Var}\left(\psi \circ \pi, 2 \delta_{1}\right)+S_{n(v, T)} \psi \circ \pi(v)+\left(2+\left[\frac{\|\psi\|}{m}\right]+N\right)\|\psi\|\right]$

$$
\begin{equation*}
\leq(a+\tau)\left[\left(\frac{T}{m}+1+N\right) \operatorname{Var}\left(\psi \circ \pi, 2 \delta_{1}\right)+T+\|\psi\|+\left(2+\left[\frac{\|\psi\|}{m}\right]+N\right)\|\psi\|\right] \tag{3.13}
\end{equation*}
$$

where $\operatorname{Var}(\psi \circ \pi, \delta)=\sup \{|\psi \circ \pi(x)-\psi \circ \pi(y)|: d(x, y)<\delta, x, y \in X\}$. Let $v:=$ $v\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right)$. Combining (3.13) and Lemma 2.2, we have

$$
\begin{align*}
& \sum_{v \in E_{T}} \exp \left(S_{n(v, T)} \varphi \circ \pi(v)\right) \\
\leq & \sum_{y \in F_{T}} \sum_{v \in V\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right) \cap \pi^{-1}(\bar{B}(y, T, \delta))} \exp \left(S_{n(v, T)} \varphi \circ \pi(v)\right) \\
\leq & \sum_{y \in F_{T}} \sum_{v \in V\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right) \cap \pi^{-1}(\bar{B}(y, T, \delta))} \exp \left(\left|S_{n(v, T)} \varphi \circ \pi(v)-S_{n(y, T)} \varphi(y)\right|+S_{n(y, T)} \varphi(y)\right) \\
\leq & \sum_{y \in F_{T}} \exp S_{n(y, T)} \varphi(y) \sum_{v \in V\left(y ; z_{0}, z_{1}, \ldots, z_{q}\right) \cap \pi^{-1}(\bar{B}(y, T, \delta))} \exp [n(y, T) \operatorname{var}(\varphi, \delta)+|n(v, T)-n(y, T)|\|\varphi\|] \\
\leq & \exp \left\{(a+\tau)\left[\left(\frac{T}{m}+1+N\right) V \operatorname{Var}\left(\psi \circ \pi, 2 \delta_{1}\right)+T+\|\psi\|+\left(2+\left[\frac{\|\psi\|}{m}\right]+N\right)\|\psi\|\right]\right\} \\
& \exp \left[\left(\frac{T}{m}+1\right) \operatorname{var}(\varphi, \delta)\right] \exp \left[\left(2+\left[\frac{\|\psi\|}{m}\right)\right]\|\varphi\|\right] \sum_{y \in F_{T}} \exp S_{n(y, T)} \varphi(y) \tag{3.14}
\end{align*}
$$

Now that $\delta \rightarrow 0$ as $T \rightarrow \infty$, it is easy to see

$$
\limsup _{T \rightarrow \infty} \frac{1}{T} \log Q_{\psi \circ \pi, T}(f, \varphi \circ \pi, \epsilon) \leq(a+\tau)\left(\frac{1}{m} \operatorname{Var}\left(\psi \circ \pi, 2 \delta_{1}\right)+1\right)+P_{\psi}(\varphi)
$$

where
$Q_{\psi \circ \pi, T}(f, \varphi \circ \pi, \epsilon)=\inf \left\{\sum_{v \in E_{T}} \exp \left(S_{n(v, T)} \varphi\right)(v): E_{T}\right.$ is a $(\psi \circ \pi, T, \epsilon)$-spanning set of $\left.X\right\}$.
Notice $\operatorname{Var}\left(\psi \circ \pi, 2 \delta_{1}\right) \rightarrow 0$ as $\delta_{1} \rightarrow 0$. Since $\delta_{1} \rightarrow 0$ as $\epsilon \rightarrow 0$, we have

$$
P_{\psi \circ \pi}(\varphi \circ \pi) \leq P_{\psi}(\varphi)+a+\tau .
$$

As $\tau \rightarrow 0$, we obtain

$$
P_{\psi \circ \pi}(\varphi \circ \pi) \leq P_{\psi}(\varphi)+\sup _{y \in Y} h_{\psi \circ \pi}\left(f, \pi^{-1}(y)\right) .
$$

References

[1] Bowen, R., Equilibrium states and the ergodic theory of Anosov diffeomorphisms. (Lecture notes in Math. No. 470, Springer-Verlag, 1975).
[2] Keller, G., Equilibrium states in ergodic theory. (Cambridge University Press, 1998).
[3] Barreira, L., Thermodynanic fomalism and Applications to Dimension Theory. Springer, 2011.
[4] Bowen, R., "Entropy for group endomorphisms and homogeneous spaces," Trans. Amer. Math. Soc. 153,404-414 (1971).
[5] Ruelle, D., "Statistical mechanics on a compact set with Z^{v} action satisfying expansiveness and specification," Trans. Amer. Math. Soc. 187, 237-251 (1973).
[6] Walters, P., An introduction to Ergodic Theory. Springer, 1982.
[7] Jaerisch, J. Kesseböhmer, M. and Lamei, S., "Induced topological pressure for countable Markov shifts," Stochastics. Dyn. 14, 1350016; 1-31 (2014).
[8] Xing, Z, Chen, E., "Induced topological pressure for topological dynamical systems," J. Math. Phys. 56, 022707, 10pp (2015).
[9] Xing, Z. Chen,E., "Induced topological pressure and the zero-dimensional extension for BS dimensions," J. Math. Phys. 58, 042701, 9pp (2017).

